

Project Partners: Aero41, ATB, AVL, Bonn-Rhein-Sieg University, Cyprus Civil Defence, Domaine
Kox, FORTH, Fraunhofer IESE, KIOS, KUKA Assembly & Test, Locomotec,
Luxsense, The Open Group, Technology Transfer Systems, University of Hull,
University of Luxembourg, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SESAME Project Partners accept no liability for any error or omission in the same.

© 2022 Copyright in this document remains vested in the SESAME Project Partners.

Project Number 101017258

D7.1 Runtime Safety and Security Concept - EDDI
Runtime Model Specification

Version 1.0

30 June 2022
Final

Public Distribution

Fraunhofer IESE and University of Hull

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page ii Version 1.0 30 June 2022

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Aero41

Frédéric Hemmeler

Chemin de Mornex 3

1003 Lausanne

Switzerland

E-mail: frederic.hemmeler@aero41.ch

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

E-mail: scholze@atb-bremen.de

AVL

Martin Weinzerl

Hans-List-Platz 1

8020 Graz

Austria

E-mail: martin.weinzerl@avl.com

Bonn-Rhein-Sieg University

Nico Hochgeschwender

Grantham-Allee 20

53757 Sankt Augustin

Germany

E-mail: nico.hochgeschwender@h-brs.de

Cyprus Civil Defence

Eftychia Stokkou

Cyprus Ministry of Interior

1453 Lefkosia

Cyprus

E-mail: estokkou@cd.moi.gov.cy

Domaine Kox

Corinne Kox

6 Rue des Prés

5561 Remich

Luxembourg

E-mail: corinne@domainekox.lu

FORTH

Sotiris Ioannidis

N Plastira Str 100

70013 Heraklion

Greece

E-mail: sotiris@ics.forth.gr

Fraunhofer IESE

Daniel Schneider

Fraunhofer-Platz 1

67663 Kaiserslautern

Germany

E-mail: daniel.schneider@iese.fraunhofer.de

KIOS

Maria Michael

1 Panepistimiou Avenue

2109 Aglatzia, Nicosia

Cyprus

E-mail: mmichael@ucy.ac.cy

KUKA Assembly & Test

Michael Laackmann

Uhthoffstrasse 1

28757 Bremen

Germany

E-mail: michael.laackmann@kuka.com

Locomotec

Sebastian Blumenthal

Bergiusstrasse 15

86199 Augsburg

Germany

E-mail: blumenthal@locomotec.com

Luxsense

Gilles Rock

85-87 Parc d'Activités

8303 Luxembourg

Luxembourg

E-mail: gilles.rock@luxsense.lu

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

E-mail: s.hansen@opengroup.org

Technology Transfer Systems

Paolo Pedrazzoli

Via Francesco d'Ovidio, 3

20131 Milano

Italy

E-mail: pedrazzoli@ttsnetwork.com

University of Hull

Yiannis Papadopoulos

Cottingham Road

Hull HU6 7TQ

United Kingdom

E-mail: y.i.papadopoulos@hull.ac.uk

University of Luxembourg

Miguel Olivares Mendez

2 Avenue de l'Universite

4365 Esch-sur-Alzette

Luxembourg

E-mail: miguel.olivaresmendez@uni.lu

University of York

Simos Gerasimou & Nicholas Matragkas

Deramore Lane

York YO10 5GH

United Kingdom

E-mail: simos.gerasimou@york.ac.uk

 nicholas.matragkas@york.ac.uk

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Initial outline 10 May 2022

0.2 Second version; Added HULL and IESE uncertainty monitoring

content + dynamic event monitoring

10 June 2022

0.3 More content, restructured sections 25 June 2022

0.4 Final version for QA in project 26 June 2022

0.5 Review from FORTH 28 June 2022

0.6 Changes from FORTH review complete 28 June 2022

0.7 Comments and change proposals from LU review integrated 29 June 2022

1.0 Final version 30 June 2022

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page iv Version 1.0 30 June 2022

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

2. Runtime Dependability Monitoring Architecture With EDDI ... 4

3. Dynamic Safety Capability Assessment ... 7

3.1 Conditional Safety Certificates .. 8

3.2 Application in SESAME ... 9

3.3 Method and Algorithm ... 10

3.4 Example ... 10

4. Dynamic Reliability Assessment .. 12

5. Dynamic Risk Assessment .. 17

5.1 State of the Art ... 17

5.2 Situation-Aware Dynamic Risk Assessment ... 20

5.3 Example of SINADRA Model in SESAME Use Case ... 23

6. Dynamic Perception Uncertainty Monitoring .. 26

6.1 Background ... 26

6.2 Uncertainty monitoring ... 27

6.3 Uncertainty monitoring EDDI ... 28

6.4 Application in SESAME ... 28

7. Dynamic Event Monitoring .. 29

7.1 EDDI Event Framework context ... 30

7.2 Event monitoring ... 31

7.3 Events .. 32

8. Dynamic Security Management ... 36

9. Conclusions .. 37

10. References .. 39

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page v

Confidentiality: Public Distribution

TABLE OF FIGURES

Figure 1 Runtime EDDI Functionality ... 4
Figure 2 From single-system EDDI to MRS EDDI .. 5
Figure 3 Relationship of D7.1 to other SESAME deliverables .. 7
Figure 4 ConSert Composition Conceptual Overview.. 8
Figure 5 Relation between safety concept and ConSert for an open adaptive system .. 9
Figure 6 Example ConSert for the LOCOMOTEC use case ... 11
Figure 7 The Proposed Fault Tree of a typical UAV .. 14
Figure 8 Small FTA of a UAV with only three complex basic events – I) Processor Failure, II) Battery Failure and III)

Propulsion System Failure -- considering failure symptoms and three different types of reconfigurations for propulsion

system failure. ... 15
Figure 9 Overall view on combining real-time monitoring and diagnosis with Fault Tree Analysis 16
Figure 10 A sample view of SafeDrones integration with KIOS software. .. 16
Figure 11 Difference between safety capability/reliability assessment and risk assessment .. 17
Figure 12 Dynamic Risk Assessment Conceptual Overview [17] .. 19
Figure 13 Components of the SINADRA Framework .. 21
Figure 14 Example Qualitative Risk Model (Excerpt) ... 22
Figure 15 Example Bayesian network for autonomous shuttle - pedestrian controllability estimation (Excerpt) 23
Figure 16 Example qualitative risk model for human UV-C overexposure risks in disinfection use case 24
Figure 17 Experimental determination of the influence of the robot-person distance on UV-C intensity 25
Figure 18 Onion Layer model for uncertainty in ML components as described in [27] ... 26
Figure 19 Uncertainty wrapper overview ... 27
Figure 20 Application of SafeML ... 27
Figure 21 The use of SafeML on LOCOMOTEC use case of SESAME ... 29
Figure 22 The basic Executable Digital Dependability Identity architecture ... 30
Figure 23 The Event-Action cycle .. 32
Figure 24 Example workflow of IDS as part of runtime EDDIs .. 37

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page vi Version 1.0 30 June 2022

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

Multi-Robot Systems (MRS) can be considered as a major driver of innovation in terms

of engineering challenge, dynamicity of operation, and runtime collaboration. In the

concepts presented in this deliverable, we make our preliminary attempt to address

dependability through Executable Digital Dependability Identity (EDDI) runtime

components.

Runtime EDDIs are responsible for attaching upon an MRS application‘s constituent

robots, and enhancing both their awareness of their operational context in terms of

dependability, as well as recommending behavioural adaptation when deemed relevant.

We should note that the specific components we discuss in the individual sections of the

deliverable are hardly the only viable solution in terms of any MRS application, as there

is significant existing and ongoing work that offers alternative components. However,

the components included here present what we consider to be a composition that is

appropriate for the MRS applications in the scope of the SESAME project.

That being said, the concepts that the runtime EDDI components realize are broader,

and we also believe that they represent fundamental building blocks from which other

MRS applications can compose solutions of equivalent effectiveness.

Summarizing the contents that follow in the remainder of the deliverable, we discuss

further what the motivation for MRS applications and roles of runtime EDDI

components are, and identify needs and solutions for runtime assessment of safety

capabilities, reliability, situational risk, perception uncertainty, as well as runtime

dependability event monitoring, and security management.

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page vii

Confidentiality: Public Distribution

LIST OF ABBREVIATIONS

AI Artificial Intelligence MAS Multi-Agent System

DDI Digital Dependability Identity ML Machine Learning

ECDF
Empirical Cumulative Distribution

Function

MRS Multi-Robot System

EDDI
Executable Digital Dependability

Identity

MTTF

Mean Time To Failure (also,

MTBF: Mean Time Before Failure)

SINADRA
Situation-Aware Dynamic Risk

Assessment

ODE Open Dependability Exchange

SMILE

Statistical Model-agnostic

Interpretability with Local

Explanations

UAS
Unmanned Aircraft/Airborne

System

FTA Fault Tree Analysis UAV Unmanned Aerial Vehicle

DEIS

Dependability Engineering

Innovation for Cyber-Physical

Systems

UW Uncertainty Wrapper

ConSerts Conditional Safety Certificates LIDAR LIght Detection And Ranging

CBE Complex Basic Event RtE Runtime Evidence

SESAME
Secure and Safe Multi-Robot

Systems

EBNF Extended Backus-Naur form

MAPE-K
Monitor-Analyze-Plan-Execute-

Knowledge

IDS Intrusion Detection System

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

The context introduced by the SESAME project — with its emphasis on multi-robot

systems (MRS) — highlights several of the major challenges of modern safety

engineering. While robots are not a new invention in themselves, the way they operate

in increasingly interconnected, adaptive, and AI-driven ways poses distinct difficulties

for engineering safe and secure systems and at the same time preserve a maximum level

of performance. Conversely, Unmanned Aircraft/Airborne System (UAS)-like

multirotor drones are a relatively new invention, and sufficiently different from manned

aerial systems to demand a novel approach — especially when multiple units are

operating together as part of a cohesive whole.

One of the most perplexing difficulties facing dependability engineers is the fact that

only a portion of such systems and their environment are known at design time. This

does not apply when considering systems which can learn and adapt during their

operational lifetime. Neither does it apply when systems adapt their behaviour

dynamically (and autonomously) at runtime in response to its environment or to

cooperate with other systems. Thus, a simple, static, design-time analysis and an

according system design is no longer sufficient by itself. Additionally, such systems

need to understand the environmental context in a more sophisticated way to come to

safe and performant adaptation decisions. That extends the required scope of the safety

analysis beyond simple internal failure propagation to include interaction between the

system and its environment, particularly in the case of safety issues that originate from

the dynamic environment rather than the system itself.

These challenges can be broadly separated into three main categories:

 Complexity of dynamic systems in a dynamic environment

 Intelligence of systems driven by AI & machine learning

 Autonomy and unpredictability of open & distributed systems

One of the goals of the SESAME project is to develop a concept, methodology, and

supporting tools to address these challenges. Central to this aim is the idea of an

Executable Digital Dependability Identity (EDDI), which is a set of dependability-

relevant models synthesised during design-time analysis, but is transformed into

executable pieces of code that operate alongside the host system at runtime to monitor

and respond to safety-relevant changes (e.g. failures or context changes) during

operation.

MRS can be seen as cyber-physical systems of systems, which need to operate in highly

dynamic environments to achieve their goals. From the SESAME use cases, this is

already visible, as seen in the examples below:

- In the battery innovation centre use case, an MRS needs to react to thermal events

and potentially human error (e.g. workers mistakenly obstructing MRS movement

paths and/or incorrect task performance).

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 2 Version 1.0 30 June 2022

Confidentiality: Public Distribution

- In the hospital disinfection case, an MRS needs to once again react to unexpected

human interaction, as well as to dynamic lighting conditions, which might impede

accurate person detection.

- In the viticulture case, an MRS needs to adapt their movement and spraying patterns

to changing weather conditions, as well as to the presence, absence, and movement

of people in the vineyard.

- In the drone emergency surveillance case, an MRS needs to respond to potentially

extreme environmental conditions, survey an area that might still be changing

(falling debris, explosions) and potentially detect people in need of assistance (those

who may or may not be immobile).

- In the factory plant case, an MRS needs to adjust to regular movement and

interaction of human workers on the factory floor and avoid accidents when workers

and/or objects are in irregular/unexpected positions.

What all of these use cases have in common is that both the safety and security of the

MRS operation are affected by the high degree of dynamicity in system structure,

(sub)system availability and operational situations the systems have to cope with. To

react resiliently (i.e. safely, securely and efficiently) to changes in system and

environment, sophisticated self-awareness and situational awareness are required on

different levels to estimate the dynamic risk of MRS behaviours in a given situation and

estimate the dynamic availability of system capabilities to mitigate and manage those

risks. Traditional approaches to dependability engineering assume both system and

environmental dynamics to be worst-case during design-time safety analysis and design

the system dependability concept to be ready for the worst-case. Due to the mentioned

high dynamicity, worst-case assumptions lead to poor performance, as the majority of

the operational situations are non-worst-case situations and system states.

To overcome the limitations of existing approaches, this deliverable describes the

SESAME runtime safety and security concept that is realized through the Executable

Digital Dependability Identity (EDDI) and contains capabilities to dynamically (1)

monitor dependability-relevant events in the system and environment, (2) estimate the

uncertainty of machine-learning-based perception outputs, (3) create self-awareness

through model-based inference of MRS reliability attributes as well as MRS safety

capability availability, (4) create dependability-relevant situational awareness to

dynamically determine the risk of potential MRS (mis-)behaviours in the current

operational situation and (5) use dependability-related self- and situational awareness to

take and execute optimal adaptation decisions, which keep the risk acceptable during

operation and maximize operational performance.

A key feature distinguishing the EDDI from existing runtime dependability

management schemes is its formal link to design time dependability artefacts. To that

end, SESAME builds upon the holistic model-based dependability engineering methods

that have been first introduced in the H2020 project ―Dependability Engineering

Innovation for Cyber-Physical Systems‖ (DEIS)
1
. The Digital Dependability Identity

(DDI) concept in DEIS had a strong focus on providing a common integrated

1
 Project website: https://www.deis-project.eu/

https://www.deis-project.eu/

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 3

Confidentiality: Public Distribution

metamodel for design-time dependability engineering artefacts and the assurance case,

but left open the formal integration of the design-time artefacts with executable runtime

dependability mechanisms. This gap is closed in SESAME and is indicated through the

evolution from DDIs to Executable DDIs.

In contrast to runtime dependability approaches, where risk assessment and risk

mitigation are often directly integrated into the nominal function of the system, the

EDDI is executed in a control loop separated from the nominal function based on the

Monitor-Analyse-Plan-Execute-Knowledge (MAPE-K) scheme loop [1]. EDDIs form

the combined dependability ‗knowledge‘ of the MRS, captured during development,

and when deployed in the field, enhancing the underlying MRS MAPE-K loop with

respect to dependability. Using a separate ―dependability control loop‖ has significant

advantages for reacting to unforeseen events, because the dependability logic is not

scattered over the components of the nominal function. Thus, EDDIs can be updated

more easily, the interfaces to the nominal system are slim and explicit, and assurance of

the continuous evolution of EDDIs is simplified. Interfaces between EDDI

dependability manager and the nominal system are required to get access to the

perception stacks of all MRS systems and to trigger adaptation actions on the individual

systems. As such, the EDDI dependability manager acts as the onboard dependability

intelligence supervising risks and ―asking‖ the MRS to adapt behaviour if necessary and

possible.

This deliverable describes the EDDI runtime model specification, i.e. the methods and

models needed for assuring MRS dependability at runtime, and it is structured as

follows. In section 2, we provide an overview of our vision for EDDI usage at runtime,

what we consider to be its main responsibilities, and how the remainder of the document

is positioned to support this vision. In section 3, we describe the first of our runtime

building blocks, which introduces to MRS the ability to assess safety capabilities

dynamically via runtime EDDIs, allowing them to adapt their behaviour to their

collaborative operational context. In section 4, our next building block allows MRS to

perform runtime reliability assessment, such that the MRS can be aware of imminent or

existing failures. Section 5 presents our approach for dynamic risk assessment, which

allows MRS to evaluate the risk of a given situation, based on observed causal factors

evaluated probabilistically. In section 6, our concept for dynamic perception uncertainty

monitoring is responsible for assessing whether ML models (often used for perception)

are uncertain in a given runtime situation, and might therefore be unreliable. In section

7, a concept for specifying and monitoring generic runtime events is presented, which

can be form the basis of an EDDI-level communication protocol through the

propagation of events (and eventually recommended actions to the MRS). In section 8,

we discuss our preliminary concept for using intrusion detection, and how this can be

exploited by runtime EDDIs. We conclude in section 9, summarizing the deliverable‘s

main points and outlining the next steps in the context of the SESAME project.

The technical realization of runtime component generators to semi-automatically

generate executable components of the runtime models described in this deliverable is

described in Deliverable D7.2 (Figure 3). For the first iteration of the project, it was

assumed that runtime EDDIs are executed in a centralized way. Deliverable D7.3 will

elaborate on this aspect and consider distributed execution of runtime EDDIs.

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 4 Version 1.0 30 June 2022

Confidentiality: Public Distribution

2. RUNTIME DEPENDABILITY MONITORING ARCHITECTURE WITH EDDI

Assuring the dependability of multi-robot systems is usually performed almost entirely

at design time, by anticipating the most critical environmental situations the system will

find itself in, and by designing the system in a way that it can cope with these situations.

This leads to poor system performance for highly dynamic systems in highly dynamic

environments because the worst-case situation is almost never present and therefore the

system acts more conservative than it needs to on many occasions. To account for this

issue, runtime dependability monitoring architectures shift dependability knowledge and

activities into the runtime and therefore enable the system itself to manage the

dependability. EDDIs are the core elements of the SESAME runtime dependability

monitoring architecture, which follows the Monitor-Analyse-Plan-Execute with

Knowledge (MAPE-K) control scheme (Figure 1, left). The general idea is to execute a

control loop, which is not contributing to the system‘s original functional purpose, but

instead preserves an acceptable level of dependability throughout the operation. To

achieve that, dependability sensing, reasoning and control activities are required. Based

on perceive dependability-relevant events, the dynamic risk of the planned behaviour in

the current situation is determined together with the capabilities to mitigate or control

the risk. If the risk is low given the capabilities, the system can be adapted to less-

constrained behaviour, e.g. increasing speed in areas, where non-presence of humans is

reliably detected. If the risk is too high given the capabilities, the system needs to be

adapted to more constrained behaviour, e.g. by degrading its functionality or even

entering the safe state by performing a minimum risk manoeuvre. All of these activities

are fed by models capturing the dependability engineer‘s knowledge along with

algorithms, which can perform automated inference on the models given the current

situation and the robot‘s system state.

Figure 1 Runtime EDDI Functionality

EDDIs are triggered based on the observation of dependability-relevant events to either

the MRS (per each constituent robot) or its operational environment. With respect to the

MRS-internal events, dependability is concerned with system state changes that can

either affect a robot‘s capability to perform its intended function safely or with a robot‘s

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 5

Confidentiality: Public Distribution

capability to execute safety functions properly when required. As a brief reminder, per

the definition of dependability in [2], these changes may include the detection of robot

errors or failures, which can impact safety (e.g. threaten the life of humans within the

robot‘s vicinity), security and so on.

In addition to robot-internal events, the operational context may also change. Which

system-internal changes are dependability-relevant depends on each robot‘s intended

function, and which operational context changes are dependability-relevant depends on

the specifics of the application domain of the MRS. As indicated in the examples

mentioned from each of the SESAME use cases in section 1, careful consideration of

the mission scope must be included to make this determination.

Architecture-wise, the EDDI component is connected to the systems forming the MRS.

The EDDI has access to the perception stacks of the systems and thus all inputs required

by the EDDI come from there (Figure 1, right). Based on the perception stacks‘ outputs,

the event monitor evaluates the dependability of event presence. Sometimes,

measurable events are symptoms, but the correct system reaction can only be chosen, if

the causes of a symptom are known. Therefore, a diagnostic engine is used to determine

the likelihood of causes concerning a symptom. Based on events and causes, high-level

reasoning apps use various techniques (e.g. dynamic

risk/reliability/capability/perception uncertainty assessment) and reasoning models (e.g.

Boolean, Bayesian, Markovian, Statistical) to determine the current high-level

dependability properties of the MRS. On the output side, the EDDI results in a

corrective action, which is realized by one or more systems through adaptation. Note

that risk reduction actions can be targeted towards the system or the system context. A

situation, where a collision risk between a robot and a human is present, can be resolved

either via the robot taking a path, which is non-intersecting with the human, or it can be

resolved by actively influencing the human‘s behaviour, e.g. externally indicating the

robot intent and hoping the human changes his path. In addition, there might be MRS,

where humans are part of the system, e.g. as operators. In these cases, an EDDI action

could also be a notification to a human operator or a call to action.

Figure 2 From single-system EDDI to MRS EDDI

Having explained the principal functionality of an EDDI for an individual system, the

idea can be easily expanded toward MRS following a common mission goal (Figure 2).

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 6 Version 1.0 30 June 2022

Confidentiality: Public Distribution

In the MRS scenario, the EDDIs of single systems operating on their own knowledge

base are connected and combined into an MRS EDDI operating on the whole

knowledge of the MRS and triggering corrective actions affecting the whole MRS

behaviour or mission.

To realize MRS EDDI operation, models need to support modularity and algorithms are

required for dynamic model composition and online model inference. This deliverable

represents the first iteration of the runtime dependability management concept. For the

EDDI concept described in this iteration, an assumption is that the EDDI is executed in

a centralized way by a ―master‖ node, either by one robot or a cloud system, and the

single systems operate as ―slave‖ nodes, providing access to their perception stacks and

action interfaces. This assumption is planned to be dropped in the second iteration,

which will result in the EDDI distribution concept described and realized in deliverable

D7.3.

The authors in [3] propose a conceptual framework to support decision-making in

potentially novel conditions. Their framework classifies five possible context scenarios,

each of which incentivizes different abstract decision strategies, depending on the

degree of information and familiarity with the circumstances the subject decision-

makers find themselves in. The context scenarios range from the fully-informed and

well-understood, where one must simply identify in which situation they are in and then

apply a known rule, to the alien and chaotic, where careful but immediate action and

close supervision of an evolving situation might be needed. MRS may similarly need to

cope with varying decision contexts and feature an added requirement: their response

should be, to some degree, designed a priori. As such, for contexts where MRS operate

under full information (e.g. full visibility of surroundings) and ‗known knowns‘, a

ruleset can be directly encoded and followed. As context conditions deteriorate, the

MRS may be required to adapt accordingly to accommodate uncertainty and lack of

experience. With the above framing in mind, the following sections describe the

specific methodological parts for each used technique. These aspects include, for

instance, how the models look like, what are their contents, what are suitable inference

algorithms, and how is modularity and distribution of MRS supported.

Having established our different concepts for runtime EDDI models, including their

responsibilities, functionality, and semantic interfaces still leaves open the issue of

developing runtime components that can be deployed in MRS and perform the intended

EDDI behaviour. This is the responsibility of SESAME task T7.2, which follows the

ideas outlined in the conceptual stage here, and implements equivalent EDDI runtime

components. To support scalability and interoperability, among other benefits, the

generation of runtime components is supported via tools and is further described in

D7.2.

We should also note that the concepts described here do not materialize themselves at

runtime; they are expected to be the result of rigorous engineering activities performed

during development. For instance, the dynamic safety capability assessment models are

expected to be the product of the safety assessment phase of the development lifecycle.

Similar statements hold true for other models and properties specified to support the

other concepts. As such, for a deeper understanding of what is involved in the

development of EDDIs, the work described in SESAME WP4 and WP5 tasks, and

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 7

Confidentiality: Public Distribution

specifically deliverables D4.1 to D4.4 and D5.1 to D5.3 are relevant to safety and

security respectively.

With respect to the interaction between safety and security, the work described in D4.3

can also impact the runtime; as mentioned earlier, monitoring security at runtime (in our

specific concept through the use of intrusion detection) is a prerequisite for MRS

awareness of intrusion attempts or attacks, and an enabler for corresponding MRS

response to said intrusions e.g. via performance degradation. Thus, during development,

the safety assessment influences the security assessment, leading to the rules specified

for intrusion detection, and the MRS inherit this knowledge distilled through the

generation and deployment of runtime EDDIs.

D5.4 is also notable for providing additional detail into mechanisms for enhancing

EDDI tailorability both during development and for deployment in different MRS

applications. The latter mechanisms affect the technical realization of the concepts in

this deliverable but are further detailed in D7.2. The above relationships are

summarized in Figure 3.

Figure 3 Relationship of D7.1 to other SESAME deliverables

3. DYNAMIC SAFETY CAPABILITY ASSESSMENT

In the use cases of the SESAME project, autonomous multi-robot systems operate in

complex environments by cooperating with various other systems. Such cooperation is

only possible if certain information and services are shared. Unfortunately, the lack of

knowledge regarding external services and their safety properties typically leads to

worst-case assumptions, which in turn severely constrain performance, or even lead to

the decision not to use external services or information at all. A straightforward solution

to this problem can be to enable constituent systems of MRS to explicitly negotiate their

safety-related properties at runtime. This implies that we establish runtime safety

models describing these properties for a (constituent) system and standardize a protocol

for their negotiation. Conditional Safety Certificates (ConSerts) are an approach to do

exactly that.

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 8 Version 1.0 30 June 2022

Confidentiality: Public Distribution

3.1 CONDITIONAL SAFETY CERTIFICATES

Conditional Safety Certificates [4] [5] (ConSerts) operate on the level of safety

requirements. They are specified at development time based on a sound and

comprehensive safety argumentation (e.g. an assurance case). They conditionally certify

that the associated system will provide specific safety guarantees. Conditions are related

to the fulfilment of specific demands regarding the environment and the fulfilment of

the conditions is checked during runtime. In the same way as ―static‖ certificates,

ConSerts shall be issued by safety experts, independent organizations, or authorized

bodies (depending on the respective application domain) after a stringent manual check

of the safety argument. To this end, it is mandatory to prove all claims regarding the

fulfilment of provided safety guarantees by means of suitable evidence and to provide

adequate documentation of the overall argument – including the external demands and

their implications.

Conditions within a ConSert manifest in relations between potentially guaranteed safety

requirements ("guarantees") and the corresponding demanded safety requirements

("demands"). Demands always represent safety requirements relating to the

environment of a component, which cannot be verified at development time because the

required information is not available yet. These demands might directly relate to

required functionalities from other components.

On the other hand, evidence can be required beyond that, since safety is not a purely

modular property and it cannot be assumed that a composition of safe components is

automatically safe. To this end, ConSerts support the concept of so-called Runtime

Evidences (RtE) as an additional operand of the conditions. RtEs are a very flexible

concept. In principle, any runtime analysis providing a Boolean result can be used. RtEs

might relate to properties of the composition or to any context information, e.g. a

physical phenomenon such as the temperature of the environment that is safety-relevant.

Other RtE requires dynamic negotiation between components.

Figure 4 ConSert Composition Conceptual Overview

In any case, ConSerts must be available at runtime in a machine-readable representation

and the systems need to possess mechanisms for composing and analysing runtime

models. Based thereon, a valid safety certificate for the overall system of systems can

be established. ConSerts are a relatively lightweight runtime safety approach and they

are not far from traditional safety engineering. The main difference is that unknown

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 9

Confidentiality: Public Distribution

context is structured into a series of foreseen variants, which are then specified in a

runtime model to be resolved at runtime.

ConSerts capture modular, conditional, and pre-assured safety concepts that enable

dynamic reconfiguration of the underlying system (of systems) based on observed

changes in the operational context (Figure 4). This relates to runtime fault diagnosis and

dynamic risk assessment in the following way: Dynamic risk assessment dynamically

determines MAS or constituent system safety goals along with a dynamic rating of the

safety goal integrity derived from the risk estimate. This represents the set of top-level

safety goals that need to be fulfilled in the current operational situation.

Having these dynamic safety goals, the system has to have a safety concept in place that

is able to address those dynamic safety goals. Since different safety concepts are

conceivable to address different safety goals and variable integrity demands, the need

for specifying variable safety concepts arises. Such a safety concept is operationalized

by so-called safety capabilities that the system uses during operation. Examples of such

capabilities are fault diagnosis mechanisms to establish runtime evidences, fault

tolerance mechanisms to achieve safety guarantees or mechanisms for the transition into

a safe state. As such, ConSerts are formal representations of dynamic safety concepts

expressing the dynamic parts of a safety concept necessary to distinguish between the

availability of different safety capabilities and in consequence different safety

guarantees that a system can give at runtime. Runtime diagnosis techniques are related

to ConSerts in that they provide the basis for observing runtime evidences that represent

the leaf nodes in a ConSert tree.

Figure 5 Relation between safety concept and ConSert for an open adaptive system

Figure 5 highlights the relationship between a design-time safety concept and its

transformation into a Boolean model representing the dynamic parts of the safety

concept.

3.2 APPLICATION IN SESAME

The multi-robot systems such as the disinfection robot of LOCOMOTEC operate in

complex environments such as hospitals or, generally, general public buildings. During

operation, the robot must guarantee that it will not harm any humans, animals or

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 10 Version 1.0 30 June 2022

Confidentiality: Public Distribution

property. For example, the disinfection robot must turn off the light when a human is in

close vicinity. In order to fulfil its task, the robot uses services from other components

or systems. For example, a component is used that handles the detection of humans in

close vicinity. This service is safety-critical because it directly impacts whether the

disinfection lights are turned on or off. According to the safety requirement, high

confidence in the human detection service is required. In this example, a ConSert can

first determine whether cooperation between these systems is feasible. The ConSert

checks whether the demanded safety requirements can be guaranteed by the other

system. If cooperation is feasible, the ConSert evaluates during runtime whether the

guarantees are still provided and respectively recommends controlling the disinfection

lights.

Similar safety requirements also exist for the other use cases. Drones e.g. which must

have precise localization and object detection use different components and might

communicate with other systems to fulfil their task. Further, Industrial plants with

cooperating robots can ensure safety for reconfigurations through ConSerts.

3.3 METHOD AND ALGORITHM

Within SESAME various components and subsystems are developed which support the

robots of the use case partner to fulfil their task. ConSerts are used to ensure safety for

these robots and especially for the composition and cooperation which evolves during

this project. During operation, a robot uses services of various (sub-)systems such as

trajectory planner, human detection, other robots, etc. The majority of these systems are

safety-critical. In order to fulfil their task, external information and services are used

that must fulfil specified safety requirements. ConSerts have formally specified which

safety requirements are required (Demands) for external services and which safety

requirements are provided (Guarantee) for their own provided services. The ConSerts

can then check whether an external service fulfils the demanded safety requirements. In

case the external services are feasible cooperation between the systems is possible.

After cooperation between two systems is established, data is exchanged. Further, the

safety guarantees are updated continuously. In case some internal or external parameters

change a guarantee could potentially no longer be provided. This directly impacts the

evaluation of any higher level ConSert, i.e. any ConSert that receives this guarantee as a

demand.

3.4 EXAMPLE

The LOCOMOTEC disinfection robot must detect humans relative to its position to

determine whether it can fulfil its disinfection task. If a human is too close to the robot,

the UV lights must be turned off to prevent harm to the human. In this example, it is

assumed that the robot has two operation modes ―fast disinfection‖ and ―slow

disinfection‖. The most efficient ―fast disinfection‖ mode has the highest safety

requirements. In order to disinfect at the highest possible speed, humans must be at least

20m away and the position of the robot must be accurate. In case humans are detected at

a distance higher than 5 meters but less than 20 meters and the localization is accurate,

the robot can still disinfect but at a slower speed. On the other hand, if the localization is

inaccurate the robot can only disinfect at a slow speed if humans are at least 20 meters

or more away. This logic is visualized in a ConSert in Figure 6. While the human

detection is here realized as runtime evidence and thus as an internal property, the

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 11

Confidentiality: Public Distribution

accuracy of the localization is displayed as demands. Demands are safety requirements

that must be fulfilled by external systems or components. In this example, a localization

module provides a localization service and two guarantees according to the accuracy of

the localization. Depending on the available technologies, the localization of the

localization module is more accurate. Here e.g., the localization is more accurate when

both the sonar sensor and the infrastructure sensors are working correctly. On the other

hand, only with the Sonar-based sensors, only an inaccurate localization can be

guaranteed. In case, the sonar sensors are not working, no localization can be

guaranteed.

Figure 6 Example ConSert for the LOCOMOTEC use case

Now, the localization module could be swapped during runtime. The new localization

module would only provide the inaccurate localization guarantee or no localization

guarantees at all. Then, the ConSert would evaluate, that composition is possible

because the demand of the disinfection robots matches the guarantee provided by the

new localization module. However, the robot could only operate in the degraded mode

and disinfect at a slower speed because the better fast disinfection mode would require a

guaranteed accurate localization.

Further, during runtime, whenever a runtime evidence or demand changes, the ConSert

reevaluates its guarantees and thus adapts its operation mode if needed. For example,

let‘s consider the situation where a person approaches the robot and the distance falls

below 20 meters. The former fast disinfection guarantee can no longer be provided and

the robot would change its operation mode to disinfect at a slower speed. The same

applies to changing demands. If the localization module does not receive any

localization data from the infrastructure and its Lidar sensor is damaged, then only the

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 12 Version 1.0 30 June 2022

Confidentiality: Public Distribution

inaccurate localization guarantee can be provided. This also changes the evaluated

guarantee within the disinfection robot, because one demand is no longer fulfilled and

fast disinfection can no longer be executed.

4. DYNAMIC RELIABILITY ASSESSMENT

Of the different SESAME use cases, two use drones — the Power Station Inspection

use case and the viticulture use case. Drones, and Unmanned Aerial Vehicle (UAVs) in

general, have a wide range of uses across multiple domains in addition to the emergency

response and agriculture applications considered in this project. However, one of the

major barriers to widespread acceptance of UAVs is ensuring their safety during

operation, particularly as they are typically expected to operate in highly dynamic

environments where operating conditions cannot easily be assessed a priori in a design-

time model.

To that end, as part of the project, we have been developing a prototype real-time safety

monitoring approach for UAVs called "SafeDrones". This approach is intended to

illustrate the utility of the EDDI concept by creating a dynamic, onboard safety monitor

that can provide real-time information that is used to inform decision-making during

operation.

While not specifically limited to drones, we have chosen to begin with them because

they are a common robotic platform in many MRS/MAS applications with many

generic similarities in failure behaviour. This overall failure behaviour can be captured

in a higher-level safety model such as a fault tree at design time, providing a sample

structure to assess the ways in which the drone might fail and establishing how such

failures are interconnected.

At runtime, however, this model can be connected to symptoms of failures that are

detectable during operation (e.g. via readings from onboard sensors etc). While fault

diagnosis is not explicitly considered at this stage, such data can be used to perform

real-time estimation of the drone's safety and reliability attributes.

Because this assessment is performed based on real-world data obtained from the drone

itself, it is also adaptive to the operational environment. For example, if the drone is

operating in a high-temperature environment (such as a sunny day in a hot climate), this

would be reflected in the readings of e.g. its motor, processor, or battery temperature

sensors, yielding a potentially higher estimated risk of failure than if the drone was

operating in a cooler environment.

With this information, either the operators or the drone itself can make decisions about

how to respond to anticipated problems. If the data suggests an increased probability of

failure for a particular aspect of the system that the higher-level model (such as a fault

tree) indicates as being at high risk, e.g. because it is a single point of failure, then

appropriate actions can be taken in response.

Such a capability could be well suited to experimentation with the two SESAME UAV-

based case studies and may pave the way to more sophisticated EDDI-based dynamic

dependability management.

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 13

Confidentiality: Public Distribution

In this stage of the project, to provide an early prototype of EDDI functionality, we have

focused on one of the drone partners (KIOS) and proposed a fault tree for their drone.

Figure 7 illustrates the proposed fault tree consisting of nine failure categories,

including:

1. Communication system failure

2. Navigation system failure

3. Computer system failure

4. Environment detection systems

5. Propulsion system

6. Energy system

7. Obstacle avoidance system

8. Security system

9. and Landing system.

To provide a dynamic reliability assessment, the concept presented in [6] is utilized to

consider larger reliability functions as special "complex" basic events (CBEs) in the

fault tree.

Figure 8 shows a small version of the proposed fault tree with only three complex basic

events —Processor Failure, Battery Failure and Propulsion System Failure. Each chosen

complex basic event is chosen in particular to demonstrate the different capabilities of

the proposed approach. For the processor failure, the Arrhenius equation [7] is used to

update the probability of failure and Mean Time To Fail (MTTF) based on monitored

temperature. This basic event shows how a complex equation can be used as the basis

for a complex basic event.

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 14 Version 1.0 30 June 2022

Confidentiality: Public Distribution

Figure 7 The Proposed Fault Tree of a typical UAV

The second complex basic event is the battery failure. In this event, a semi-Markov

process is used to model battery degradation and failure [6]. In this model, it is assumed

that the input symptom is battery level and based on that the current state in the semi-

Markov process will be selected and the probability of failure will be calculated from

that state at run time.

The third complex basic event is provided to show reconfiguration capabilities. In this

complex basic event, one quadcopter and two hexa-copter reconfigurations are

considered. The executable function receives the motor configuration and motor status

as a symptom. Based on the motor configuration, the right semi-Markov model is

selected and based on the motor status the right state in the model will be selected. From

the selected state, the probability of failure and MTTF will be calculated and will be

passed to the parent fault tree for higher-level reliability calculations [8]. It should be

noted that all the reliability functions are executable and can be run on the drone‘s

processor to update the reliability during the mission at runtime.

We call this overall concept "SafeDrones". The SafeDrones idea as an early prototype

of EDDI functionality is illustrated in Figure 9. A conventional Fault Tree Analysis

(FTA) tree has a top layer, many intermediate levels, and a basic events layer. However,

there is a new layer in our suggested technique termed the symptoms layer. The safety

expert(s) should identify probable observable events in the system and establish the

relationship between symptoms and fundamental events in the symptoms layer. For

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 15

Confidentiality: Public Distribution

instance, in Figure 8, the symptoms are temperature, battery status, and motor status

along with motor configuration. In Figure 8, it is assumed the temperature symptom

only affects the processor and has no effect on the others. It is recommended in this

proposed reliability modelling technique to employ CBEs to link with the symptoms. A

CBE can take many different forms, such as a multi-state Markov chain in which the

symptom influences the current state, a Bayesian Network in which a symptom can

create a belief or any other reliability function in which a symptom can be a parameter.

Figure 8 Small FTA of a UAV with only three complex basic events – I) Processor Failure, II) Battery
Failure and III) Propulsion System Failure -- considering failure symptoms and three different types of

reconfigurations for propulsion system failure.

Figure 10 shows a sample view of the KIOS software for controlling the UAVs. In this

figure two orange and light blue boxes display the real-time monitoring values for the

UAVs. With SafeDrones integration, each drone can calculate its real-time reliability

and MTTF. As well as showing these values for informational purposes, they can also

be used as the basis for dynamic decision-making; for example, if the MTTF drops

below the expected mission duration, the drone could automatically be instructed to

perform a safe emergency landing. In this way, the SafeDrones approach serves as a test

case to demonstrate the EDDI dynamic safety assessment and response concept.

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 16 Version 1.0 30 June 2022

Confidentiality: Public Distribution

Figure 9 Overall view on combining real-time monitoring and diagnosis with Fault Tree Analysis

Figure 10 A sample view of SafeDrones integration with KIOS software.

Detailed calculations and experimental results are provided in the following paper that

is expected to be published in 2022.

Project Publication

Koorosh Aslansefat, Panagiota Nikolaou, Martin Walker, Mohammed Naveed

Akram, Ioannis Sorokos, Jan Reich, Panayiotis Kolios, Maria K. Michael, Theocharis

Theocharides, Georgios Ellinas, Daniel Schneider and Yiannis Papadopoulos, (2022)

SafeDrones: Real-Time Reliability Evaluation of UAVs using Executable Digital

Dependable Identities. (Submitted for the 8th International Symposium on Model-

Based Safety Assessment (IMBSA 2022)).

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 17

Confidentiality: Public Distribution

To improve the research reproducibility, code, functions, demo notebooks, and other

materials supporting the SafeDrones project are published online at GitHub:

https://github.com/koo-ec/SafeDrones.

5. DYNAMIC RISK ASSESSMENT

Dynamic safety capability assessment as well as dynamic reliability assessment

described in the previous sections focus on detecting causes for observed errors or

failures within the multi-robot system. Therefore, variability is considered that affects

the MRS capabilities to react dependably in a critical situation. However, whether a

particular error or failure is safety-critical and poses an actual risk depends on the

current operational situation the system finds itself in during runtime (Figure 11). For

instance, if a planned trajectory of a drone differs from the specification due to a fault in

the system, a collision with other dynamic or static objects may only occur if those

objects are present in the current operational situation. Thus, hazardous events and their

associated risk, i.e. the likelihood of a transition from a system hazard to an accident as

well as the potential severity of this accident, are always conditioned on the operational

situation. Since the operational environment of MRS in the use cases considered in

SESAME is highly dynamic, determining the impact of the current situation on the risk

parameters at runtime can increase system performance, as the MRS may continue

operation in situations, where it would have stopped in conventional worst-case

assumed environmental situations.

Figure 11 Difference between safety capability/reliability assessment and risk assessment

5.1 STATE OF THE ART

Current safety standards address this issue by designing the system in a way that safety

goals and their integrity will lead to safe behaviour in all operational situations based on

worst-case assumptions. Put differently, the system always expects the worst-case

situation to happen. This approach indeed leads to safe behaviour and cost-effective

safety assurance, as the situation space needs to be analysed only for the identification

of worst-case situations. In reality, however, worst-case situations rarely occur and in

https://github.com/koo-ec/SafeDrones

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 18 Version 1.0 30 June 2022

Confidentiality: Public Distribution

the majority of operational situations, the risk is low. This results in situations where

diagnosed faults lead to the execution of minimum risk manoeuvres or a transition to

the safe state, although the actual risk would not demand it. Consequentially, if we

monitor the presence of risky/non-risky operational situations, we can increase MRS

performance by a) being able to tolerate certain faults and failures if their associated

risk is low in the current situation and b) actively reducing particular risk parameters

with tactical decisions, where severity, controllability or the operational situation itself

is changed.

Dynamic risk assessment (DRA) techniques thus treat the MRS or a constituent system

as a black box and provide means to analyse the consequences of MRS behaviour

deviations or present system hazards on the risk in the current operational situation.

Note that DRA can be both performed for constituent systems and on the MRS as a

whole. The difference lies in the definition of hazards resulting from deviating

behaviour. Such hazards can be analysed for MRS collaborative behaviour or single

system behaviour.

For autonomous systems, in particular in the automotive domain, DRA techniques have

been applied to address the trade-off between performance and safety risks. The existing

approaches can be classified broadly into three categories.

1. DRA is incorporated into motion and trajectory prediction frameworks by

specifying behavioural or kinematic constraints that are input to the trajectory

planner. Such constraints come either in the shape of an augmented map, which

treats risk as occupied spaces the planner has to avoid, or they come in as boundary

conditions the trajectory planner needs to respect, e.g. speed less than a particular

threshold. The result of these approaches is usually a planned trajectory that is

claimed to be safe. Representatives of this class are [9] and [10].

2. DRA is performed during the online verification of an already planned yet

potentially unsafe trajectory. Thus, this class of approaches uses the output of the

trajectory planner and checks afterwards whether it may lead to unsafe behaviour in

the current operational situation. If the safety criteria of the verifier are violated, a

transition to a safe state or the degraded operation mode is triggered.

Representatives of this class are [11] and [12].

3. DRA is not performed in direct relation to a planned trajectory, but instead monitors

influence variables that enable distinction between the presence/absence of a

hazardous event and influence its criticality through risk parameters such as

exposure, external controllability and accident severity. Such DRA approaches are

closely related to design-time hazard and risk assessment models, as the monitors

capture the observable variability in these models. The output of these approaches is

usually a list of safety goals that are relevant to the current operational situation

along with the dynamic risk rating of these safety goals based on a dynamic

assessment of the risk parameters. Representatives of this class are [13] [14] [15]

[16] and [17].

Although different architectures for incorporating DRA into autonomous systems exist,

all of them need to decide which particular risk-influencing situation features are to be

observed in the present, project the evolution of these features into the future by using a

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 19

Confidentiality: Public Distribution

set of assumptions, and rate the risk of the projected future situation (Figure 12). For

each of these DRA sub-tasks, respective design time engineering activities are required.

Figure 12 Dynamic Risk Assessment Conceptual Overview [17]

Situation Description demands a risk-driven situation space decomposition. This task is

already performed during hazard analysis and risk assessment (HARA) at design time,

where those operational situations are sought for indicating the highest risk. In contrast,

DRA needs to identify risk-variable operational situations and thus extend current

design-time HARA activities with a more fine-grained situation space analysis. This

analysis requires an understanding of the intended operational domain and may consider

situation features of dynamic and static objects, environmental conditions as well as

interactions between actors.

Based on a selection of situation features being risk-relevant in the intended operational

domain, Situation Prediction predicts the future state of the selected situation features

based on different assumptions and prediction models. For instance, for autonomous

vehicles, such behaviour prediction models may assume traffic rule adherence or

constraints on the kinematic state such as constant speed or acceleration. The

assumptions can be either deterministic or probabilistic.

Having a predicted state of situation features, finally, their relation to risk needs to be

established during Situation Risk Assessment. For this purpose, risk metrics are used.

Such risk metrics are typically highly domain- and even application-specific. Although

on a high level, risk metrics always combine the likelihood of an unwanted event with

its impact severity, the concrete relation between the predicted situation features and

those risk parameters needs to be explicitly modelled. Examples of DRA metrics are

Time-To-Critical-Collision-Probability (TTTCP) [18] and Deviation-From-Expectation

[19].

Further information on situation prediction techniques and concrete risk metrics can be

found in relevant literature reviews (see [17], [20], [21], and [22]).

Up to this point during design time, situation features have been selected based on a

risk-driven analysis of the operational domain (possibly through a HARA analysis with

a more fine-grained situation analysis), and prediction models for those situation

features have been selected based on a set of deterministic or probabilistic assumptions

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 20 Version 1.0 30 June 2022

Confidentiality: Public Distribution

and domain-specific risk metrics have been selected to quantify the situation risk based

on the predicted situation feature state.

To enable machines to perform DRA, modelling formalisms are required to technically

capture the relationship between situation features and risks. For this purpose, different

classes of models can be used, which are model-based (e.g. structural equation models),

rule-based (Boolean models), generative (Gaussian Mixture Models, dynamic Bayesian

networks, Hidden Markov Models), discriminative (Decision Tree, Random Forest,

Support Vector Machines) or deep learning-based (Multi-Layer Perceptron,

Convolution Neural Network – CNN, Recurrent Neural Network – RNN, Long-Short-

Term-Memory Network – LSTM). Some of them are developed purely based on expert

knowledge, and some of them can be adapted to new operational domains with machine

learning techniques. Depending on the concrete modelling formalism selected, support

for deterministic or probabilistic assumptions may be given as well as the consideration

of uncertainties during feature perception is possible.

5.2 SITUATION-AWARE DYNAMIC RISK ASSESSMENT

At Fraunhofer IESE, DRA for autonomous systems was considered in a recent

dissertation [115]. The work contributed a conceptual taxonomy of DRA and provided a

concrete application of DRA using concrete instances of controllability and severity

metrics to rate collision risks for automated driving. In order to be applicable in many

different operational situations, one explicit requirement in [115] is that the risk metric

is supposed to be situation-agnostic, i.e. it is only allowed to use the kinematic state of

dynamic actors. Situation-specific features such as road structure, lighting and weather

conditions, traffic rules, and actor interactions were consequentially not considered. To

account for the fact that risk is often influenced by exactly those situation-specific

features, the work in [115] was extended to the Situation-Aware Dynamic Risk

Assessment (SINADRA) framework [23]. The approach uses Bayesian networks as a

modelling formalism and explicitly considers the mentioned situation-specific features

as risk influences. A proof-of-concept and tool implementation of the approach is

presented in [24]. The design-time method for building Bayesian situation prediction

models with machine learning techniques is presented in [25]. The SINADRA

framework belongs to the third class of DRA approaches mentioned in section 5.1 and

is the approach that has been integrated into the SESAME runtime concept to address

dynamic risk variability.

The conceptual components of the SINADRA framework are shown in Figure 13. The

core artefact of the framework is the DRA Monitor Runtime Component. It is an

executable software component that is deployed to an MRS along with the nominal

functionality. Functionally, it contains a model that captures the variability of risk

parameters with respect to risk-relevant situation features. Thus, the output is a dynamic

risk classification of particular (unsafe) behaviour intentions of interest, e.g. the current

behaviour plan of a robot-like ―Turn on disinfection and disinfect the next 10 meters‖ in

the LOCOMOTEC use case. Based on the runtime perception of relevant situation

features and the inference determining the effect of the dynamic input feature vector on

risk, the basis for a risk-informed decision is given. Such a decision can be continuing

operation as risk is determined low or can involve various types of adaptation, e.g.

adapting the robot‘s behaviour to eliminate the hazard or change the behavior or trying

to adapt to the external environment by actively influencing the external controllability

of people at risk or reducing accident severity.

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 21

Confidentiality: Public Distribution

Figure 13 Components of the SINADRA Framework

Since the relevant contents of the DRA model vary for different applications and more

importantly different operational environments, a systematic functional engineering

method is required to come up with a DRA Bayesian network, which properly fits the

system‘s behaviour and the intended target operational environment. The method

consists of three steps:

The first step is the risk variability analysis. This analysis is comparable to conventional

hazard analysis and risk assessment (HARA), except that it uses a much more detailed

situation analysis than conventional HARA methods. The reason for this is that

conventional HARA methods have the goal to assess worst-case risks for particular

behaviour intentions. Thus, the situation analysis needs to efficiently find exactly those

situations posing the highest risk. In SINADRA, a situation-aware dynamic risk

assessment model shall be engineered, therefore the situation analysis needs to result in

those situation features, which represent risk parameter variability. To that end, the

ODE::SINADRA package (see deliverable D4.2 for more details on the contents of the

refined situation analysis model) captures detailed elements to explicitly analyse and

express situation features affecting the controllability parameters of people at risk. The

output of this stage is a comprehensible mapping of risk-relevant situation features and

their hypothesized effect on the risk parameters for the analysed behaviour intentions in

the operational environment.

The second step is the qualitative risk modelling. In this step, the elements identified in

the risk variability analysis are modelled in a directed cause-effect graph with the leave

nodes representing the measurable situation features of interest and the target node

representing the risk parameters. In addition, intermediate nodes are added that

represent intermediate concepts required for comprehension of the cause-effect chain.

This is required because a single situation feature might affect multiple different risk

parameters at the same time in different ways. By adding the explicit reasoning, of why

and how a situation feature affects a risk parameter causally, proper quantification of

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 22 Version 1.0 30 June 2022

Confidentiality: Public Distribution

those effects gets possible and, even more important, validation and verification of the

effects can be done in a modular way by step-wisely finding evidence for each pair of

nodes along the cause-effect chain. This is in particular important for the argumentation,

of why the DRA component does not underestimate the risk. Figure 14 shows an

example qualitative risk model for an automated driving shuttle in university

environments.

Figure 14 Example Qualitative Risk Model (Excerpt)

The last step of the engineering method is quantitative risk modelling. Here, the goal is

to create a machine-processable model suitable for runtime inference. For this purpose,

Bayesian networks (BN) have been selected for SINADRA. They combine the

advantage of automatically parameterising quantitative parameters of cause-effect

chains with machine learning techniques with the advantage to add expert knowledge to

the network structure (based on our qualitative risk model). The first is necessary to

parameterize the risk model for different operational environments and the second is

necessary for the verification and validation of the BN, not only on the black box level

like with other ML techniques such as Deep Neural Networks but also on the inner

network structure. The output of this step is a BN capturing the quantitative risk

variability of the MRS application in the target operational environment. At design time

this BN is modelled via the elements of the ODE::BayesianNetwork package.

The DRA monitor component determines the risk of a behaviour intention in the current

situation to inform risk-based decision-making at runtime. Therefore, wrong inference

potentially leads to safety-critical consequences and, as with every other safety-critical

functionality, evidence needs to be provided for why these critical consequences do not

occur with defined integrity confidence. In Figure 13, this is represented via the safety

engineering process at the top. The Open Dependability Exchange Metamodel contains

respective packages to systematically perform the model-based safety engineering, by

identifying causes for risk underestimation and deriving appropriate requirements to

mitigate these causes. Within the DRA monitor, the two high-level causes for risk

underestimation are the unreliable perception of situation features and the quantitative

risk model leading to risk underestimation compared to reality. The perception issue can

be tackled by using redundancy, e.g. sensor fusion, to mitigate critical misclassification.

The risk model wrong inference can be tackled via the validation and verification of the

Bayesian network itself, either via performing extensive testing or by performing

expert-based sensitivity analysis on the inner structure of the BN.

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 23

Confidentiality: Public Distribution

Figure 15 Example Bayesian network for autonomous shuttle - pedestrian controllability estimation
(Excerpt)

In summary, SINADRA enables a system or MRS to automatically assess the risk of

(malfunctioning) behaviour in the current operational situation. Based on this dynamic

risk estimate, the unavailability of safety capabilities can be potentially tolerated in low-

risk situations or tactical decisions can be enacted to actively lower the risk to an

acceptable level. For this purpose, situation features need to be selected, their future

state predicted, and a risk metric is calculated on the future state to get a qualitative or

quantitative risk rating. Apart from a fully formal inference mechanism at runtime, quite

some effort needs to be put into the safety engineering of the DRA mechanism for a

particular use case in a particular domain. To come up with a meaningful

trustworthiness argument for a DRA monitor, the selection of considered situation

features needs to be grounded in a systematic HARA, the validity of the assumptions

behind the situation prediction needs to be demonstrated and the adequacy of selected

risk metrics for the concretely considered risks needs to be argued.

5.3 EXAMPLE OF SINADRA MODEL IN SESAME USE CASE

In order to demonstrate the principal applicability of SINADRA in SESAME, this

section contains a preliminary example on how SINADRA can be beneficially used

within the collaborative hospital disinfection use case provided by LOCOMOTEC. The

use case including business context, system description and relevant validation

scenarios are documented in deliverable D1.2. In short, a multi-robot system equipped

with ultra-violet (UV-C) lamps is tasked to disinfect defined areas in a hospital on a

regular basis to relieve hospital personnel from having to perform this task manually.

UV-C radiation is safety-critical for persons in the vicinity of the robots, therefore UV-

C over-exposure needs to be prevented by means of a safety concept.

Without SESAME technologies, the robots get a disinfection task consisting of

waypoints to be navigated with UV-C lamps turned on. A ML-based person detection

component realized with camera sensors perceives people in the sensing range and

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 24 Version 1.0 30 June 2022

Confidentiality: Public Distribution

triggers a robot stop and UV-C lamp turnoff as soon as persons are detected. After no

person is detected again, the robot continues the disinfection task. Through these safety-

motivated stops, the key performance indicator ―time required for disinfection task‖ is

increased. The hypothesis behind the SINADRA application in this use case is that the

robot stops unnecessarily often, as the risk parameters associated with the accident

―UV-C over-exposure‖ vary with the presence of features in the concrete operational

situation. An example qualitative risk model for the disinfection application and in

particular the UV-C overexposure risk is shown in Figure 16.

The severity of the accident is determined by the intensity of received UV-C radiation

doses over time. The intensity of received UV-C radiation varies with:

 the distance between the UV-C lamp and person

 the angle between UV-C beam and person

 the target area on the human receiving the radiation (Radiation on eyes is more

critical than on other body parts)

 the power of deployed UV-C lamps

The controllability of people in the hospital potentially exposed to UV-C radiation

might depend on their knowledge about the danger associated with the robots. As such,

assumptions about ―training‖ could be used in dedicated hospital areas, e.g. intensive

care units, where usually no visitors are allowed. Thus, trained personnel could work in

the same areas in parallel to the robot disinfection at suitable distances without risk of

UV-C over-exposure.

Figure 16 Example qualitative risk model for human UV-C overexposure risks in disinfection use case

Another risk variability leading to a performance potential is that all UV-C lamps are

shut off in case of person detection. If the task is to disinfect along a wall, where

devices are placed, it is not necessary to shut off lamps towards the wall, if it is ensured

via detection that no person is between robot and wall. However, if the person is passing

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 25

Confidentiality: Public Distribution

by the robot on the other side, these lamps could be selectively shutoff without

interrupting the disinfection mission, i.e. no robot stop would be required, the wall

could be continued to be disinfected.

As one example for the quantification of a pair-wise causal hypothesis modelled in

Figure 16, let us consider the relationship between ―Distance between UV-C lamp-

human‖ and the current intensity of the UV-C exposure reaching a potential human.

Based on an experimental setup, LOCOMOTEC measured the worst-case UV-C

intensities received at certain distances around the robot (Figure 17). The experimental

evaluation suggested that UV-C intensity and therefore also the received dosage is

decreasing non-linearly with higher distances. This relationship can be beneficially used

in SINADRA, as for instance at 1.5m distance, the dosage is approximately almost 90%

lower than with a 0m distance, i.e. a present contact between robot and human.

Figure 17 Experimental determination of the influence of the robot-person distance on UV-C intensity

In summary, the variability of risk parameters of a particular accident is highly

application- and environment-specific. The above examples of risk-relevant situation

features may be used to build up a SINADRA risk model according to the method

described in the previous subsection. Note, however, that the principal idea behind

using SINADRA is not to determine the absolute risk of each situation and lead to a

shut-off, when the risk exceeds a certain threshold. Instead, the worst-case risk is

always assumed to be present and SINADRA looks for situation features indicating

lower or even the absence of risk with the goal to improve performance in those

situations. For this purpose, assumptions about causal relationships between the

situation features and the risk parameters are evaluated at runtime and used for planning

the activation of safety functions. Starting at the worst-case risk and detecting low-risk

indications has significant benefits compared to starting at zero risk and detecting high-

risk indications: The assurance claims to be addressed for both scenarios are very

different. If we are able to assure the system behaviour for worst-case risk and use a

single feature indicating low risk, the assurance efforts are constrained to making sure

this feature is detected reliably and the amount of risk reduction is properly determined.

Thus, we can step-wisely extend the performance improvement, if new features are

identified. In contrast, if we wanted to use an absolute risk determination, it would be

necessary to argue that all risk influences have been considered and properly detected at

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 26 Version 1.0 30 June 2022

Confidentiality: Public Distribution

all times. In complex operational contexts, there is always an additional relevant risk

influence unconsidered or even unknown, which may lead to a risk underestimation.

6. DYNAMIC PERCEPTION UNCERTAINTY MONITORING

Several SESAME use cases utilize Machine Learning (ML) components for object

detection and perception tasks [26]. This is expected as the ML components have

unmatched performance, especially when it comes to the perception tasks. For example,

LOCOMOTEC uses ML components for identifying the person around the MRS. On

the one hand, ML components increase the performance of the system, but they also

introduce new sources of uncertainties. While it could be possible to address these

uncertainties at design-time using ―worst-case‖ assumptions, it renders these

components inefficient, as they are over-sensitive to severely restricting performance in

even mildly sub-optimal conditions. Hence, a more performant way of addressing this

uncertainty is with the help of Dynamic Uncertainty Monitoring. In this section, we

describe the technologies for dynamic uncertainty monitoring and their application in

SESAME use cases.

6.1 BACKGROUND

It is well established that due to the nature of ML components, the output of ML

components cannot be certain. The ML components carry inherent uncertainties with

them. In [27], the authors classify uncertainty sources in three major sources in an

‗onion‘ 3-layer model as shown in Figure 18. The three major sources of uncertainty are

scope compliance, data quality and model fit.

Figure 18 Onion Layer model for uncertainty in ML components as described in [27]

 Model fit: the uncertainties resulting from the inherent approximation of ML

models are covered in model fit uncertainties.

 Data Quality: the ML components need input data. In practice, the data

collected can have various sources of uncertainties (e.g., human error, sensor

error, labelling quality and so on). These are covered under the umbrella of data

quality.

 Scope Compliance: ML components are trained for a specific context (inherent

to their training data). In practical applications, if these components are applied

in a significantly different context, their behaviour becomes unreliable. Thus, the

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 27

Confidentiality: Public Distribution

uncertainty generated from the contextual differences is covered under scope

compliance.

6.2 UNCERTAINTY MONITORING

Figure 19 Uncertainty wrapper overview

Using the uncertainty classification mentioned in section 6.1, the authors in [28]

propose an encapsulation of ML components within the ―Uncertainty Wrapper‖ (UW).

This extends the outcome of the ML component with the uncertainty information.

Figure 19 shows the main component of the uncertainty wrapper. The uncertainty

wrapper wraps the ML component output along with an uncertainty estimate. The

uncertainty stemming from the data quality is computed by using the ―Quality Impact

Model‖. The Quality impact model is a model generated by varying the input quality in

a controlled environment and using the modified input to obtain the performance

assessment of the ML component. This is then combined with the uncertainty

assessment of scope compliance.

Figure 20 Application of SafeML

For scope compliance, the SafeML method proposed in [29] can be used. SafeML is an

approach to monitoring the context of the ML component in its operation. The method

measures the statistical dissimilarity by computing the Empirical Cumulative

Distribution Functions (ECDF) of the concerned data. Figure 20 shows the general

application of SafeML involving perception-based ML. The data used at designtime is

compared with the run-time data using statistical distance measures to obtain a measure

of dissimilarity between the two, thereby obtaining an estimate of scope compliance.

This can then be used to assist the decisions reliant on the ML component output.

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 28 Version 1.0 30 June 2022

Confidentiality: Public Distribution

6.3 UNCERTAINTY MONITORING EDDI

By combining SafeML with the uncertainty wrapper shown in Figure 19, we can obtain

a holistic uncertainty estimate. Since both of these technologies can be used at run-time,

a run-time dynamic uncertainty monitoring can be obtained.

6.4 APPLICATION IN SESAME

In SESAME use cases, the perception component can be further strengthened by the use

of dynamic uncertainty monitoring. In this section, we discuss further how this concept

can be applied in the LOCOMOTEC use case. As a reminder, in that use case, each

robot has a Task Execution component which depends on a Person Detection

component. The latter component uses ML models fed by onboard cameras in order to

detect whether and in which direction people around the robot are detected. Detection of

people near enough the robot is the main factor in deciding whether to turn off the

robot‘s UV-C lamps in those directions. Failing to detect people within a short distance

of the robot presents a safety risk, which needs to be accounted for during development,

and protected against at runtime, with means which can include SafeML.

To apply SafeML for the use case, the datasets used to train the Person Detection ML

models to need to be assessed. A subset of the training dataset must be specified, such

that it faithfully represents the training dataset. The choice and balancing of this dataset

are currently a manual process, involving experimentation and expert judgement.

Once this ‗certified‘ dataset has been formed, some additional evaluation must be

performed to establish the number of samples for the runtime phase. The number of

samples is an important trade-off, because collecting too few invalidates the tests due to

low statistical power, whereas too many samples present a performance bottleneck.

Power analysis can be used to identify the minimum number of samples for a chosen

effect and confidence level, and the concrete number of samples adjusted according to

sampling strategy and performance targets.

At runtime, the SafeML component can be deployed alongside the Person Detection.

The component samples from the same camera image set the ML model receives and

evaluates the statistical distance between the certified dataset and the sampled. If the

test passes, then the ML model answer is trusted and the operation proceeds as

expected. If the test fails, then more data can be requested, and if further testing

indicates issues, alarms to the robot and MRS application can be raised e.g., to notify

human operators to intervene. A visual summary of the above can be seen in Figure 21.

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 29

Confidentiality: Public Distribution

Figure 21 The use of SafeML on LOCOMOTEC use case of SESAME

7. DYNAMIC EVENT MONITORING

The EDDI is the evolution of the earlier DDI concept. While DDIs were primarily static

artefacts created at design time, EDDIs are intended to be executable at runtime, either

onboard or alongside their target, in order to perform dynamic dependability

management.

This dynamic execution imposes a number of new requirements on the models and

algorithms that make up the EDDI. In particular, if they are to react at all to the

operational environment, they require some means of receiving information about it

(e.g., via data from sensors) and communicating results, conclusions, and recommended

responses back to the target robot and/or its operators.

An EDDI is therefore both a repository of knowledge — in form of dependability

models and associated parameters — and a means of using that knowledge to interpret

input and output received by the EDDI via the target system.

Although there are other aspects involved here (such as the ConSert guarantee &

demand exchange mechanism), the primary means of reacting to perceived input is via

the EDDI event monitoring framework. Following design-time specifications of what

events are of interest and what parameters they might need in order to be monitored —

such as the component acting as a source for the raw data — generic event monitoring

code can be generated. This can then be tailored and adapted for the target platform as

necessary so that it can be executed.

The events, once triggered by these monitors, connect to the wider dependability

models that make up the knowledge base of the EDDI. In this way, they can activate or

inform different processes, e.g., changes in state in a Markov chain or Bayesian

network, occurrence of basic events in a fault tree, or evidence to support guarantees

offered by a ConSert.

Thus, the events serve as the input for any onboard diagnostic or dynamic dependability

evaluation functions. Different conditions can be modelled, while the ability to trigger

events on the basis of communication from other agents (EDDI or otherwise) provides

support for MRS.

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 30 Version 1.0 30 June 2022

Confidentiality: Public Distribution

7.1 EDDI EVENT FRAMEWORK CONTEXT

The context for how event monitoring fits into the wider EDDI framework is illustrated

in Figure 22.

Figure 22 The basic Executable Digital Dependability Identity architecture

However, it is important to remember that input is only one-half of the equation; the

EDDI also needs to be able to talk as well as listen. To that end, it requires a two-way

interface to its target system (e.g. a robot); events provide the input, while actions

provide the output.

The bi-directional interface is shown in the diagram in two places: the observations (top

left) coming from the system's sensors, and the signals and actions communicated

directly to the system controller (centre-right). Together, these form the inputs received

from the system and outputs the EDDI sends to it.

Through the system inputs, the EDDI receives information about the state of the system

and its parameters, e.g. the readings from any onboard sensors that have dependability

implications. Sensors also provide the EDDI with information about its operating

environment and any prevailing conditions that may impact safety or security (e.g. bad

weather). Such information will necessarily be platform-dependent, and most likely in a

format dictated by the platform, though some pre-processing of the information may

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 31

Confidentiality: Public Distribution

exist rather than reading e.g. raw sensor data, depending on the nature of the platform‘s

controller.

In return, the EDDI sends to the system information about the dynamic level of risk as

well as possible corrective measures. Note that the EDDI is not expected to perform

actions directly, but rather issue recommendations to the platform and/or operator; it

should not have the authority to take control of the robot itself (and is unlikely to have

the platform-specific control capability in any case). However, it could for instance

recommend the system enter a safe state, abort its current mission, or that it activates

some backup or redundant component.

7.2 EVENT MONITORING

The event monitor components of the EDDI perform low-level detection of events.

They are responsible for the evaluation of real-time sensory data and determining

whether or not particular events of note have occurred (e.g. a fault), and if so, reporting

this to the rest of the EDDI.

The exact form of an event monitor is heavily platform-specific, depending as it does on

the nature of the data being monitored and the platform itself. However, there are

frequent commonalities that can be generalised and so the event monitors can, to some

degree, be considered instantiations of specific patterns. For example, sensor data is

likely to be buffered into a time series store (e.g. via a circular buffer with shifting time

windows), to better identify trends and long-term conditions and help filter out transient

phenomena or spurious readings. Expressions to confirm the occurrence of events can

be complex operations that involve querying both current and historical data points, and

a system of three-valued logic — incorporating an ‗unknown‘ value in addition to ‗true‘

and ‗false‘ — may help in processing situations that involve a degree of uncertainty or

otherwise incomplete information.

It is also important to note that EDDIs do not purely monitor for hardware faults. The

system component being monitored may be an AI component, for instance, using

SafeML or Uncertainty Wrappers to provide information about its current status and

dependability of its performance. As described in Section 3, AI components such as

DNNs introduce a more probabilistic type of uncertainty as they always have a chance

to misclassify an input. Thus, a camera connected to a person detection algorithm, for

example, has a chance of not recognising a person in the vicinity of the robot, leading to

a hazardous scenario. While we cannot detect this situation with 100% confidence, we

may know that the ML component has low confidence (e.g. due to environmental

conditions like darkness or bad weather) and adjust behaviour accordingly.

Alternatively, an event monitor may be monitoring for security threats of some

description, such as a network intrusion of some kind or a security authentication

failure. Both security and AI problems as well as more traditional hardware-related

faults are subordinate to the higher-level reasoning of the EDDI so that it can respond to

any dependability-related event, whether that be a hardware fault, security threat, or AI

performance degradation.

There are three primary components of the EDDI dynamic event framework: Events,

Event Monitors, and Actions. Further detail can be found in "D4.2/D5.2 ODE and

EDDI Specification" but a brief overview will be provided here.

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 32 Version 1.0 30 June 2022

Confidentiality: Public Distribution

As mentioned in section 7, the EDDI requires some means of communicating with its

host system (e.g. a drone or robot). For example, dynamic risk assessment may require

information about the operating environment, while feedback from onboard sensors

may be needed for fault diagnosis and failure prediction. Equally, the EDDI

communicates whatever conclusions or results it reaches back to the host. In both cases,

there must be a way to specify what data is being monitored, how the EDDI reacts to it,

and what it does with that information.

The result is the Event-Action cycle (as shown in Figure 23), in which the EDDI obtains

input from Event Monitors in the form of Events, processes the Events according to

their internal models and algorithms, and then issues Action recommendations

accordingly.

Figure 23 The Event-Action cycle

Hence an event-based approach has been adopted to model the way in which an EDDI

is able to process information from the host system (since Actions can also be thought

of as a form of event, merely a type triggered by the EDDI and issued from it, rather

than received by it).

7.3 EVENTS

While there are many types of events that may occur during the nominal operation of a

given system, for the purposes of the EDDI framework we are only interested in those

that bear relevance to dependability. Furthermore, the causes of the events must also be

observable — i.e., can be monitored — or there would be no way to know when to

trigger them.

Different categories of Event can be distinguished in this context, including (but not

necessarily limited to):

 "Condition" or "observed" events, which are conditions that hold over one or

more variables/values and which occur when those conditions are observed to be

true;

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 33

Confidentiality: Public Distribution

 "Intelligent" or "Machine Learning" events, which are triggered as a result of

some kind of decision-making process (such as an ML classification or security

intrusion alert) and which may involve some degree of uncertainty;

 "External" events, are essentially messages received from other EDDIs operating

externally in the wider context (or, potentially, the same EDDI). This may

involve information about failures or problems encountered by other robots in

the MRS, for instance.

These three categories form subclasses of the ODE's primary Event class. However, to

be relevant at runtime, we also need to know how to monitor them, which is the purpose

of the EventMonitor. Having both allows us to keep the concept of the information

being monitored (the Event) separate from how it is being monitored (the

EventMonitor), meaning the platform-specific details are largely encapsulated in the

monitor so that the Event itself can remain fairly generic.

Of the three types of events, external events are the simplest type. These are not

monitored as such but occur when a particular message is received by the EDDI's host

platform (which may, in turn, have been triggered by an Action from another EDDI on

the network). External events carry only the message data, along with some metadata

about its source, type and destination.

The "intelligent" events are the ones most closely tied to the specific implementation

since they are triggered directly by whatever intelligent, likely ML-based component is

involved. For example, a person-detection system may trigger a "person detected" event

on the basis of information from multiple sensors (cameras, LIDAR etc) on the basis of

black-box algorithms that the EDDI has no knowledge of.

The condition events, however, are the "traditional" events that are monitored and

triggered as a result of those conditions becoming true. For this purpose, the ODE

defines a particular grammar — essentially a small domain-specific language — for

specifying such conditions. This language encapsulates common generic event-

monitoring patterns, e.g. allowing timed expressions (= a condition that must hold for a

given period) or filtering out anomalous data by performing operations over a range of

data (e.g. via a buffer).

For reference, the grammar is repeated below, but further information can be found in

D4.2/D5.2. The grammar is defined in EBNF
2
 in Listing 1.

2
 https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 34 Version 1.0 30 June 2022

Confidentiality: Public Distribution

condition = timed_exp, {"AND" | "OR" | "XOR",

 timed_exp };

timed_exp = bool_exp

 | "TIME", "(", bool_exp, ",",

 constant, time_unit, ")";

time_unit = "ms" | "s" | "m" | "h" | "d";

bool_exp = bool_comp, {"AND" | "OR" | "XOR",

 bool_comp}

 | "(", bool_exp, ")";

bool_comp = not_exp, [("==" | "!="), not_exp];

not_exp = ["NOT"], bool_val;

bool_val = comparison

 | variable

 | "EVENT", "(", variable, ")"

 | bool_constant;

bool_constant = "TRUE" | "FALSE" | "UNKNOWN";

comparison = expression, rel_op, expression;

rel_op = "==" | "!=" | "<" | ">" | "<=" | ">=";

expression = term, {["+" | "-"], term};

term = factor, (["*" | "/"], factor};

factor = (num_val, ["^", num_val])

 | unary_function

 | timed_function;

unary_function = "ABS" | "SQRT", "(", expression, ")";

timed_function = func_name,

 "(", variable, ",", constant,

 time_unit ")";

func_name = "MAX" | "MIN" | "SUM" | "AVERAGE"

 | "DIF" | "INTEG";

num_val = variable | constant |

 "(", expression, ")";

Listing 1 - EDDI Event EBNF Syntax

This grammar allows for a variety of expressions, including:

 Boolean expressions, e.g. X == TRUE AND Y == FALSE

 Conditions that must hold over time, e.g. TIME(temp > 100, 5s)

 Negated conditions, e.g. X == NOT UNKNOWN

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 35

Confidentiality: Public Distribution

 Comparisons, e.g. battery_level <= 100

 Arithmetic operations, e.g. battery_level / 1000 <= 50

 Powers, e.g. x ^ 2 < 100

 ABS and SQRT, e.g. ABS(var) > 5

 Functions that operate over a range of historical values, e.g. MAX, MIN, SUM,

AVERAGE, DIF, INTEG etc. The operand indicates the time period over which

values should be used. The precise number of values then depends on the time

and the relevant sampling rate.

 Combining all of the above, e.g. AVERAGE(temp, 5s) > 100 AND

TIME(warning == TRUE, 5s)

Variables are taken to be any combination of numbers and letters, as long as it starts

with a letter (and excluding the keywords defined in the grammar), while numeric

constants can include numbers in base 10 scientific formats (e.g. 1e-5) and specified

with either '.' or ',' as the decimal separator.

To connect variables to their sources, EventMonitors are needed. An EventMonitor

indicates both the variable name, the source component of the value in question (e.g. a

sensor) and a sampling rate (which can be used in conjunction with the time constants to

determine the number of historical values that must be stored in a buffer). It may also

specify the data type provided by the source, e.g. real values, integers, or logical values

(TRUE/FALSE/UNKNOWN).

Additional complexity is that at runtime we also need to account for the fact that our

knowledge is limited. Therefore, in addition to simple true/false conditions, we also

need to accept the possibility of unknown results, meaning we will be employing a

three-valued logic — TRUE, FALSE, UNKNOWN — instead. UNKNOWN may

apply, for example, if a sensor fails to provide a reading, or a function does not yet have

enough historical data to provide a result.

To understand how the three-value logic should behave, please consult the truth Table 1

(where T = True, F = False, and U = Unknown):

Table 1: Truth table of three value logic

X, Y X AND Y X OR Y X XOR Y NOT X

F, F F F F T

F, T F T T T

F, U F U U T

T, F F T T F

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 36 Version 1.0 30 June 2022

Confidentiality: Public Distribution

X, Y X AND Y X OR Y X XOR Y NOT X

T, T T T F F

T, U U T U F

U, F F U U U

U, T U T U U

U, U U U U U

8. DYNAMIC SECURITY MANAGEMENT

An Intrusion Detection System (IDS) is a security monitoring system that can detect

suspicious activities and generates alerts when detection occurs. A system administrator

or an incident responder makes use of these alerts to further investigate and define

mitigation actions.

The wide adoption of Snort
3
 led to its selection as the IDS used in the SESAME

security assessment. Such a tool allows for the detection of attacks on the system in

question and the creation of corresponding alerts. Snort performs real-time traffic

analysis and packet logging. A set of rules defines the malicious network activity and

generates alerts for the users.

Snort rules are divided into two logical sections, the rule header and the rule options.

The rule header contains the rule‘s action, protocol, source and destination IP addresses

and netmasks, and the source and destination ports information. On the other hand, the

rule options section contains alert messages and information on which parts of the

packet should be inspected to determine if the rule action should be taken. More

information about Snort can be found in section 3.1.1 of D5.3.

Using Snort or alternative IDS systems can be part of a security concept, and also

support broader dependability aspects. The configuration of the IDS (via rules or

otherwise) should address the corresponding requirements. The work described in

SESAME deliverable D4.3 goes further into detail with respect to how this can be

realized during development. With respect to this deliverable, focusing on the runtime,

an IDS is satisfying an active system security requirement (e.g. ―system must detect

intrusions‖), based on the assessment of the impact identified security threats have on

the system‘s assets (i.e. aspects of the system that need protection). Part of these assets

can include dependability-critical elements of the system (e.g. robot CPUs, robot

functionality), but also information that is critical with respect to dependability e.g.

perceptual information received outside the robot‘s own sensors.

An intrusion, if left unchecked, can potentially jeopardize such assets, and lead to

unsafe, or disabled MRS applications. Therefore, as part of the EDDI, the IDS is

3
 https://www.snort.org/

https://www.snort.org/

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 37

Confidentiality: Public Distribution

responsible for detecting intrusions and propagating alarms to other EDDI runtime

components, e.g. to perform dynamic capability (section 3) and/or reliability assessment

(section 4), to update their evaluation and potentially trigger individual robot and/or

MRS adaptation. An example of the above workflow from development to runtime can

be seen in Figure 24. On the left side of the figure, safety and security assessment can

be combined to provide input for specifying IDS rules. ‗Dynamic Dependability

Engineering‘ represent development activities for setting up e.g. Dynamic Safety

Capability Assessment and Dynamic Reliability Assessment. They result in ConSerts

and SafeDrones models which are aware of which kinds of alerts and other information

IDS can propagate at runtime. Once deployed, the right side of the figure depicts how,

upon detecting an intrusion based on a specific rule, an IDS can propagate the alert to

either or both corresponding runtime EDDI components, depending on the relevance to

safety and/or reliability. Based on the context, each of the EDDI components can

recommend adaptations to the MRS or individual robot.

Figure 24 Example workflow of IDS as part of runtime EDDIs

9. CONCLUSIONS

Multi-Robot Systems (MRS) present both a challenge in terms of complexity,

intelligence, and autonomy, but also an opportunity to overcome this challenge by

advancing existing ideas and technologies into the runtime domain. This transition is

also reflected in the corresponding shift from the existing concept of Digital

Dependability Identities (DDIs) into Executable DDIs (EDDIs).

In the present deliverable, we elaborated further on how our vision of runtime EDDIs

looks like (sections 1 and 2), and discussed what we believe to be fundamental building

blocks for composing effective support for MRS applications (sections 3 to 8). Our

ongoing work follows the concepts outlined here and is directly operationalized in D7.2,

where tooling for generating runtime EDDI components is discussed in more detail. Our

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 38 Version 1.0 30 June 2022

Confidentiality: Public Distribution

next step in this regard are to address and deploy our runtime components in MRS,

which is handled through the activities of task T7.3, and applied in practice on the

SESAME use cases.

Our concept also includes a preliminary approach for establishing a basis for

communication across EDDIs and their host MRS, through a system of runtime event

monitoring and action recommendation. This is described further in section 7.

Another point that requires further development as part of the SESAME project is

increasing the scope of our activities from the level of individual robots, to the level of

the MRS application. Mission-level runtime EDDIs can be positioned to have higher-

level awareness of the operational context and thus the ability to recommend larger-

scale adaptations to achieve missions, or at least offer additional layers of protection for

their dependability.

With respect to security at runtime, we briefly discussed our concept for integrating

active security measures (specifically an Intrusion Detection System – IDS) with other

runtime EDDI components (section 8). To arrive at this integration, an integrated

dependability engineering approach is required to set up the EDDI components that will

be used at runtime. The runtime EDDI components need to be aware of the types of

alerts the IDS can trigger that are relevant to the dependability properties of concern e.g.

safety and reliability. Given this setup, runtime EDDI components can also incorporate

IDS alerts, and recommend MRS and/or robot behaviour adaptation accordingly. At this

point, this concept still requires further technical development and is part of our next

steps in the SESAME project.

 D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

30 June 2022 Version 1.0 Page 39

Confidentiality: Public Distribution

10. REFERENCES

[1] J. O. Kephart and D. M. Chess, ―The vision of autonomic computing,‖ Computer, vol. 36, no. 1, pp. 41-50, 2003.

[2] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, ―Basic concepts and taxonomy of dependable and secure

computing,‖ IEEE transactions on dependable and secure computing, vol. 1, no. 1, pp. 11-33, 2004.

[3] D. J. Snowden and M. E. Boone, ―A leader's framework for decision making,‖ Harvard business review, vol. 85,

no. 11, p. 68, 2007.

[4] D. Schneider and M. Trapp, ―Conditional Safety Certification of Open Adaptive Systems,‖ ACM Trans. Auton.

Adapt. Syst. (ACM Transactions on Autonomous and Adaptive Systems), vol. 8, no. 2, pp. 1-20, 2013.

[5] D. Schneider, ―Conditional Safety Certification for Open Adaptive Systems,‖ Technical University Kaiserslautern,

2014.

[6] K. Sohag, K. Aslansefat, I. Sorokos, Y. Papadopoulos and Y. Gheraibia, ―A conceptual framework to incorporate

complex basic events in HiP-HOPS,‖ in International Symposium on Model-Based Safety and Assessment,

Thessaloniki, 2019.

[7] M. Ottavi, S. Pontarelli, D. Gizopoulos, C. Bolchini, . M. K. Michael, L. Anghel, M. Tahoori, A. Paschalis, P.

Reviriego, O. Bringmann, V. Izosimov, H. Manhaeve, C. Strydis and S. Hamdioui, ―Dependable multicore

architectures at nanoscale: The view from europe,‖ IEEE Design & Test, vol. 32, pp. 17-28, 2014.

[8] K. Aslansefat, F. Marques, R. Mendonça and J. Barata, ―A markov process-based approach for reliability

evaluation of the propulsion system in multi-rotor drones,‖ in Doctoral Conference on Computing, Electrical and

Industrial Systems, 2019.

[9] J. Eggert, ―Risk estimation for driving support and behavior planning in intelligent vehicles,‖ at -

Automatisierungstechnik, vol. 66, no. 2, p. 119–131, 2018.

[10] M. Machin, J. Guiochet, H. Waeselynck, J.-P. Blanquart, M. Roy and L. Masson, ―SMOF: A Safety Monitoring

Framework for Autonomous Systems,‖ IEEE Trans. Syst. Man Cybern, Syst. (IEEE Transactions on Systems, Man,

and Cybernetics: Systems), vol. 48, no. 5, p. 702–715, 2018.

[11] C. Pek, S. Manzinger, M. Koschi and M. Althoff, ―Using online verification to prevent autonomous vehicles from

causing accidents,‖ Nat Mach Intell (Nature Machine Intelligence), vol. 2, no. 9, pp. 518-528, 2020.

[12] S. Shalev-Shwartz, S. Shammah and A. Shashua, ―On a Formal Model of Safe and Scalable Self-driving Cars,‖

Intel/Mobileye, http://arxiv.org/pdf/1708.06374v5, 2017.

[13] M. Trapp, D. Schneider and G. Weiss, ―Towards Safety-Awareness and Dynamic Safety Management,‖ in 14th

European Dependable Computing Conference (EDCC), 2018.

[14] C. Hartsell, S. Ramakrishna, A. Dubey, D. Stojcsics, N. Mahadevan and G. Karsai, ―ReSonAte: A Runtime Risk

Assessment Framework for Autonomous Systems,‖ in 16th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, 2021.

[15] S. Khastgir, H. Sivencrona, G. Dhadyalla, P. Billing, S. Birrell and P. Jennings, ―Introducing ASIL inspired

dynamic tactical safety decision framework for automated vehicles,‖ in IEEE Intelligent Transportation Systems

Conference (ITSC), 2017.

[16] R. Johansson and J. Nilsson, ―The need for an environment perception block to address all ASIL levels

simultaneously,‖ in IEEE Intelligent Vehicles Symposium, Gotenburg, Sweden, 2016.

[17] P. Feth, ―Dynamic Behavior Risk Assessment for Autonomous Systems,‖ Germany, 2020.

[18] M. Schreier, V. Willert and J. Adamy, ―An Integrated Approach to Maneuver-Based Trajectory Prediction and

Criticality Assessment in Arbitrary Road Environments,‖ IEEE Trans. Intell. Transport. Syst. (IEEE Transactions

on Intelligent Transportation Systems), vol. 17, no. 10, pp. 2751-2766, 2016.

[19] S. Lefevre, C. Laugier and J. Ibanez-Guzman, ―Intention-Aware Risk Estimation for General Traffic Situations and

Application To Intersection Safety,‖ [Research Report] RR-8379, INRIA, 2013.

[20] J. Dahl, G. R. d. Campos, C. Olsson and J. Fredriksson, ―Collision Avoidance: A Literature Review on Threat-

Assessment Techniques,‖ IEEE Trans. Intell. Veh. (IEEE Transactions on Intelligent Vehicles), vol. 4, no. 1, pp.

101-113, 2019.

[21] S. Lefévre, D. Vasquez and C. Laugier, ―A survey on motion prediction and risk assessment for intelligent

vehicles,‖ ROBOMECH Journal 1, pp. 1-14, 2014.

[22] L. Westhofen, C. Neurohr, T. Koopmann, M. Butz, B. Schütt, F. Utesch, B. Kramer, C. Gutenkunst and E. Böde,

―Criticality Metrics for Automated Driving: A Review and Suitability Analysis of the State of the Art,‖

D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification

Page 40 Version 1.0 30 June 2022

Confidentiality: Public Distribution

https://arxiv.org/abs/2108.02403, 2021.

[23] J. Reich and M. Trapp, ―SINADRA: Towards a Framework for Assurable Situation-Aware Dynamic Risk

Assessment of Autonomous Vehicles,‖ in 16th European Dependable Computing Conference (EDCC), Munich,

Germany, 2020.

[24] J. Reich, M. Wellstein, I. Sorokos, F. Oboril and K.-U. Scholl, ―Towards a Software Component to Perform

Situation-Aware Dynamic Risk Assessment for Autonomous Vehicles,‖ in Dependable computing - EDCC 2021

Workshops. DREAMS, DSOGRI, SERENE 2021, 2021.

[25] M. Wellstein, ―Development of a Bayesian Network for Situation-Aware Lane Change Prediction based on the

highD Dataset,‖ Technical University Kaiserslautern, 2021.

[26] SESAME, ―D1.2 Evaluation Plan,‖ EC Distributions, 2021.

[27] M. Kläs and A. M. Vollmer, ―Uncertainty in Machine Learning Applications: A Practice-Driven Classification of

Uncertainty,‖ in SafeComp Workshop First International Workshop on Artificial Intelligence Safety Engineering

WAISE, Västerås, 2018.

[28] M. Kläs and L. Sembach, ―Uncertainty Wrappers for Data-driven Models: Increase the Transparency of AI/ML-

based Models through Enrichment with Dependable Situation-aware Uncertainty Estimates,‖ in SSAFECOMP

workshop International Workshop on Artificial Intelligence Safety Engineering (WAISE), Turku, 2019.

[29] K. Aslansefat, I. Sorokos, D. Whiting, R. Tavakoli Kolagari and Y. Papadopoulos, ―SafeML: Safety Monitoring of

Machine Learning Classifiers through Statistical Difference Measure,‖ in International Symposium on Model-

Based Safety and Assessment, Lisbon, 2020.

	1. Introduction
	2. Runtime Dependability Monitoring Architecture With EDDI
	3. Dynamic Safety Capability Assessment
	3.1 Conditional Safety Certificates
	3.2 Application in SESAME
	3.3 Method and Algorithm
	3.4 Example

	4. Dynamic Reliability Assessment
	5. Dynamic Risk Assessment
	5.1 State of the Art
	5.2 Situation-Aware Dynamic Risk Assessment
	5.3 Example of SINADRA Model in SESAME Use Case

	6. Dynamic Perception Uncertainty Monitoring
	6.1 Background
	6.2 Uncertainty monitoring
	6.3 Uncertainty monitoring EDDI
	6.4 Application in SESAME

	7. Dynamic Event Monitoring
	7.1 EDDI Event Framework context
	7.2 Event monitoring
	7.3 Events

	8. Dynamic Security Management
	9. Conclusions
	10. References

