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Executive Summary

This deliverable reports about the research performed in Task 2.5 of the SESAME project. This work provides
the foundation to endow MRS with collaborative intelligence. We consider the ability to share and compose
experiences of individual robots with other robots as a crucial requirement for collaborative intelligence. We
show in this deliverable that by sharing and composing past experiences in the form of recorded heterogeneous
environmental maps (e.g., obtained by different mapping approaches) one can perform semantic navigation
planning even in the presence of incomplete information or deviations. To this end, we introduce composition
operators to compose heterogeneous experiences and to use them for performing context-aware task planning.
This deliverable relates primarily to two other deliverable, namely D3.4 and D3.2. For the former the FloorPlan
DSL allows to construct maps which can be composed with the approach presented in this work and for the
latter the ExSce management informs the annotation of experiences either by developers or robots themselves.

Demonstration video

An accompanying video that illustrates the results of this deliverable interactively can be found at
https://youtu.be/5UYgm_Uo5pw
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Figure 1: Challenging architectural elements for occupancy grid maps: (a) small floor elevations, (b)
low hanging structures, and (c) walls predominantly made of glass panels

1 Introduction

In applications of mobile robots in large environments, such as warehouses and hospitals, robots use a map
to navigate around the environment. Typically, a single map is created and used by a robot [17, 14], such
that occupancy grid maps [9] are used as a very common representation due to the fact that mobile robot
bases are commonly equipped with a laser scanner. While a single map is often sufficient for navigating
successfully, there are various cases in which a collection of maps is more suitable or feasible to create. A
single-map representation can be challenging in environments with unfavorable architectural elements (such
as those illustrated in Fig. 1), infrequent loop-closure opportunities, or access restrictions; in such cases, it
may be more appropriate to create and use multiple maps, where each map is created with a sensor that is
most appropriate for navigation in a given region. In addition, in the context of multi-robot teams, different
robots may also need to create separate maps — potentially using different sensory modalities — such that it
may be possible to transfer a map collection to other robots so that they can benefit from the available maps
without the need to create their own maps; such knowledge transfer can then be facilitated by collaborative
robot platforms [19]. In both of these cases, the mapping process needs to be split over multiple sessions and
possibly using varying sensing modalities during each mapping session, which could result in a fragmented1

and heterogeneous2 collection of maps.

For the case of homogeneous maps, approaches exist that make it possible to compose fragmented maps so that
a robot can use them for navigation [4]. When considering heterogeneous maps, however, map composition
requires a structured process that makes it possible to specify when such composition is possible, but also to
define concrete rules about how available maps should be composed. The first contribution of this deliverable
is thus a formal representation of the map composition problem and a concrete composition approach based on
a YAML-based domain-specific composition language, which allows performing map composition through a
set of predefined composition operators. The proposed composition technique can act as a bridge component
between (i) a collection of fragmented, heterogeneous, and potentially incomplete3 maps (henceforth referred
to as a diverse collection of maps), and (ii) navigation components that expect a single map of the environment,
in a specific map representation, as shown in Fig. 2.

In certain applications, the collection of heterogeneous maps may include information encoded in a semantic
map, which enables the use of a semantic navigation system [5]. A semantic map usually contains high-level

1Fragmentation refers to the process of creating smaller sub-maps that cover an environment partially.
2Two maps are considered to be heterogeneous if they differ in either the map representation (e.g. an occupancy

grid map and a semantic map) or the set of properties associated with the representation (e.g. the occupancy grid cell
resolution).

3Here, incompleteness refers to partial coverage of the environment by any collection of prior homogeneous maps.
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Map Composition

Preprocess

Convert

Merge

Path Planner

2D Localization

3D LocalizationMap Metadata Files

Collection of Fragmented &
Heterogeneous Map Files

 Section III  Section IV 

Figure 2: Map composition as a bridge between a collection of maps and standard navigation com-
ponents, transforming and fusing map data to be usable by the navigation components.

conceptual knowledge, such as the type of indoor spaces (e.g. corridor or doorway) or forbidden regions where
robot motion is prohibited. The benefit of semantic maps is that they enable a robot to generate and execute
context-aware navigation plans, for instance enforcing speed limits near doorways or triggering robot alerts, in
order to improve its efficiency, robustness, safety, and social acceptability; however, most semantic navigation
systems expect a complete semantic map of the environment, which is a strong requirement that particularly
increases the complexity of robot transfer to new environments. The second contribution of this deliverable is
thus a navigation task planner that maximizes the use of any available semantic information to perform context-
aware navigation, but that falls back to conventional grid-based path planning in the presence of incomplete
semantic maps.

To demonstrate the feasibility of the proposed map composition framework and context-aware navigation
task planner, we present a use case analysis for a KELO ROBILE4 mobile robot platform in a collection of
simulated environments based on the university building of Hochschule Bonn-Rhein-Sieg.5 The analysis of
the composition approach shows how maps can be combined at runtime, while the analysis of the navigation
task planner illustrates how composed maps can be used for flexible, context-aware robot navigation.

4https://www.kelo-robotics.com/products/
5We focus on a conceptual analysis of the proposed components, so we opted for a simulation-based evaluation that

provides greater flexibility with the investigated environments; however, it should be noted that the interfaces of the
simulated robot are close to those of the real KELO ROBILE platform, which simplifies the transfer to the real robot
platform for future studies.
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2 Related Work

The problem of using existing maps to create new maps has been actively studied in the domain of multi-robot
cooperative mapping [1]. Here, individual maps generated by robots belonging to a team are merged to form a
globally consistent map. This process involves two tasks: (i) finding correspondences between a pair of maps
to compute the relative coordinate transform between them, and (ii) using the transform to fuse the data from
the two maps into a single map. As our work allows fragmentation and incompleteness of maps, it cannot be
guaranteed that the maps always overlap and correspondences can be computed; for this reason, we assume
that the transform between the maps is known a-priori and focus on the fusion of map data instead.

Considerable work in the literature focuses on 2D occupancy grid maps. In [3], a Bayesian method is proposed
to fuse two occupancy grid maps using the probabilities associated with the overlapping occupancy map cells;
the maps are assumed to be of the same map resolution and accurately transformed with respect to a global
reference frame before being merged. A solution that relaxes the same map resolution assumption is provided
in [18], while a more general approach that can be used to merge grid maps that differ in their scale and quality
is presented in [8]. Existing work in map fusion is, however, predominantly focused on the fusion of maps
belonging to the same map representation [4], or that the raw sensory data is available to generate the fused
maps. In our work, we do not make an assumption that such data is available, so pre-existing maps are used
for fusion instead. To the best of our knowledge, no work has addressed the challenge of fusing heterogeneous
maps while being flexible and open to extensions for arbitrary map representations.

An early approach in semantic navigation [7] uses a dual-hierarchical model to represent the spatial and con-
ceptual knowledge about an environment to improve human-robot interaction. This model is merged into a
single multi-layered representation in [20] and the conceptual knowledge of indoor spaces is represented us-
ing a hand-crafted OWL-DL ontology. [16] uses a probabilistic ontology and an inference engine that can
handle uncertainty in the grounding of semantic concepts using noisy sensory information. [15] extends the
OpenStreetMap representation to encode robot-specific semantic knowledge about the environment as a graph
representation. In this literature, the focus is on the construction of a semantic map rather than its usage. [12]
addresses both the problem of building semantic maps and using those for navigation. [2] presents a context-
based navigator that uses a simple polygonal semantic map representing indoor spaces. Unlike approaches
that expect complete and fully-specified metric and semantic maps, our work proposes a mechanism to uti-
lize a collection of incomplete semantic maps to maximize the coverage of the environment where a robot can
perform context-aware navigation.
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3 Map Composition

The objective of this work is to define an approach that enables the composition of fragmented and potentially
heterogeneous maps so that a robot can benefit from the map collection in navigation tasks. In this section, we
present a general formalization of the composition problem and define composition operators that make map
composition possible. In the following section, we then discuss how the proposed operators are embedded
in a YAML-based composition language that facilitates runtime map composition, and address the use of a
composed map in conjunction with a context-based task planner in the subsequent section.

3.1 Formal Description

Let R denote a set of map representations (such as an occupancy grid or a semantic map), Mr be the space of
maps of a given map representation r ∈ R, and Pr ∈ P denote a set of property values (e.g. grid resolution
or map origin) associated with a representation r. Then, the ith map having a representation r and a property
value set Pr

i is denoted as6 rmPi
i , while Mr denotes a set of n such prior maps from the same representation

r, but with possibly varying properties Pr
i :

Mr =
{
rmP0

0 , rmP1
1 , · · · , rmPn

n

}
(1)

Here, the term prior denotes that these are maps that have been created either manually or autonomously by
a robot. In contrast, let M̂r denote a set of composed maps that are obtained as a result of map composition,
namely as a result of combining prior maps and potentially other composed maps. Then, X =

⋃
iMri and

X̂ =
⋃

i M̂ri denote a set of all prior and composed maps, respectively, while the power set P = X
⋃
X̂

denotes the complete collection of maps.

We define map composition as the process that generates new maps using the maps in P.

Definition 1. Let m1, ...mk ∈ P be maps. Then, map composition is the process of creating a new joint
map m∗ = ∪k

i=1m̂i, where m̂i is potentially a modified version of map mi.

3.2 Composition Operators

According to Def. 1, the composition of maps is based on various requirements. First of all, composition is
only meaningful if maps are of the same type, which implies that it should be possible to convert a map from
one type to another. Furthermore, composition may also require modifying the properties of a single map, for
instance to change its origin so that it is aligned with that of another map. Finally, given two homogeneous
maps, namely maps that are of the same type and which have compatible properties, the generation of a new
map from the two maps should be possible. We express these requirements through three map operators that
facilitate the composition of maps in P: (i) an operator that preprocesses a map by modifying its properties,
(ii) an operator that converts between map representations, and (iii) an operator that combines two maps into a
single map. The operators are defined below, such that it should be noted that none of them modify the maps
in P directly, but rather use them to generate new maps that can then be added to P and used as a source for
further composition.

3.2.1 Preprocessing

We first define an operator that changes the properties of a map without changing its type:

6For notational simplicity, the redundant superscript r from Pr
i is dropped when used in the expression of a map

instance.
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Definition 2. preprocess : (Mr,Pr) → Mr modifies the property value set of an input map.

Concretely, the preprocess operator takes a map rmPin
in and the desired property values Pr

out of the resulting
map and produces a new map of type in with properties Pr

out:

rmPout
out = preprocess

(
rmPin

in , Pr
out

)
(2)

This operator can be used to perform operations such as down-sampling a point cloud, changing the resolution
of a grid map, and so forth.

3.2.2 Map conversion

The next operator we define converts a map from one type to another type with a set of defined properties, such
that it may be the case that only a subset of the original map is considered during the conversion:

Definition 3. convert : (Mr1 ,R,Pr1 ,Pr2) → Mr2 converts a map from type r1 (or a subset thereof
as specified by a set of properties) to a map of type r2 with given properties.

It should be noted that the conversion between two map representations may, in some cases, be infeasible [1],
so an implementation of convert needs to ensure that the conversion from type r1 to type r2 can indeed be
performed.

As defined above, the operator produces an output map routmPout
out given an input map rinmPin

in , a desired map
representation rout, a set of parameters Srin that select a subset of the input map data during the conversion,
and the desired property values Prout

out in the resulting map:

routmPout
out = convert

(
rinmPin

in , rout, Srin , Prout
out

)
(3)

For instance, when converting a point cloud map to an occupancy grid map, Srin can be used to define a range
of height values of the points to be used during the conversion.

3.2.3 Merge operator

The final operator we define fuses the map data from two different homogeneous maps into a new map that has
the same map representation and property value set as the input maps:

Definition 4. merge : (Mr,Mr) → Mr creates a combined map of type r given two maps of the type r.

Concretely, the merge operator takes as input two maps rmP
in1

and rmP
in2

and produces a map rmP
out:

rmP
out = merge

(
rmP

in1
, rmP

in2

)
(4)

It should be noted that, if two maps m1 and m2 are heterogeneous, they must be homogenized by applying the
preprocess and convert operators before merging.

Using these definitions of map operators, we can amend the definition of map composition as follows:

30 June 2023 Version 1.0
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Definition 5. Map composition is an ordered and sequential application of one or more map operators

(oi : o ∈ {preprocess,convert,merge}, i ∈ N)

on a collection of maps, to generate a new map with some desired map representation and property value
set.
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(a)

D1 D2

D4

R1

C1

D3

R2 R3

(b)

Figure 3: Example of the semantic map representation used in this work. (a) The floor plan of a
sample environment. (b) The semantic map represented as a set of polygons with a unique name and
type. Colors represent the type of space — purple: standard (e.g. room); green: corridor; red: door.

4 Composition Language and Examples

The above section formalizes the composition problem, but does not clarify how we achieve composition in
practice. In this section, we will briefly describe the map representations that we consider in this work, discuss
a YAML-based language for specifying map composition tasks, and present various examples that illustrate
the use of the map composition operators for creating complex maps.

4.1 Map Types

In this work, we use the following map representations to demonstrate the proposed map composition ap-
proach:

2D occupancy grid [6]: Discretizes the space into a 2D cellular grid and stores the probability of each cell
being occupied by some obstacle.

3D point cloud: Stores a set of 3D points representing sub-samples of surfaces of objects in the environment.
Polygonal 2D semantic map: We use a custom representation to include high-level semantic knowledge

about the environment, based on the indoor spaces ontology [13]. The representation partitions the
environment into a set of adjoining, but non-overlapping spaces, as shown in Fig. 3, such that each
space is represented as a 2D polygon that is assigned: (i) a unique name, (ii) an indoor-space type (e.g.
corridor), and (iii) an optional set of attributes (e.g. speed limit).

4.2 Map Metadata

For all prior maps of a particular representation, we use a metadata file corresponding to that representation.
Fig. 4 illustrates the model of a metadata file for an occupancy grid map and shows how this is represented
in a YAML-based file. Irrespective of the map representation, the minimal expected metadata for any map
includes: (i) a unique map name, (ii) the location of a file in which the map data is stored, and (iii) a coordinate
transform that registers the map in a fixed world frame, shared by all prior maps. The transform ensures that
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(a)

occupancy_grid_maps:
room1:

filepath: room1.pgm
transform:
position:
- -26.325
- 33.25
- 0.0

orientation:
- 0.0
- 0.0
- 0.7845

resolution: 0.05
free_thresh: 0.196
occ_thresh: 0.65
negate: false

(b)

Figure 4: The map metadata model. (a) A UML class diagram formalizing the contents of a meta-
data file. Since our semantic map does not require additional attributes, it is modelled using the
MapMetaData base class. (b) An example of a metadata file for 2D occupancy grid maps contain-
ing a single map and expressed using a YAML-based specification.

all map fragments are correctly aligned with each other upon loading the maps and eliminates the need for
performing map alignment, which we do not deal with in this work.

4.3 Recursive Map Composition

To illustrate how the composition operators enable map composition to be performed, we consider an envi-
ronment for which we are given (i) a semantic map of an office, (ii) a point cloud map of a corridor, and (iii)
2D occupancy grid maps of two rooms, such that the objective is to create a 2D occupancy grid map of the
whole environment that a robot can subsequently use for navigation. This composition scenario is illustrated in
Fig. 5. Formally, this complex operation can be broken down into an ordered sequence of operator applications
as expressed below:

roccmP
office = convert

(
rsemmP

office, occ,Ssem,P
)

(5)
roccmP

cor = convert
(
rcloudmP

cor, occ,Scloud,P
)

(6)

roccmP
loc = merge

(
roccmP

office,
roccmP

cor

)
(7)

roccmP
loc = merge

(
roccmP

loc,
roccmP

room1

)
(8)

roccmP
loc = merge

(
roccmP

loc,
roccmP

room2

)
(9)

The result of Equation 9 is then the desired map that contains fused data from the four input maps. To specify
this operator application declaratively, we propose the use of a YAML-based representation, as illustrated in
Fig. 6.

We discuss some details about the concrete implementation of the operators that we used to evaluate the
composition procedure in Section 6.
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corridor_c1 
(point cloud)

office 
(semantic)

Convert

room2 
(occupancy grid)

room1 
(occupancy grid)

Convert

corridor 
(occupancy grid)

office 
(occupancy grid)

Merge localization 
(occupancy grid)

Figure 5: A sample map composition scenario to generate three composed maps (red) using four
diverse prior maps (blue) and performing three parameterized map operations (green).

map_metadata:
occupancy_grid: occupancy_grids.yaml
point_cloud: point_clouds.yaml
semantic: semantic_maps.yaml

composed_maps:
- result_name: office
result_type: occupancy_grid
operation:

- convert:
input_name: office
input_type: semantic
config: {gridResolution: 5cm}

- result_name: corridor
result_type: occupancy_grid
operation:

- convert:
input_name: corridor_c1
input_type: point_cloud
config: {minZ: 0.5m, maxZ: 3.0m}

- result_name: localization
result_type: occupancy_grid
operation:

- merge: [office, corridor, room1, room2]

Figure 6: Map manifest file corresponding to the example shown in Fig. 5, with keywords highlighted
in green. The map_metadata lists the map metadata file paths, and composed_maps contains
definitions for the three composed grid maps. Each definition contains: (i) result map description
(result_name, result_type), (ii) operator type, (iii) input map description (input_name,
input_type), and (iv) optional operation configuration parameters config (Srin , Prout

out ). Since
the merge operator expects homogeneous maps, the map representation of the input maps is inferred
from the result_type.
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5 Context-aware Task Planning

The map composition framework presented above can, in principle, be used as a standalone component with
most navigation systems.7 As described in the previous section, however, one of the map types that we con-
sider is a semantic map, which a robot can use to generate contextually appropriate navigation plans, such
as slowing down near intersections or navigating carefully around doors. While there are various approaches
in the literature that can be used for semantic navigation, existing systems are incapable of exploiting par-
tial semantic information, namely they expect a complete semantic map, which particularly complicates the
portability of semantic navigation systems to new environments. In this section, we describe a navigation task
planner that generates context-aware navigation plans, but that is robust to incomplete semantic maps.

Fig. 7a illustrates a semantic map that partially covers the environment, such that it should be noted that the
incompleteness of a semantic map is, in principle, relative to a given navigation task. For instance, the semantic
map as shown here has all necessary information for solving the navigation task presented in Fig. 7a, but this
is not the case for the task presented in Fig. 7c, where the goal lies outside of the semantic map. Based on
this observation, our proposed task planner prioritizes the use of a semantic map whenever possible, but falls
back to an occupancy grid map whenever semantic information is not available or semantic navigation is not
possible. Similar to other semantic navigation systems [12, 15], the planner relies on a topological graph that
is generated by (a) representing each indoor space from the semantic map as a node and (b) connecting two
adjoint spaces by an edge, as shown in Fig. 7b. A navigation task is then solved in three stages: (i) determining
the start and goal topology nodes by identifying the indoor spaces containing the robot’s and goal poses, (ii)
performing A∗ graph search between the start and goal nodes, and (iii) translating the solution into a context-
aware plan. Such a plan contains a series of spaces that lead to the goal space, and ultimately to the navigation
goal.

There are two cases in which we consider a semantic map to be incomplete for a given navigation task: (i) if
the start or goal pose is not contained inside any semantically mapped space, or (ii) if the A∗ graph search fails
to find a solution. If the semantic map is found to be incomplete, our planner falls back to grid-based global
path planning using an occupancy grid map and generates a global path plan (given as a sequence of poses) as
shown in Fig. 7c.

From Fig. 7a and 7c, it can be seen that a large portion of this path plan overlaps with semantically mapped
spaces and hence it would be beneficial to perform context-aware navigation when traversing through those
spaces. The path plan is thus post-processed to create a hybrid context-aware plan. The post-processing
involves three steps: (i) the semantic map is used to identify the points at which the path plan enters or exits
the semantically mapped regions, (ii) the path plan is split at these points to generate a set of sub-paths that
alternatively overlap with the semantic and non-semantic regions of the environment, and (iii), for each sub-
path that overlaps with the semantic map, the series of spaces traversed by the path are identified and converted
into a context-aware plan. The final hybrid navigation plan contains two types of alternating actions, namely
context-aware navigation (goto), and path following (follow_path). We illustrate the hybrid plan in a
YAML-based format in Fig. 8; this format can be consumed by a context-aware navigation component, such
as [2]8, which we prototypically use in our evaluation.

7Such as the ROS navigation stack: http://wiki.ros.org/navigation or the semantic navigation compo-
nent in [2]

8An implementation of this navigation component can be found at https://github.com/DharminB/cabin_
nav
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(a)

Robot
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Goal
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Figure 7: Planner demonstration with an incomplete semantic map. (a) A planning scenario con-
taining robot and goal positions drawn on top of an occupancy grid map (black pixels represents
occupied cells, the rest are free cells) and overlaid with a partial semantic map (missing some indoor
spaces). (b) Topological representation of the semantic map. (c) For a goal pose outside the semantic
map, a global path plan is computed using the grid map. (d) A post-processed hybrid plan consisting
of a context-aware navigation action through the colored regions until the boundary of the semantic
map, followed by a sub-segment of the global plan to the goal.
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plan:
- action_type: goto
goto_plan:

- R1: Room
- D2: Doorway
- C1: Corridor

goal: {x: -1.74, y: 0.15, theta: 2.81}

- action_type: follow_path
path:

- {x: -1.74, y: 0.15, theta: 2.81}...
- {x: -2.50, y: -1.12, theta: 0.61}

Figure 8: A hybrid navigation plan containing two actions: (i) context-aware navigation up to the
boundary of a semantic map, (ii) path following until the goal, as shown in Fig. 7d.
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6 Evaluation

To investigate the feasibility of the proposed map composition and navigation task planning components, we
present the results of a qualitative evaluation that we performed in a Gazebo environment9, illustrated in Fig. 9a,
using a simulated KELO ROBILE platform; this environment is based on our university building and includes
elements such as those in Fig. 1. For this, we created a diverse collection of 11 prior maps, which are shown
in Fig. 9b; we used GMapping [9] and hdl_graph_slam [11] to generate the fragmented occupancy grid and
point cloud maps, respectively, while a partial semantic map was created manually. In the figure, it can be
observed that none of the three representations used by the prior maps completely cover the environment; they
thus serve as an illustration of the map composition framework and the subsequent partial semantic navigation
plan. In the evaluation, we first analyze the map composition in terms of the prior maps and demonstrate how
they can be composed and used to generate a hybrid navigation plan; we then analyze whether context-aware
navigation has any concrete benefits compared to traditional path following.10

6.1 Map Composition Analysis

To evaluate the quality and suitability of the composed maps for use in standard navigation components, we
used the ROS navigation stack, which requires an occupancy grid map that covers the complete environment. In
the considered use case, while the robots can navigate within individual rooms using the fragments represented
by the prior occupancy grid maps, it is not possible to achieve inter-room navigation that requires traversing the
corridors. For this reason, there is a need for map composition that makes it possible to leverage information
from the other existing representations for populating the missing occupancy information.

We implemented three versions of the map operators to achieve the desired map composition: (i) a point-
cloud-to-occupancy-grid conversion operator, (ii) a semantic-map-to-occupancy-grid conversion operator, and
(iii) a merging operator for occupancy grids. We use the OctoMap toolbox [10] to convert a point cloud to
an occupancy grid map. The conversion from a semantic map to an occupancy grid is similar to [15], such
that it considers the boundaries of areas to be occupied, while everything else is considered to be free space
(including doors). For the merging of occupancy grids, each cell is considered as free, occupied, or unknown,
such that a combined grid (with a size equal to the bounds of the axis-aligned rectangle encompassing both
input maps) is first created and initialized to include only unknown cells; all the cell values from the first input
map are then filled in the combined cellular grid and, finally, the cell values from the second input map are
only filled in the unknown cells of the combined cellular grid.11

To achieve navigation throughout the environment, we composed two maps: (i) a grid map for localization
(shown in Fig. 9c) using the prior occupancy grids for the rooms and doors, and the point cloud maps for the
corridors, and (ii) a grid map for path planning (shown in Fig. 9d), which additionally includes information
obtained from the semantic map. It can be observed that the elevated floor region and the ramp, which are
marked as forbidden regions in the semantic map (red polygons in Fig. 9b) are marked as occupied cells in
the composed grid map that is used for path planning; this prevents generating any undesired path plans that
pass through these regions, thus considering the robot’s safety. The ability to prioritize an occupancy grid map
(in this case the converted semantic map) by simply changing the merge order can also be observed in the top
half of Fig. 9c and 9d. Using the composed maps, we could observe that the robot was able to successfully
navigate in all parts of the environment (where the start and goal locations shown in Fig. 9d represent just one
example); this demonstrates that the proposed composition method can produce maps that are useful for robot
navigation.

9https://github.com/kelo-robotics/robile_gazebo
10An accompanying video that illustrates the results of this section interactively can be found at https://youtu.

be/5UYgm_Uo5pw
11It should be noted that this merging policy prioritizes the first map in the merging order, so changing the order of

maps can generate different results and thus affect the behavior of a robot using a composed map.
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(a) (b) (c) (d)

Figure 9: Map composition results. (a) The simulated environment containing 7 rooms with few
obstacles, 11 doorways, and 4 corridors meeting at a junction. The brown-colored region on the
top left is an elevated region of the floor (as shown in Fig. 1), where the robot is prohibited from
traversing. (b) An overlay of all prior maps consisting of 1 occupancy grid per room, 3 point cloud
maps (pink, yellow and green points), and 1 partial semantic map (blue/red polygons and green lines)
covering only the top half of the environment (including the middle corridors and the junction).
(c) The composed occupancy grid map generated for localization. (d) Visualization of a hybrid
plan where a robot follows the red path until it enters the junction, and then follows the highlighted
semantic spaces until the goal.

6.2 Planning with Incomplete Semantic Maps

To evaluate the proposed navigation task planner and its ability to generate context-aware navigation plans
using partial semantic information, we used the available semantic map along with the composed maps that
were generated in the above composition evaluation. To execute the context-based plans generated by our
planner, we replaced the ROS navigation stack with the semantic navigator proposed in [2], which executes
different behaviors depending on the semantic types of the areas in which a robot is navigating.

Fig. 9d illustrates a navigation task where the robot is located outside the bounds of the semantic map, such
that the corresponding hybrid plan generated by our planner involves path following (illustrated by the red line)
until it enters the semantic map, at which point the robot switches to executing pre-configured motion behaviors
designed for the type of indoor space being traversed (the parts of the plan in which semantic navigation is
performed are illustrated by the blue polygons surrounding the areas). This demonstrates the feasibility of the
proposed task planner for creating context-aware navigation plans and executing them with a suitable semantic
navigation component.
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In addition to investigating the feasibility of executing context-aware plans, we investigated whether context-
aware navigation can lead to any quantifiable benefits for a robot, other than making the robot’s behavior more
suitable for human-centered environments. For this, every motion behavior designed for a specific indoor space
type was configured with a maximum allowed speed as shown in Table 1, such that we analyzed the velocity
profile of the simulated robot to see whether context-aware navigation can produce more efficient execution.
For the follow_path action, a speed limit of 0.5m/s was experimentally chosen to maximize the chances
of passing through narrow doorways.

Table 1: Maximum allowed forward linear velocities when traversing different types of indoor spaces

Indoor space type Max. forward linear velocity (m/s)
Junction 0.5
Corridor 1.0
Doorway 0.2

Standard space (e.g. room) 0.5

Fig. 10a demonstrates the benefit of using context-aware navigation as opposed to pure path following. Here,
it can be observed that the robot produced non-smooth motion when following the path plan until it entered the
semantic map, at which point the semantic motion behaviors are activated; this results in smooth, stable and
predictable robot velocity based on the constraints in Tab. 1. Fig. 10b shows the velocity profile if a planner
is unable to utilize the partial semantic information and simply produces a global path plan to be followed. In
this plot, it can be seen that path following — executed by the ROS navigation stack — results in non-smooth
motion and also takes longer (about 25s) to reach the goal. In particular, it can be seen that the speed limit
imposed to successfully navigate narrow doorways has a negative effect in other non-restrictive spaces, such
as corridors, where higher speeds can be more efficient for navigation.
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Figure 10: Linear velocity profile of robots executing two navigation plans generated for the same
navigation task: (a) the hybrid navigation plan shown in Fig. 9d, and (b) a traditional path plan
generated without using the partial semantic information. Execution of the hybrid plan requires
about 20% less time than a traditional path plan.
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7 Discussion and Conclusions

We presented an approach for generating composed maps using a prior collection of potentially heterogeneous
robot maps. We particularly presented a formal representation of the composition problem in terms of operators
for (i) preprocessing maps, (ii) converting maps from one type into another, and (iii) merging two maps of
the same type; we also discussed how this formal model can be used to define a composition language that
allows map composition tasks to be specified declaratively. Rather than relying on a single map of a specific
map representation, map composition enables standard navigation components to leverage information from
multiple fragmented, heterogeneous, and potentially incomplete maps. The proposed approach can simplify
the mapping process in large environments, particularly in the context of multi-robot teams, as it enables the
creation of multiple smaller, but accurate partial maps of the environment; these can then be merged online to
generate an accurate map covering the complete environment. The use of such smaller maps also allows for
an easier distribution and update of maps, without the need to completely remap a large environment due to
changes in small regions thereof.

This work also considered the use of semantic maps for generating context-aware navigation behaviors, such
that we also presented a context-based navigation task planner that is robust to incomplete semantic maps.
The hybrid plans generated by the planner enable a robot to perform context-based navigation behaviors,
while falling back to traditional path following in regions where semantic information is not available. This
robustness makes it possible to build a partial semantic map, where only a few sub-regions of interest in a
large environment can be semantically mapped to assist the robot during navigation, thereby reducing the
deployment time in new environments.

There are various limitations of this work that should be addressed in follow-up studies. First of all we assumed
that all prior maps have been registered in a common global reference frame, but future work should relax
this assumption by auto-registering the available prior maps. Related to that, in this work, we discussed
and implemented three map operators, but the repertoire of map operators can also be increased to improve
the practical usefulness of the composition framework; for instance, an operator for map registration can
be included so that auto-registration can be performed. With respect to the context-aware navigation, our
work only exploits semantic knowledge about the environment for generating context-based navigation plans;
however, conceptual knowledge about a robot itself can also be included in the planning process, particularly
to identify and avoid indoor spaces that are challenging for a particular robot platform. Finally, the evaluation
in this work was only performed to illustrate the feasibility of the proposed approach; in future work, we would
like to evaluate the context-aware navigation with a real robot platform.
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