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Executive Summary

This deliverable reports on “D2.5: Multi-Robot Collaborative Rescue Mission of the work package 2: Sen-
sor Fusion and Collaborative Intelligence, within the context of the European Union (EU) Secure and Safe
Multi-Robot Systems (SESAME) project. This presents a novel architecture to generate trajectories of a col-
laborative Multi-Robot Systems (MRS) performed. The generated trajectories can provide extra off-board
sensor feedback to rescue robots under various distress types (e.g., cyber-attack, sensor malfunction). Also,
when a cyber-attack or sensor malfunction affects one or more members of the team, non-attacked robots will
generate a rescue trajectory providing further sensor feedback to the compromised robots and helping them to
maintain their operational and safe state.

For this purpose, we outline the components of a collaborative rescue mission for MRS. For the planning part,
we use an online trajectory optimization approach to compute the fastest trajectory, given the initial and final
positions. The collaborative sensor fusion component provides a perception, that forms the essential elements
of drone detection, position estimation, and semantic segmentation. The second part provides sensor fusion,
which is central to collaborative sensor fusion. Using these components, we present a generic architecture
for the rescue operation of the target drone with the sensor malfunction. All the corresponding rescue actions
are also considered. Moreover, the required elements in the architecture, such as the switching mechanism
and redundant components, are discussed. Furthermore, the algorithm and instructions to implement this
architecture are given. The efficiency of the proposed architecture is investigated and evaluated by high-fidelity
simulations in the Gazebo.
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1 Introduction

In this section, the preliminary remarks on the project and the main research objectives of this deliverable are
elaborated. Accordingly, the main research directions are identified as a set of detailed questions, which are
mathematically formulated, and corresponding solutions are presented in the proceeding sections. Moreover,
the relationship between the overall project aims and the proposed solution is established. Accordingly, the
contributions and novelties are summarized.

Across the different civil domains where robots can support human operators, one of the areas where they
can have more impact is rescue operations. In particular, MRS have the potential to significantly improve
the efficiency of rescue personnel with faster response time [1], support in hazardous environments [2], or
providing real-time mapping and monitoring of the area where an incident has occurred [3], among other
possibilities.

Rescue operations can take significant advantage of supporting autonomous MRS. These can aid in mapping
and situational assessment, monitoring and surveillance, establishing communication networks, or searching
for victims. This deliverable provides an algorithm of multi-robot systems supporting rescue operations, with
system-level considerations and focusing on the algorithmic perspectives for multi-robot coordination and
perception. Autonomous robots have been playing increasingly important roles in civil applications in recent
years [4].

Multi-Unmanned Aerial Vehicle (UAV) systems for civil applications (where rescue applications are a sub-
set) are reviewed in [5] from the point of view of communication. A classification of technological trends
and sensing modalities in UAVs for civil applications is available in [6]. UAVs for rescue operations are re-
viewed in [7], with a classification in terms of (i) sensing, (ii) system-level definitions, and (iii) operational
environments. A study of MRS for rescue operations in [8] focuses on task allocation algorithms, communi-
cation modalities, and human-robot interaction for both homogeneous and heterogeneous multi-robot systems.
While autonomous robots are being increasingly adopted for rescue missions, current levels of autonomy and
safety of robotic systems only allow for full autonomy in the search part, but not for rescue, where human op-
erators need to intervene. In general, the literature on MRS rescue operations with some degree of autonomy
is rather sparse, with most results being based on simulations or simplified scenarios [9].

One of the most important capabilities in robotic systems is motion planning and execution, also comprising
trajectory planning and tracking. A trajectory is defined as a time-parameterized motion reference (i.e., a
geometric path with an associated timing law), and can, for instance, describe the motion reference of a mobile
robot platform. Therefore, while in pure path planning the goal is to generate geometrically feasible (collision-
free) paths, trajectory planning does not only consider geometrical feasibility but also kinematic and dynamic
limits must be taken into account to generate a trajectory. Trajectory tracking is the capability of the robot to
reach and follow the trajectory, i.e., the time-parameterized reference, at run-time. The challenges in trajectory
planning and tracking are constrained by the motion manifold.

From this point of view, the rescue operation can be considered as an alternative trajectory planning at the mo-
ment the robot malfunctioning, satisfying predefined actions, as a safe and secure approach to recover/rescue
the operation or the robot.

1.1 Document Purpose

This document is prepared in the context of the SESAME project. More precisely, it refers to “D2.5: Multi-
Robot Collaborative Rescue Mission of Work Package (WP) 2: Sensor Fusion and Collaborative Intelligence.
This reports the novel approach to generate trajectories of a collaborative MRS performed in Task 2.4. The
generated trajectories can provide extra off-board sensor feedback to rescue robots under various distress types
(e.g., cyber-attack, sensor malfunction).
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To satisfy the above-mentioned objectives, we primarily incorporate two main components, i.e., trajectory
planner and collaborative perception and sensor fusion.

Collaborative Perception and Sensor Fusion aim at a collective perception mechanism enabling safe and robust
robot navigation. The main goal is for the robot to carry on with its mission in the presence of adverse
environmental conditions, cyber- attacks or faults. In the context of this task, the scope of cyber-attacks or faults
is considered as a sensor becoming unavailable, e.g., losing the signal of Global Positioning System (GPS).
Similarly, the scope of the adverse environmental conditions is bounded to events that may perturb the state
estimation of a robotic system, such as entering GPS-denied areas. Building on recent advances in deep
learning-based object detection and semantic segmentation, perception algorithms provide automatic means to
estimate the position of objects in a scene without additional aided fiducial markers. This can, for instance,
enable an observer robot to visually estimate the position of the target robot. Sharing this estimation with the
tracked robot could help it recover from a faulty GPS sensor for instance. Likewise, the observer robot can
detect obstacles in the vicinity of the other robot and share their position with it. This could prove useful if the
target robot’s vision sensors were failing or scrambled, preventing it from sensing obstacles. On the other hand,
online perception-aware trajectory generation considers the close environment information gathered by nearby
robots using the collaborative sensor fusion approach developed in Task 2.3 and the mission goals. Every
robot will be “monitored” by one or more robots, but not all of them. Also, when a cyber-attack or sensor
malfunction affects one or more members of the team, non-attacked robots will generate a rescue trajectory
providing further sensor feedback to the compromised robots and helping them to maintain their operational
and safe state.

In summary, the overall objectives are as follows.

• Identifying the corresponding actions at the GPS denial moments.
• Structuring the architecture of the solution, taking into account the MRS settings and integrating both

sensor fusion and planner components.
• Online trajectory generation approach that minimizes the uncertainty of MRS, to fulfil the overall com-

mon mission goals in offline/online, (de)centralized ways.
• Incorporating the environment information using Task 2.3.

Moreover, the proposed solutions are evaluated as

• Numerical and in-lab experimental evaluation of the planner, satisfying the metrics, the computational
time/burden, and situational/perception awareness.

• Numerical and in-lab experimental evaluation of the sensor fusion component.
• Safety, security and quality assurance for a tentative trajectory.
• We provide the components in the form of algorithms with demonstrations of drones as an example.

Finally, it should be noted that the practical implementation and integration of use cases are sought in WP8.
In this deliverable, we provide high-fidelity simulations and experiments to validate the proposed approaches
as proof of concept. Furthermore, the potential applicability of the proposed approaches on the use cases is
briefly motivated in Section 6.

1.2 Relationship to other Deliverables

Considering the above-mentioned points, In summary, the inputs to our component are:

• Robots model, parameters, dynamic and kinematic restrictions (Deliverable 3.2 and 3.4),
• Information of the sensors of the robots (Deliverable 3.2 and 3.4),
• Task plans information, including start and endpoints, the intermediate regions of interest, dependencies

between the different robots, and temporal dependencies between the subtasks or dependencies between
the states of the robot,

Page 2 Version 1.0
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• Safety, security and quality assurance criteria (Deliverable 3.3 and D3.4),
• the GPS denial or malfunctioning flag to indicate the moment the rescue action is to be done.

Moreover, the expected outputs are

• Planned trajectories for each individual robot, including time-parameterized motion references for each
robot, safety, security and quality assurance metrics were achieved for each planned trajectory,

• Robot commands in the form of actuator/driver command to the robotics platforms e.g. desired velocity
commands,

• Algorithms of a Higher level centralized planner, Lower level decentralized planner and Lower level
decentralized control,

• Non-attacked robots will generate a rescue trajectory providing further sensor feedback to the compro-
mised ones,

• Numerical simulations and experimental studies on in-lab drones as an example.

Accordingly, the interfaces to exchange information with other components are identified as

• The dynamics and kinematics of the robots with the composable models,
• The sensors of the robots with the ExSce,
• Task plans with the Collaborative Intelligence, including, requirements, tasks, temporal constraints, start

and endpoints,
• The MRS system structure and the possibility to exchange information among the robots or with a

control station
• Complete situational awareness with Collaborative Perception,
• Safety, security and quality assurance metrics for a tentative trajectory with the EDDI,
• Robot-agnostic interface for the planned trajectories,
• Robot-agnostic interface for the actuator/driver commands to the robotics platforms.

1.3 Contribution and Novelties

One of the most important capabilities in robotic systems is motion planning and execution, also comprising
trajectory planning and tracking. A trajectory is defined as a time-parameterized motion reference (i.e., a
geometric path with an associated timing law), and can, for instance, describe the motion reference of a mobile
robot platform. Therefore, while in pure path planning the goal is to generate geometrically feasible (collision-
free) paths, trajectory planning does not only consider geometrical feasibility but also kinematic and dynamic
limits must be taken into account to generate a trajectory. Trajectory tracking is the capability of the robot to
reach and follow the trajectory, i.e., the time-parameterized reference, at run-time. The challenges in trajectory
planning and tracking are manifold.

Our main focus is on MRS, where the trajectories of several robots need to be planned in a coordinated way, in
general, to fulfil the overall common mission goals. The robots have to fulfil local tasks, such as the movement
from a given start- to an endpoint, while for instance visiting different regions of interest in between and
performing actions herein under temporal constraints. Furthermore, there might be dependencies between the
robots and their dynamic states such as keeping a formation or avoiding collisions among each other. Therefore,
task and trajectory planning are closely related and sometimes even done simultaneously. There are many
approaches to performing MRS trajectory planning, mainly categorized as offline vs online, and centralized
vs distributed/decentralized planning. The optimal approach to planning the trajectory depends mainly on the
overall mission requirements, the MRS system structure and the possibility to exchange information among
the robots or with a control station.

The trajectory planning is also ruled by the environment of the MRS and the model of the environment available
for the planning, either in a centralized form or as partial models in single robots. The environment consists
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of static structures, static or dynamic objects and the free space in between. The modelling of the environ-
ment/situational awareness can be based on many different levels of abstraction and include different levels of
uncertainty. The environmental model is continuously updated using mainly the sensing and perception of the
different robots, equipped with different types of onboard sensors. Therefore, trajectory planning and tracking
are closely linked to environmental modelling as well as the MRS sensing and perception capabilities.

However, the robotic motion does not only depend on the sensing and perception but the perceptual processing
itself is influenced by intended actions (active perception). Recent research has extended active perception
with support for partial or full mission “planification” by generating perception-aware path and trajectory
plans. Advances in the area focus on minimising localisation uncertainty by simultaneously updating the
path planning using the richness of texture information in the environment and on minimising state estimation
uncertainty by computing the feasibility of trajectory-planning and trajectory-tracking based on the kinematic
and dynamic models of the robot. In MRS, performing perception-aware trajectory planning in a collaborative
but distributed way is a further challenge, strongly related to the coordination and communication schemes
during the planning.

Finally, additional challenges for the MRS trajectory planning and tracking arise from the requirements of
safety and security. On the other hand, unauthorized access to the communication system of the MRS could
be used to compromise the information that is exchanged between the robots during the trajectory planning,
leading to a decrease in performance or even a failure or damage to the MRS or the environment. In our
presented component, we provide a capability for MRS trajectory planning and tracking that takes the afore-
mentioned challenges into account. We will develop a cascaded solution, providing online trajectory planning
with continuous re-planning, and online trajectory tracking.

In our proposed approach, the trajectory planning part will include a high-level centralized planner, where
the global MRS trajectory planning problem is formulated as one overall optimization problem computing the
rough trajectories that each robot agent is to track. In a cascade and in a distributed way, each robotic agent
will rely on a planner to compute its detailed trajectory to be tracked, based on the given rough one. The tra-
jectory tracking will guarantee that the previously planned detailed trajectories are tracked with no deviations,
providing the actuator/driver commands to the robotics platforms, e.g., desired velocity commands. We will
apply Model Predictive Control (MPC) in a decentralized way, e.g., each robot independently tracks its tra-
jectory. The following aspects will be considered at different levels on each component, i.e. planner/tracker:
(1) collision avoidance with the structures, static or dynamic objects and the other robots, also including dy-
namic and stochastic models of the potential obstacles (2) kinematic and dynamic limitations of the robots,
as well as their model uncertainties and the possibility for online parameter estimation/update, (3) capabilities
and constraints of the different robotic sensors and the limits of the situational awareness algorithms to provide
perception-aware planning, (4) safety, security, and quality assurance aspects, e.g. by including risk and trust
in the planning, generated by the EDDI components at runtime. Herein, safety-related risk could be related to
the environmental situation, the uncertainty of observations or the consequences of robotic actions.

The purpose of multi-robot cooperative state estimation is that the localization of a single robot can not only use
its sensors but also fuse the sensors or localization results of other robots, received through the communication
system. The MRS is considered a coupled system. The sensor information of different robots is connected to
a network structure through the communication system. This structure requires high efficiency of calculation
and high timeliness of communication. The benefits of collaborative state estimation are summarized as: (1)
The state estimation of a single robot is improved by the information sent from other robots. For example, low-
precision sensors on a single robot can benefit from high-precision sensors on other robots, and (2) Provide
redundancy in case of sensor failure. For example, when a single robot performs Visual Inertial Odometry
(VIO) localization, the camera or IMU suddenly fails, and its state estimation can be recovered by other robots
through relative localization.

In the context of rescue operations, the collaborative sensor fusion is to “rescue” other robots that are affected
by sensor malfunctioning or any type of cyber attack. There are two factors related to trajectory planning, i.e.,
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a robot is performing a trajectory to keep other robots in the field of view, and a robot affected by an attack or
sensor issue receives a rescue trajectory.

The main contributions are as follows.

• The trajectory planning problem will be conveniently split into an MRS high-level centralized part and
a low-level distributed part, achieving a real-time operation and robust performance.

• The distributed trajectory planning and tracking components will be heterogeneous, i.e., different for
each robotics platform, while the centralized trajectory planner will be generic and versatile to include
all the targeted robotics platforms, e.g., different kinematic and dynamic models and restrictions. Also,
the overall problem formulation is given on a generic dynamic, considering the different use cases with
different robot types and the component is designed in a modular way to let each part usable with the
least modification required.

• The information provided by the perception, sensing, and situational awareness components will be
exploited at the previously mentioned three different levels, i.e., centralized planner, distributed planner,
and distributed trackers.

• Safety and security aspects will be considered at the previously mentioned three different levels, i.e.,
centralized planner, distributed planner, and distributed trackers.

• We rely on camera images and a depth sensor of the detector robot. Using a neural network specifically
trained to detect robots in images, we first identify the target robot in the image. Then, using a depth
sensor, we measure the distance to the target robot.

• The distance information, we can estimate the relative position of the target robot in the detector robot’s
frame. This position is then projected into a global frame and shared with the target robot.

1.4 Document Structure

The rest of this deliverable is organized as follows. In Section 2, we review the state-of-the-art approaches
to highlight the contributions of the proposed solution. In Section 3, the rescue operation is discussed in
detail and all the required components are elaborated, including, trajectory planning and tracking component,
collaborative sensor fusion component, sensor malfunction detection unit, network, switching and redundant
components. Consequently, the architecture and algorithm to implement the rescue operation are presented.
The results of the proposed architecture with its components are studied in Section 4. Then, the extension of
this research is considered in Section 5. The potential applicability of the proposed approaches for use cases is
described in Section 6. The concluding remarks are given in Section 7.
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2 Related Work

This section discusses the related works and critically reviews similar approaches for MRS rescue operations.
We also describe the main aspects and algorithms required for MRS coordination and planning in collaborative
applications, towards rescue missions. These are key enablers of MRS capabilities in terms of exploration and
navigation over large areas. We discuss this mainly from the point of view of cooperative multi-robot systems
while focusing on their applicability for rescue missions. The main problems discussed in this section are the
following:

• Communication: This plays a vital role in an MRS due to the need for coordination and information
sharing necessary to carry out collaborative tasks.

• Multi-robot task allocation: distribution of tasks and objectives among the robots (e.g., areas to be
searched, or positions to be occupied to ensure connectivity among the robots and with the base station)

• Path planning and area coverage: global path planning covers area coverage (generation of paths to
entirely analyze a given area) and area partition (dividing the area between multiple robots). Local
planning deals mainly with obstacle and collision avoidance, incorporating robot dynamics.

• Area exploration: coverage and mapping algorithms (or discover/ search for specific objects) in poten-
tially unknown environments.

• Centralized multi-robot planning: decision-making on the actions of multiple robots by either gather-
ing and processing data in a single node, from which decisions are distributed to others, or by achieving
consensus through communication (often requiring agents to be aware of all others, and stable commu-
nication).

• Distributed multi-robot planning: algorithms enabling agents to make independent decisions individu-
ally or in subsets based only on their data or data shared by their neighbours. These do not necessarily
need agents to be aware of the existence or state of all other agents in the system.

Over the past two decades, multiple international projects have been devoted to rescue robotics, often to work
towards MRS solutions and the development of multi-modal sensor fusion algorithms. Some of the projects
focus on the development of complex robotic systems that can be remotely controlled [10]. However, the
majority of the projects consider MRS [11], and other projects consider collaborative robots. An early ap-
proach to the design and development of multi-UAV systems for cooperative activities was presented within
the COMETS project (real-time coordination and control of multiple heterogeneous UAVs [12]. In terms
of human-robot collaboration for rescue operations, one of the first EU-funded projects in rescue robotics,
PeLoTe [13], designed mobile robots for rescue missions and developed a heterogeneous telematic system
for cooperative (human-robot) rescue operations. Other international projects designing and developing au-
tonomous multi-robot systems for rescue operations include the NIFTi EU project (natural human-robot coop-
eration in dynamic environments) [14], ICARUS (unmanned rescue) [11], TRADR (long-term human-robot
teaming for disaster response) [15], or SmokeBot (mobile robots with novel environmental sensors for in-
spection of disaster sites with low visibility) [16]. Other projects, such as CENTAURO (robust mobility and
dexterous manipulation in disaster response by full body telepresence in a centaur-like robot), have focused on
the development of more advanced robots that are not fully autonomous but controlled in realtime [10].

In COMETS, the project aimed to design and implement a distributed control system for cooperative activities
using heterogeneous UAVs. To that end, the project researchers developed a remote-controlled airship and an
autonomous helicopter and worked towards cooperative perception in real-time [17]. In NIFTi, UAVs were
utilized for autonomous navigation and mapping in harsh environments [14]. The focus of the project was
mostly on human-robot interaction and on distributing information to human operators at different layers.
Similarly, in the TRADR project, the focus was on collaborative efforts towards disaster response of both
humans and robots [18], and on MRS planning [15]. In particular, the results of TRARD include a framework
for the integration of UAVs in rescue missions, from path planning to a global 3D point cloud generator [19].
The project continued with the foundation of the German Rescue Robotics Center at Fraunhofer FKIE, where
broader research is conducted, for example, in maritime rescue [20]. In ICARUS, project researchers developed
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mapping tools, middleware software for tactical communications, and a multi-domain robot command and
control station [11]. While these projects focused on the algorithmic aspects of the rescue operation, and on
the design of MRS, in Smokebot the focus was on developing sensors and sensor fusion methods for harsh
environments [21]. A more detailed description of some of these projects, especially those that started before
2017, is available in [22].

In terms of international competition and tournaments, two relevant precedents in autonomous rescue oper-
ations are the European Robotics League (ERL) Emergency Tournament and the RoboCup Rescue League.
In [23], the authors describe the details of what was the world’s first multi-domain (air, land and sea) MRS
rescue competition. A total of 16 international teams competed with tasks including (i) environment recon-
naissance and mapping (merging ground and aerial data), (ii) search for missing workers outside and inside an
old building, and (iii) pipe inspection with localization of leaks (on land and underwater). The RoboCup Res-
cue League, on the other side, was proposed in 1999 [24]. One of the ground robots utilized in the 2020 edition
is described in [25], a full-scale rescue robot with a robot arm equipped with a gripper. Another set of major
events featuring search and rescue robotics is the DARPA challenges. Humanoid robots [26] and human-robot
coordination strategies [27] for rescue operations were presented in the 2013-2015 DARPA Robotics Chal-
lenge. The DARPA Subterranean (SubT) Challenge, running in 2018-2021, has shifted the focus towards
underground MRS for rescue operations, with ground robots and UAVs collaborating in the tasks [28]. This
challenge has demonstrated the versatility and significant increase of flexibility of heterogenous MRS [29],
with robust UAV flight in inherently constrained environments [30], and ground robots able of navigating
complex environments and long-term autonomy [31]. In 2020, due to the Covid-19 pandemic, the challenge
moved to a fully virtual edition with realistic simulation-based environments [32].

2.1 Communication

In multi-agent systems, a mobile ad-hoc network (MANET) is often formed for wireless communication and
routing messages between the robots. Owing to the changing characteristics in terms of wireless transmis-
sion in different physical mediums, different communication technologies are utilized for various types of
robots. An overview of the main MRS communication technologies is available in [33], while a review on
MANET-based communication for rescue operations is available in [34]. Collaborative MRS need to be able
to communicate to keep coordinated but also need to be aware of each other’s position to make the most out
of the shared data [35]. Situated communication refers to wireless communication technologies that enable si-
multaneous data transfer while locating the data source [36]. Ubiquitous wireless technologies such as WiFi
and Bluetooth have been exploited to enable localization [37]. These approaches have been traditionally based
on the received signal strength indicator (RSSI) and the utilization of either Bluetooth beacons in known loca-
tions [38], or radio maps that define the strength of the signal of different access points over a predefined and
surveyed area [39]. More recently, other approaches rely on angle-of-arrival [40], now built-in in Bluetooth 5.1
devices [41]. Ultra-wideband (UWB) technology has emerged as a more accurate and less prone to interfer-
ence alternative to Wi-Fi and Bluetooth [42]. With most existing research relying on fixed UWB transceivers
in known locations [43], recent works also show promising results in mobile positioning systems or collabora-
tive localization [44]. A recent trend has also been to apply deep learning in positioning estimation [45]. From
the point of view of multi-robot coordination, maintaining connectivity between the different agents partici-
pating in a rescue mission is critical. Connectivity maintenance in wireless sensor networks has been a topic
of study for the past two decades [46]. In recent years, it has gained more attention in the fields of MRS with
decentralized approaches [47]. Connectivity maintenance algorithms can be designed coupled with distributed
control in multi-robot systems [48], or collision avoidance [49]. Xiao et al. have recently presented a cooper-
ative multi-agent search algorithm with connectivity maintenance [50]. Similar works aiming at cooperative
search, surveillance or tracking with multi-robot systems focus on optimizing the data paths [51] or fallible
robots [52]. Another recent work in area coverage with connectivity maintenance is available in [53]. A com-
parison of local and global methods for connectivity maintenance of multi-robot networks from Khateri et al.
is available in [54]. In environments with limited connectivity, building and maintaining communication maps
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with information about the coverage and reliability of communication in different areas brings evident ben-
efits. To this end, Amigomi et al. have presented a method for updating communication maps in an online
manner under connectivity constraints [55].

2.2 MRS Task Allocation

Search and rescue operations with MRS involve aspects including collaborative mapping and situational as-
sessment, distributed and cooperative area coverage, or cooperative search. These or other cooperative tasks
involve the distribution of tasks and objectives within the MRS. In a significant part of the existing multi-
robot rescue literature, this is predefined or done in a centralized manner. Here, we discuss instead distributed
multi-robot task allocation algorithms that can be applied to rescue operations. Distributed algorithms have the
general advantage of being more robust in adverse environments against the loss of individual agents or when
communication with the base station is unstable. A comparative study on task allocation algorithms for MRS
exploration was carried out by Faigl et al. in [56], considering five distinct strategies: greedy assignment, it-
erative assignment, Hungarian assignment, multiple travelling salesman assignment, and MinPos. However,
most of these approaches are often centralized from the decision-making point of view, even if they are imple-
mented in a distributed manner. Decentralized task allocation algorithms for autonomous robots are very often
based on market-based approaches and auction mechanisms to achieve consensus among the agents [57]. Both
of these approaches have been extensively studied for the past two decades within the multi-robot and multi-
agent systems communities. An auction-based approach aimed at optimizing a cooperative rescue plan within
MRS rescue systems was proposed by Tang et al. [58]. In this work, the emphasis was also put on the design
of a lightweight algorithm more appropriate for ad-hoc deployment in rescue scenarios. A different approach
where a human supervisor was considered appears in [59]. Liu et al. presented in this work a methodology
for task allocation in heterogeneous MRS-supporting rescue missions. By relying on a supervised system, the
authors show better adaptability to situations with robot failures. The algorithm was tested under a simulation
environment where multiple semiautonomous robots were controlled by a single human operator.

2.3 Path Planning

An essential part of autonomous rescue operations is path planning and area coverage. To this end, multiple
algorithms have been presented for different types of robots or scenarios. Planning in rescue scenarios can
pose additional challenges to well-established planning strategies for autonomous robots. In particular, the
locations of victims trapped under debris or inside cave-like structures might be relatively easy to determine
but significantly complex to access, thus requiring specific planning strategies. In [60], Suarez et al. present
a survey of animal foraging strategies applied to rescue robotics. The main methods that are discussed are
directed search (search space division with memory- and sensory-based search) and persistent search (with
either predefined time limits or constraint optimization for deciding how long to persist on the search). With
specialized robots being used for different scenarios (e.g., tracked robots or crawling robots), the ability of
these robots to traverse different environments might not be known a priori. To address this issue, ML-based
techniques that rely on online learning have been utilized to create cost maps of the environment in terms of
ease of movement. Path planning algorithms can be part of area coverage algorithms or implemented separately
for robots to cover their assigned areas individually. In any case, when area coverage algorithms consider path
planning, it is often from a global point of view, leaving the local planning to the individual agents. A detailed
description of path planning algorithms including approaches of linear programming, control theory, multi-
objective optimization models, probabilistic models, and meta-heuristic models for different types of UAVs is
available in [61]. While some of these algorithms are generic and only take into account the origin and objective
position, together with obstacle positions, others also consider the dynamics of the vehicles and constraints that
these naturally impose in local curvatures, such as Dubin curves. Area coverage and path planning algorithms
take into account mainly the shape of the objective area to be surveyed. Nonetheless, several other variables
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are also considered in more complex algorithms, such as energy consumption, range of communication and
bandwidth, environmental conditions, or the probability of failure. This data is not necessarily available a
priori, and therefore it is also in the interest of the robots to collect data affecting the planning outcome while
operating. The problem of maximizing the utility of data collection is called informative path planning (IPP)
problem [62]. IPP approaches have been shown to outperform more traditional planning algorithms such as
greedy algorithms and genetic algorithms [63]. The specific dynamics and capabilities of the robots being used
can also be utilized to optimize the performance of the area coverage,

2.4 Robot Types

Mobile robots operating on different mediums necessarily have different constraints and a variable number of
degrees of freedom. For local path planning, a key aspect to consider when designing control systems is the
holonomic nature of the robot. In a holonomic robot, the number of controllable degrees of freedom is equal
to the number of degrees of freedom defining the robot’s state. In practice, most robots are non-holonomic,
with some having significant limitations to their local motion. However, quadrotor UAVs, which have gained
considerable momentum owing to their flexibility and relatively simple control, can be considered holonomic.
Ground robots equipped with Omni wheel mechanisms and able to omnidirectional motion can be also con-
sidered holonomic if they operate on favourable surfaces [64]. The main limitations in robot navigation, and
therefore path planning, in different mediums, can be roughly characterized by: (i) dynamic environments and
movement limitations in ground robots; (ii) energy efficiency, situational awareness, and weather conditions in
aerial robots; (iii) under actuation and environmental effects in surface robots, with currents, winds and water
depth constraints; and (iv) localization and communication in underwater robots. Furthermore, these con-
straints increase significantly in rescue operations, with earthquakes aggravating the movement limitations of
UGVs, or fires and smoke preventing normal operation of UAVs. Some emergency scenarios, such as flooded
coastal areas, combine multiple of the above mediums making the deployment of autonomous robots even
more challenging. A key parameter to take into account in autonomous robots, and particularly in UAVs, is
energy consumption.

2.5 Heterogeneous MRS

SYSTEMS: Most existing approaches for MRS exploration or area coverage either assume that all agents share
similar operational capabilities, or that the characteristics of the different agents are known a priori. Emergency
deployments in post-disaster scenarios for the rescue of victims, however, require flexible and adaptive systems.
Therefore, algorithms able to adapt to heterogeneous robots that potentially operate on different mediums and
with different constraints (e.g., UAVs and UGVs collaborating in rescue scenarios) need to be utilized. In this
direction, Mueke et al. presented a system-level approach for distributed control of heterogeneous systems with
applications to rescue scenarios [65]. In general, we see a lack of further research in this area, as most existing
projects and systems involving heterogeneous robots predefine how they are meant to cooperate. From a more
general perspective, an extensive review of control strategies for collaborative area coverage in heterogeneous
MRS was recently presented by Abbasi [4].

2.6 Reserach Questions

Research efforts have mainly focused on the design of individual robots autonomously operating in emergency
scenarios, such as those presented in the European Robotics League Emergency Tournament. Most of the
existing literature on MRS for rescue either relies on an external control centre for route planning and mon-
itoring, on a static base station and predefined patterns for finding objectives or has predefined interactions
between different robotic units. Therefore, there is a big potential to be unlocked through the wider adoption
of distributed MRS. Key advances will require embedding more intelligence in the robots with lightweight
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deep-learning perception models, the design and development of novel distributed control techniques, and a
closer integration of perception and control algorithms. Moreover, heterogeneous MRS have shown significant
benefits when compared to homogeneous systems. In that area, nonetheless, further research needs to focus
on interoperability and ad-hoc deployments of MRS. Based on the different aspects of MRS rescue that have
been described in this survey, both at the system level and from the coordination and perception perspectives,
we have summarized the main research directions where we see the greatest potential. Further development in
these areas is required to advance towards wider adoption of MRS rescue.

2.6.1 Shared Autonomy

With the increasing adoption of MRS for rescue operations over individual and complex robots, the number of
degrees of freedom that can be controlled has risen dramatically. To enable efficient rescue support from these
systems without the need for a large number of rescue personnel controlling or supervising the robots, the
concept of shared autonomy needs to be further explored. The applications of more efficient shared autonomy
and control interfaces are multiple. For instance, groups of UAVs flying in different formation configurations
could provide real-time imagery and other sensor information from a large area after merging the data from
all the units. In that scenario, the rescue personnel controlling the multi-UAV system would only need to
specify the formation configuration and control the whole system as a single UAV would be controlled in
a more traditional setting. While some of the directions towards designing control interfaces for scalable
homogeneous MRS are relatively clear, further research needs to be carried out in terms of conceptualization
and design of interfaces for controlling heterogeneous robots. In these cases, owing to the variability of their
operational capabilities and significant differences in the robot’s dynamics and degrees of freedom, a shared
autonomy strategy is not straightforward.

2.6.2 Operational Environment

Some of the main open research questions and opportunities are the following In the Urban area, we see the
main opportunities and open challenges to be in (i) collaborative localization in GNSS-denied environments;
(ii) collaborative perception of victims from different perspectives; (iii) ability to perform remote triage and
establish a communication link between rescue personnel and victims, or to transport medicines and food;
and (iv) more scalable heterogeneous systems with various sizes of robots (both UGVs and UAVs) capable
of collaborative mapping and monitoring harsh environments or post-disaster scenarios. some of the most
important challenges in Wilderness operations are the potentially remote and unexplored environments posing
challenges to both communication and perception. Therefore, an essential step towards more efficient MRS
operations in Wilderness scenarios is to increase the level of autonomy and the operational time of the robots.
Long-term autonomy and embedded intelligence on the robots for decision-making without human supervision
are some of the key research directions in this area in terms of MRS.

2.6.3 Deep Learning Methods

Deep-learning-based methods are flexible and can be adapted to a wide variety of applications and scenarios.
Good performance, however, comes at the cost of enough training data and an efficient training process that is
carried out offline. Other deep learning methods, particularly deep reinforcement learning (DRL), rely heavily
on simulation environments for converging towards working control policies or stable inference, with training
happening on a trial-and-error basis. Search and rescue robots are meant to be deployed in real scenarios
where the conditions can be more challenging than those of more traditional robots. Therefore, an important
aspect to take into account is the transferability of the models trained in simulation to reality. Recent years
have seen an increasing research interest in closing the gap between simulation and reality in DRL. In the field
of rescue robotics, a relevant example of the utilization of both DL and DRL techniques was presented by
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Sampedro et al. [66]. The authors developed a fully autonomous aerial robot for rescue operations in which
a CNN was trained for target-background segmentation, while reinforcement learning was utilized for vision-
based control methods. Most of the training happened with a Gazebo simulation and ROS, and the method
was tested also in real indoor cluttered environments. In general, and compared with other DL methods, DRL
has the advantage that it can be used to provide an end-to-end model from sensing to actuation, therefore
integrating the perception and control aspects within a single model. Bridging the gap between simulation and
reality is thus another challenge in some of the current rescue robotic systems.

2.6.4 Heterogeneous MRS

Across the different types of rescue missions that have been discussed in this survey, the literature regarding
the utilization of heterogeneous robots has shown the clear benefits of combining either different types of
sensors, different perspectives, or different computational or operational capabilities. Nonetheless, most of
the existing literature assumes that the identity and nature of the robots and how they communicate and share
data are known a priori. Wider adoption and deployment of heterogeneous MRS, therefore, needs research to
advance in the following practice areas: - Interoperability: flexible deployment of a variable type and number
of robots for rescue missions requires the collaborative methods to be designed with wider interoperability
in mind. there is still a lack of interoperability in terms of high-level planning and coordination for specific
missions. In rescue robotics, these include collaborative search and collaborative mapping and perception.
- Ad-hoc systems: closely related to the concept of interoperability in terms of high-level planning, wider
adoption of MRS rescue systems requires these systems to be deployed in an ad-hoc manner, where the type
or number of robots does not need to be predefined. This has been explored, to some extent, in works utilizing
online planning strategies that account for the possibility of malfunctioning or missing robots. - Situational
awareness and awareness of other robots: the wide variety of robots being utilized in rescue missions, and the
different scenarios in which they can be applied, calls for the abstraction and definition of models., denning
these scenarios but also how robots can operate with them. In heterogeneous MRS, distributed high-level
collaborative planning requires robots to understand not only how can they operate in their current environment
and what are the main limitations or constraints, but also the conditions of different robots operating in the same
environment.

2.6.5 Active Perception

We have closed this survey by exploring the literature on active perception for MRS, where we have seen
a clear lack of research within the rescue robotics domain. Current approaches for area coverage in rescue
missions, for instance, mostly consider an a priori partition of the area among the available robots. Dynamic or
online area partitioning algorithms are only considered either in the presence of obstacles or when the number
of robots changes. Most of the works are based on either prior knowledge of the area or otherwise partitioning
the search space in a mostly homogeneous manner. Therefore, there is an evident need for more efficient MRS
Search strategies Active perception can be merged into current MRS rescue in multiple directions: actively
updating and estimating the probabilities of victims’ locations, but also with active SLAM techniques by
identifying the most severely affected areas in post-disaster scenarios. In wilderness and maritime search and
rescue where tracking of the victims might be necessary even after they have been found, active perception
has the potential to significantly decrease the probability of missing a target. In general, we also see the
potential of active perception within the concepts of human-robot and human-swarm cooperation, and in terms
of increasing the awareness that robots have of victims’ conditions. Regarding human-robot and human-swarm
cooperation, active perception can bring important advantages in understanding the actions of rescue personnel
and being able to provide more relevant support during the missions.
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3 Proposed Architecture

In this section, we present the proposed architecture for the rescue operation of robots under various distress
types (e.g., cyber-attack, sensor malfunction), using the components which have been designed in D2.3 Col-
laborative Sensor Fusion and, D2.4 Multi-Robot Monitoring Online Trajectory Generation. We tailor the com-
ponents developed already in WP2 into one integrated scheme taking advantage of the benefits of individual
ones. We, also, aim to design a generic scheme to have applicability for different “RESCUE” actions.

Collaborative sensor fusion is to facilitate the “rescue” of other robots that are affected by sensor malfunction-
ing or any type of cyber-attack. Trajectory planning is performed to keep other robots (s) in the field of view.
Furthermore, a rescue action is performed for the robot malfunctioning. In this architecture, we have foreseen
two roles for robots, namely, detector robot and target robot. Collaborative sensor fusion will be running on
the detector robot to provide real-time detection, monitoring and state estimation of the target robot (the one
which is likely to be malfunctioning). The main output is the estimated states of the target drone.

In summary, there are two factors related to trajectory planning, i.e., a drone is performing a trajectory to keep
other robots in the field of view, and the robot affected by an attack or sensor issue receives a rescue action.

First, these components are briefly summarized and the rescue architecture is presented. It should be noted that
the presented architecture is aimed at drone operations, however, the architecture itself is structured as generic
as possible to be applicable to different robotic operations.

3.1 Collaborative Sensor Fusion

In this section, the collaborative sensor fusion algorithm is briefly summarized. Further details are presented in
D2.3 Collaborative Sensor Fusion report. One of the primary objectives of this project is to robustly estimate
the pose of a robot using its own sensors, but also using position estimates shared by other robots in its vicinity.
More precisely, we will demonstrate the applicability of our algorithms using two robots: a detector robot,
whose goal is to estimate the position of a target robot. Using this position estimation and its own sensors,
the target robot estimates its position robustly. Using the extra information provided by the detector robot,
the target drone can still estimate its state even if one of its positioning sensors were to fail. To estimate the
position of the target robot, we rely on camera images and a depth sensor of the detector robot. Using a neural
network specifically trained to detect robots in images, we first identify the target robot in the image. Then,
using a depth sensor, we measure the distance to the target robot. Leveraging this distance information, we
can then estimate the relative position of the target robot in the detector robot’s frame. This position is then
projected into a global frame and shared with the target robot.

As detailed in the introduction, we apply these algorithms to drones, hence, some of the method subsections
will provide some application-specific details, yet they should translate well to other types of robots. Figure 1
provides an overview of this objective when applied to drones.

The second goal of this task is to provide scene understanding to the robots. To do so, we propose two different
approaches. A classical approach based on scene segmentation. And an object detection-based approach. In
the first one, semantic segmentation, we train a neural network to provide high-level context to the robot. In
this case, we build two different algorithms. One provides information regarding the occupancy of the space in
front of the drone, i.e. it detects obstacles and free space in front of the drone. The other labels image region,
in the case of the drone, we segment the pixels that belong to the ground or a wall for instance. On a rover, this
information could be used to detect unsafe areas, such as avoiding stairs.

In the second one, we apply the same algorithms as the robot detection except, this time, we detect different
obstacles that must be avoided. This has numerous advantages, first, it comes at no extra computational cost,
and the inference time of the object detector does not change that much when the number of detected objects
increases. Hence, adding to it the ability to detect humans or other relevant obstacles is only increasing the
cost of the tracking part which is computationally cheap compared to running a network, and can easily be
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Figure 1: Overview of the sensor fusion task.

threaded. Second, since it can be reduced to a 3D bounding box, this information is lightweight and can easily
be shared across a fleet of robots. This is particularly true when compared to a map. Moreover, when done in a
distributed fashion, the reconstruction of 3D maps is particularly heavy both in terms of computing and for the
network. While the information provided by the object detection is not as rich as a 3D map, it is significantly
lighter, making it better suited to our use cases. Also, as mentioned in the introduction, we consider that an up-
to-date global map already exists and that the only changes that occurred are related to obstacles that can be
identified using object detection.

Unlike the previous scenario example, we apply our obstacle detection algorithms to rovers, to show that our
algorithms are not tied to drones and can easily be deployed on other systems. In fact, all the examples shown
here are running on the same code when it comes to vision-based state estimation.

To perform the detection, we use the smallest version of yolov5, the S version. Unlike the other larger variants
of yolov5, this smaller version has nine convolutional layers with 3×3 kernel layers and six pooling layers with
2× 2 kernel layers. The final output of our network is a tensor of size 13× 13× 30. These modifications make
its memory footprint smaller and significantly reduce its inference time. This makes it ideal for embedded
applications. The drawback is a decrease in accuracy. However, the performance drop remains acceptable
because we only seek to detect drones. Compared to the original algorithm, we only detect a single class,
drones, instead of 80.

The collaborative sensor fusion part has been encapsulated into docker and proven to be reliable working
providing accurate estimation.

3.2 Trajectory Planning

In this section, the trajectory planning algorithm is briefly summarized. Further details are presented in D2.4
Multi-Robot Monitoring Online Trajectory Generation. It is worth noting that the planner algorithm has been
structured to be as generic as possible to be “Plug and Play” to some extent.

The trajectory generation component, preferably running off board, will take the position of the target robot to
generate a trajectory to “RESCUE” it. Therefore, the planner will use the estimated states not measured ones.
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Furthermore, it generates another trajectory for the detector robot to keep the target drone within the field of
view.

From the higher level planner, the waypoints Wi of each robotic agent, for i ∈ {1, ...,K}, are determined and
sent to the lower level decentralized planner, where the trajectory planning for each robot is obtained as the
solution to an optimization problem. It is guaranteed that the robotic agent passes through the corresponding
waypoints. The trajectory planning is mathematically formulated as

xd,T (t) = argmin
xT (t)

J (xT (t)), (1)

subject to

J (xT (t)) = tf (xf , xT (t))− t0,

xT (t0) = x0,

xT (tf ) = xf ,

xT (ti) = Wi,

ẋT (t) = fT (x(t), u(t)),

yT (t) = xT,est(t),

xL ≤ xT (t) ≤ xU ,

uL ≤ u(t) ≤ uU ,

pL ≤ p(t) ≤ pU ,

Rk ≤ ∥x(t)T − xobs,k(t)∥ ,

(2)

where, T represents the target robot, xT (t) is the dynamics state vector, xT,est(t) is the estimated states of
the robot, tf and t0 are final and initial operation times, respectively, xf and x0 are final and initial states,
respectively, u(t) is the control command, t0 ≤ ti ≤ tf , for i ∈ {1, ...,K}, are increasing time sequence,
Wi is the state of the ith waypoint, f(x(t), u(t)) is the dynamics equations governing the motion of the robot,
and y(t) is the measurements vector. XL and XU denote the element-wise lower and upper bound vectors on
the variable vector X(t). Finally, xobs,k(t) and Rk represent the position and safety radius of kth obstacle. In
fact, Rk ≤ ∥x(t)− xobs,k(t)∥ imposes the constraint to keep the state of the robot outside of the safety sphere
around the obstacle.

To solve the optimization (1), there are many approaches, as reviewed in Section 2. However, as we analyzed
the existing works, the main issue with the real-time implementation and fast optimization is the implementa-
tion of the constraints (2). Specifically, the inequality constraints might cause issues in the convergence of the
solver. Accordingly, it is really crucial how we implement the inequality constraints. As discussed later, we
are going to use the Legendre pseudospectral method to transcribe the continuous optimization problem into
an equivalent discrete one. The trajectory is represented by a number of Legendre functions passing through
a number of collocation points. Then, the position of these collocation points is as the optimization variables.
Therefore, the constraints are to be applied to these collocation points.

To apply the obstacle avoidance constraint Rk ≤ ∥xT (t)− xobs,k(t)∥ to the collocation points, the common
condition to be checked is the distance of the points from the obstacle to be greater than the safety radius.

For the target robot, the trajectory planning optimization problem is formulated as

xd,D(t) = argmin
xD(t)

J (xD(t)), (3)

Page 14 Version 1.0
Confidentiality: Public Distribution

30 June 2023



D2.5 Multi-Robot Collaborative Rescue Mission

Algorithm 1 Perception aware MRS trajectory planning and tracking

1: Design xd(t), by optimizing J(t), subject to

• Passing through the waypoints (defined based on the decomposed task),
• Identified dynamics of the robot and estimated states,
• Actuator limit,
• Keeping distance by the estimated obstacle position,
• Retaining in /avoiding from some areas or points (perceptive information),
• Satisfying the safety and security metrics.

2: Design u(t), by taking into account the currently estimated states of the robot and designed xd(t),

subject to

J (xD(t)) = tf (xf , xD(t))− t0,

xD(t0) = x0,

xD(tf ) = xT −Rsaf
xT − xD
∥xT − xD∥

,

ẋD(t) = f(x(t), u(t)),

y(t) = xD(t) + ϵx(t),

p(t) = P (xT (t), xD(t))

xL ≤ xD(t) ≤ xU ,

uL ≤ u(t) ≤ uU ,

pL ≤ p(t) ≤ pU ,

Rsaf ≤ ∥xT − xD∥ ,

(4)

It is worth noting that for the detector drone trajectory planning, it is assumed that no obstacle is obstructing
the target drone from the FoV of the detector drone.

where D represents the detector robot, Rsaf is the safety radius from target robot and p(t) is the perceptive
index governed by the equation P (.). In this formulation, we define p(t) as the field of view of the detector
robot, while we aim to keep the target robot within the field of view. This is achieved by pointing the detector
robot towards the detector robot.

3.3 Sensor Malfunction

In the context of this work, the scope of cyber-attacks or faults is considered as a sensor becoming impaired,
e.g., losing the GPS positioning. Similarly, the scope of the adverse environmental conditions is bounded
to events that may perturb the state estimation of a system, such as entering GPS-denied areas. Building on
recent advances in deep learning, perception algorithms estimate the position of objects in a scene. This can for
instance enable an observer robot to visually estimate the position of the target robot. Sharing this estimation
with the tracked robot could help it recover from a faulty GPS sensor for instance. Likewise, the observer
robot can detect obstacles in the vicinity of the other robot and share its position with it. On the other hand,
online perception-aware trajectory generation considers the close environment information gathered by nearby
robots using the collaborative sensor fusion approach developed in Task 2.3 and the mission goals. Target
robots will be “monitored” by one or more robots, but not all of them. Also, when a cyber-attack or sensor
malfunction affects one or more members of the team, non-attacked robots will generate a rescue trajectory
providing further sensor feedback to the compromised robots and helping them to maintain their operational
and safe state.
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3.4 Triggering and Switching Mechanisms

It is assumed that at the moment the sensor malfunction happens, there already exists a safety component to
detect this malfunction. This, consequently, is announced to either the onboard controller or ground control
station via a flag. in our proposed architecture we presume this detection mechanism is already available.
Accordingly, a mechanism is triggered to switch the measurements from the onboard sensors of the target
robot to the estimated ones from the detector robot. For this purpose, it is required to steer the detector robot to
the vicinity of the target robot and keep it in its field of view. In case the detector robot is far away, it is needed
to have a redundancy procedure to keep the target drone safe, between the moments of the switching. For
example, in the case of drones, we can switch to altitude mode to keep them at their position. This redundancy
component is inevitable and has to be identified for the target robot type. Without loss of generality, in the
proposed architecture we assume that the detector robot has the target robot in its field of view from the
beginning and provides the target robot’s estimated states.

3.5 Rescue Actions

The corresponding rescue actions, given the sensor malfunctioning of the target robot, are usually determined
based on the severity of the issue as well as the nature of the robotic operation. The rescue actions can be
categorized, namely, as

• Continue operation: In this case, even though the malfunctioning has been already identified, the accu-
racy of the estimated states is high, or the operation itself is not that hazardous. Therefore, the target
robot continues its operation using the estimated states provided by the detector robot.

• Holding at its position: In this case, it is not possible to terminate the operation right after the detected
malfunction. Moreover, it is not safe to continue the operation. Therefore, the corresponding action is
to control and hold the target robot in its own position.

• Steering back to Home and land (Return to base): In this case, with the aid of an estimated position, the
target drone is controlled and navigated back to a predefined position (home), and either held there or
immediately lands.

3.6 Rescue Planning Architecture

After the above-mentioned considerations, in this section, we present the proposed rescue planning archi-
tecture, schematically. It should be noted that the main concern of this architecture is the drone operation.
However, it can be readily adopted for a variety of different robot types. The overall architecture is shown in
Figure 2.

In the proposed architecture, there are three main components, i.e., target drone, detector drone, and ground
control station. The collaborative sensor fusion component is running on the detector drone. On the other
hand, the trajectory planning component for both detector and target drones is running on the ground control
station computers for faster computational power.

The communication is on the shared network of these components. Practically, communication happens using
Telemetry. However, to have faster and more reliable communication, the data transfer can be a shared Wi-Fi
network. Regardless of the network architecture, the drones and ground control stations will be communicating
using MAVROS and MAVLink nodes. This is illustrated in Figure 3.

As illustrated in Figure 3, as soon as the sensor malfunction is detected, the flag is sent to the switching
mechanism for the detector drone planning. In this case, the detector drone is sent to the latest position of
the target drone and detects the target drone via the image processing component. Then, the position and way
angle of the detector drone is controlled via the trajectory planning component to keep the target drone within
the field of view (FoV). This is shown in Figure 4. Consequently, the sensor fusion component provides the
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Figure 2: Overall architecture of rescue planning.
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Figure 3: Netwrok for MRS rescue mission.png

estimated position of the target drone to the ground control station. It is worth noting from the malfunction
was detected till the position estimates are provided, a redundancy mechanism is switched to keep the target
drone at its position. However, in our evaluation, without loss of generality, we assume from the beginning of
the operation, even before the malfunction happens, the detector is monitoring the target drone. So, we use the
estimated states of the target drone for its trajectory planning. As soon as the malfunction happens, the ground
control station provides the corresponding rescue actions.

Considering the corresponding rescue actions, we let the generic trajectory planning, as presented in Section
3.2, be applicable and we just switch the final position to the home/base position. Then, the target drone is
held there or landed, as shown in Figure 5. If the immediate landing is requested, the trajectory planning code
is terminated and the drone lands. Furthermore, the operation can be continued if it is requested using the
estimated states.

Figure 4: Detector drone monitoring trajectory planning
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Figure 5: Target drone rescue trajectory planning

In Algorithm 2, the collaborative rescue operation is summarized.

Algorithm 2 MRS Collaborative Rescue Mission
1: Running the sensor malfunction detection unit on the target drone
2: Sending the detection flag to the ground control station.
3: Activating the switching mechanism. in case the detection flag is on.
4: Activating the redundant component on the target drone to keep it at its current position.
5: Recording the latest position of the target drone and commanding it to the detector drone.
6: Planning the trajectory for the detector drone and navigating it to the vicinity of the target drone.
7: Running the image processing unit to detect the target drone.
8: Controlling the detector drone height and yaw angle to keep the target drone within the FoV.
9: Estimating the target drone states using the sensor fusion component.

10: Identifying the corresponding rescue actions.
11: Designing the rescue action, for the target drone, either by change of the final position, landing,

or continuation of the operation.
12: Running trajectory planning for both detector and target drones.
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Figure 6: Message flow for the specific rescue mission.

4 Results and Discussion

In this section, we evaluate the presented architecture with its components in the high-fidelity Gazebo simula-
tions. Here, we have made the following assumptions:

Assumption 1: The individual robot has a private internal state estimator. The sensors used by the robot could
be different with different robot platforms. Their odometry systems share the same global frame.

Assumption 2: If sensors are good, the robot can publish specific odometry topics. If all the sensors are bad
except IMU during specific timeslots, then the robot needs another robot to provide position information.

Assumption 3: If the target robot experiences such failure, we use the detector robot to provide the position of
the target robot, which is calculated by the odometry of the detector robot and inferred relative position from
the detector robot. The position of the target robot is sent by the detector robot and will be fused with the IMU
of the target robot. Abstract message flows for the specific rescue mission are shown in Figure 6.

We test Collaborative Sensor Fusion (CSE) in the gazebo simulation environment. The EKF approach devel-
oped in Task 2.3 is used as an example. When GPS is normal, the target drone outputs the fusion results of
GPS and IMU. When GPS fails, the target drone outputs the fusion result of the observation position and IMU.
The observation position is provided by the detector drone. As shown in Figure 7, we manually disable GPS
during the middle period of the path (60s to 120s) to simulate the trigger signal indicating the abnormal GPS.
At this time, the observation position output by the detector drone is obtained by adding Gaussian noise to the
ground-truth position of the target drone. Two types of Gaussian noise are generated, one is the smaller 10cm,
and the other is the larger 20cm. It can be seen that the trajectory error of the target drone is at cm level when
using high-accuracy GPS. When using the observation position, the trajectory error is at dm level. The in-
crease in error is expected due to the use of low accuracy observation position. We have achieved the goal of
ensuring the position of the target drone without divergence.
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Figure 7: Left: Different views of the aligned trajectories from the CSE module evaluated with different levels of simulated position noise. Right: The
distance error of the aligned trajectories evaluated with different levels of simulated position noise.

Now, the evaluation of the trajectory planner with the docker simulation model, for integration of the sensor
fusion is given here.

In Figures 8, 9 and 10 the simple waypoints navigation is considered. It is obvious that the target drone is
detected by the detector drone. Then, the position of the target drone is controlled and navigated through the
takeoff and waypoints. Moreover, we have the holding command at each point for 3 seconds. This functionality
might be useful for some use cases, e.g., vineyard pesticide spraying.

In Figure 11, simple trajectory planning for normal operation integration with the docker model is illustrated.
As it is obvious, the target drone is navigated between the initial and final points, avoiding the moving obstacle.

Now, the rescue operation is illustrated in Figures 12-15. In Figure 12 and 13 the normal trajectory planning
operation with avoiding the obstacle is started. Then, as shown in Figure 14, the rescue flag is activated and
for the corresponding action, the drone is navigated to the home position. This is achieved by changing the
final point in the trajectory optimization to the home position. Consequently, after the drone reaches the home
position, it is held there and land. It is worth noting that during the rescue operation, obstacle avoidance is also
achieved.
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Figure 8: Waypoint navigation for reaching the takeoff point (green star) and holding.
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Figure 9: First Waypoint (red star) navigation and holding.
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Figure 10: Second Waypoint (red star) navigation and holding.
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Figure 11: Trajectory planning for normal operation with obstacle avoidance.
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Figure 12: Rescue operation; reaching the initial point.
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Figure 13: Rescue operation; starting the normal operation.
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Figure 14: Rescue flag activated and final point has changed.
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Figure 15: Navigation of target drone to the rescue position and holding there.
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5 Future Work

In the next steps of this research, aligning with the SESAME project objectives, we conduct the following steps
to accomplish the aims for autonomous safe navigation of MRS.

• Integration of all components developed in WP2.
• Integration of actual malfunction detection unit with the rescue planning unit.
• Design of reliable switching and redundant mechanisms to use the detector drone for monitoring the

target drone only at the time malfunction happens.
• Integration of ASTC with trajectory optimization to have both planning and tracking components be

executed at the same time, for rescue actions.
• Experimental evaluation of the integrated solution, with potential application on the use cases.

6 Potential Applicability for Use Cases

In this section, the potential applicability of the proposed approaches for different use cases is briefly moti-
vated.

• Use Case 2: Disinfecting Hospital Environments using Robotic Teams: The ground mobile robot can
take advantage of the proposed planners, given the implemented constraints in the algorithm. The
constraints might represent the area the robot is to visit or avoid. More importantly, the presented
results can be directly obtained for the ground robot, as we have fixed the altitude of the drone which
can represent a planar motion similar to the ground robot. Also, the fastest trajectory can lead to fast
disinfection to avoid intervention with other personnel in the hospital environment. More importantly,
whenever, the localization of one robot is compromised the other robot, equipped with a camera, can
accomplish the rescue operation and navigate the compromised robot to the base station.

• Use Case 3: Power Station Inspection using Autonomous Multi-Robot Systems: Here, the obtained
results can be directly used for this use case, as we have evaluated the proposed algorithm on drones.
Furthermore, the initial and final inspection points can be fed into the planning approach to find a safe
trajectory to be followed for autonomous inspection. The rescue operation can be directly applied to
this use case, for safe inspection operation.

• Use Case 4: Autonomous Pest Management in Viticulture: The monitoring drone is to fly over the farm
to detect the plants which need to be sprayed or the locations of obstacles. Therefore, the proposed
rescue algorithm 2 can have a great impact on the safe operation of the multi-drones.

7 Conclusions

This document outlined the components for a collaborative rescue mission for MRS. For the planning part, we
used an online trajectory optimization approach to compute the fastest trajectory, given the initial and final po-
sitions. The collaborative sensor fusion component described a perception, which forms the essential elements
of drone detection, position estimation, and semantic segmentation. The second part detailed sensor fusion,
which is central to collaborative sensor fusion. Using these components, we presented a generic architecture
for the rescue operation of the target drone with the sensor malfunction. All the corresponding rescue actions
were considered. Furthermore, we discussed the required elements in the architecture, such as the switching
mechanism and redundant components. Furthermore, we provided the algorithm and instructions to implement
this architecture. The efficiency of the proposed architecture was investigated and evaluated by high-fidelity
simulations in Gazebo.
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