

Project Partners: Aero41, ATB, AVL, Bonn-Rhein-Sieg University, Cyprus Civil Defence, Domaine
Kox, FORTH, Fraunhofer IESE, KIOS, KUKA Assembly & Test, Locomotec,
Luxsense, The Open Group, Technology Transfer Systems, University of Hull,
University of Luxembourg, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SESAME Project Partners accept no liability for any error or omission in the same.

© 2023 Copyright in this document remains vested in the SESAME Project Partners.

Project Number 101017258

D4.5 Safety Analysis Concept & Methodology
for EDDI Development

(Final Version)

Version 1.0
5 July 2023

Final

Public Distribution

University of Hull and Fraunhofer IESE

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page ii Version 1.0 5 July 2023

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Aero41

Frédéric Hemmeler

Chemin de Mornex 3

1003 Lausanne

Switzerland

E-mail: frederic.hemmeler@aero41.ch

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

E-mail: scholze@atb-bremen.de

AVL

Martin Weinzerl

Hans-List-Platz 1

8020 Graz

Austria

E-mail: martin.weinzerl@avl.com

Bonn-Rhein-Sieg University

Nico Hochgeschwender

Grantham-Allee 20

53757 Sankt Augustin

Germany

E-mail: nico.hochgeschwender@h-brs.de

Cyprus Civil Defence

Eftychia Stokkou

Cyprus Ministry of Interior

1453 Lefkosia

Cyprus

E-mail: estokkou@cd.moi.gov.cy

Domaine Kox

Corinne Kox

6 Rue des Prés

5561 Remich

Luxembourg

E-mail: corinne@domainekox.lu

FORTH

Sotiris Ioannidis

N Plastira Str 100

70013 Heraklion

Greece

E-mail: sotiris@ics.forth.gr

Fraunhofer IESE

Daniel Schneider

Fraunhofer-Platz 1

67663 Kaiserslautern

Germany

E-mail: daniel.schneider@iese.fraunhofer.de

KIOS

Panayiotis Kolios

1 Panepistimiou Avenue

2109 Aglatzia, Nicosia

Cyprus

E-mail: kolios.panayiotis@ucy.ac.cy

KUKA Assembly & Test

Michael Laackmann

Uhthoffstrasse 1

28757 Bremen

Germany

E-mail: michael.laackmann@kuka.com

Locomotec

Sebastian Blumenthal

Bergiusstrasse 15

86199 Augsburg

Germany

E-mail: blumenthal@locomotec.com

Luxsense

Gilles Rock

85-87 Parc d'Activités

8303 Luxembourg

Luxembourg

E-mail: gilles.rock@luxsense.lu

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

E-mail: s.hansen@opengroup.org

Technology Transfer Systems

Paolo Pedrazzoli

Via Francesco d'Ovidio, 3

20131 Milano

Italy

E-mail: pedrazzoli@ttsnetwork.com

University of Hull

Yiannis Papadopoulos

Cottingham Road

Hull HU6 7TQ

United Kingdom

E-mail: y.i.papadopoulos@hull.ac.uk

University of Luxembourg

Miguel Olivares Mendez

2 Avenue de l'Universite

4365 Esch-sur-Alzette

Luxembourg

E-mail: miguel.olivaresmendez@uni.lu

University of York

Simos Gerasimou & Nicholas Matragkas

Deramore Lane

York YO10 5GH

United Kingdom

E-mail: simos.gerasimou@york.ac.uk

 nicholas.matragkas@york.ac.uk

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Initial outline June 2023

0.2 Added UOH content 12 June 2023

0.3 Distribution to IESE for input and comment 19 June 2023

0.4 Further minor edits 22 June 2023

0.5 Review ready version 26 June 2023

0.6 Update after review feedback 3 July 2023

0.9 Final version for QA 4 July 2023

1.0 Final QA version 5 July 2023

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page iv Version 1.0 5 July 2023

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Overview .. 1

1.2 SESAME Context & Key Challenges ... 2

1.3 Updates since D4.1 .. 3
1.3.1 Response to reviewers ... 3
1.3.2 Summary of updates ... 5

2. The Challenge of Complexity ... 6

2.1 Defining the Problem .. 6
2.1.1 Definitions and general safety engineering approaches .. 6
2.1.2 Classical safety analysis techniques .. 8

2.2 State of the Art: Model-based Safety Analysis ... 12
2.2.1 Compositional safety analysis approaches .. 14
2.2.2 Behavioural simulation safety analysis approaches .. 35
2.2.3 Allocation of safety requirements ... 44
2.2.4 Safety argumentation .. 49
2.2.5 Digital Dependability Identities: a comprehensive approach to model-based safety 57

2.3 Safety Analysis in SESAME ... 59
2.3.1 Application of MBSA at design time .. 59
2.3.2 Generation of runtime artefacts ... 60

3. The Challenge of Intelligence ... 62

3.1 Defining the Problem .. 62

3.2 State of the Art: Safety of Machine Learning .. 64
3.2.1 Maribou ... 66
3.2.2 ReAsDL .. 67
3.2.3 SafeML ... 69
3.2.4 Explainability of ML ... 74

3.3 Safety of Machine Learning in SESAME ... 80

4. The Challenge of Autonomy and Openness .. 83

4.1 Defining the Problem .. 83

4.2 State of the Art: Safety of Multi-Agent Systems at Runtime ... 85
4.2.1 Runtime Fault Diagnosis ... 85
4.2.2 Dynamic Risk Assessment .. 90
4.2.3 Dynamic Safety Concepts: Conditional Safety Certificates .. 93
4.2.4 Model repair .. 103

5. The EDDI Concept .. 107

5.1 Overall EDDI Architecture ... 107
5.1.2 EDDI Creation and Deployment ... 111

5.2 The Open Dependability Exchange metamodel ... 113
5.2.1 Events and Actions ... 114
5.2.2 ConSerts .. 115
5.2.3 Dynamic safety analysis.. 115
5.2.4 Security Analysis .. 116
5.2.5 Dynamic Risk Assessment .. 116

5.3 Safety & Security ... 116

5.4 EDDIs at Design Time... 117
5.4.1 Initial HARA ... 117
5.4.2 Model-based Dependability Analysis ... 118

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page v

Confidentiality: Public Distribution

5.4.3 Generation and analysis of failure models .. 120
5.4.4 Moving towards dynamic models ... 122
5.4.5 Fault Diagnosis ... 123

5.5 EDDIs at Runtime ... 125
5.5.1 Events, Actions, and State-Sensitive Fault Trees .. 125
5.5.2 ConSert-based EDDI .. 129

6. The EDDI Methodology .. 132

6.1 Overall Methodology ... 132
6.1.1 Hazard Analysis and Risk Assessment ... 135
6.1.2 Safety Requirements ... 136
6.1.3 Qualitative safety/security analysis ... 136
6.1.4 Requirements Decomposition ... 137
6.1.5 Quantitative safety analysis .. 137
6.1.6 Testing & Verification .. 138
6.1.7 Certification & Assurance Cases .. 138
6.1.8 Preparation for Runtime .. 138

6.2 High-Level Example .. 139
6.2.1 System Definition ... 139
6.2.2 Hazard Analysis & Risk Assessment .. 141
6.2.3 Safety Requirements ... 143
6.2.4 Qualitative Safety Analysis ... 143
6.2.5 Requirements Decomposition ... 146
6.2.6 Quantitative Safety Analysis & Security Analysis.. 147
6.2.7 Testing & Verification .. 148
6.2.8 Certification & Assurance Cases .. 149
6.2.9 Preparation for Runtime .. 149
6.2.10 Runtime Execution .. 152

7. Conclusions .. 153

References.. 155

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page vi Version 1.0 5 July 2023

Confidentiality: Public Distribution

TABLE OF FIGURES

Figure 1 - Example fault tree .. 10
Figure 2 - A simple example state machine .. 11
Figure 3 - Example Markov model ... 11
Figure 4 - Example Bayesian Network (from [10]) .. 12
Figure 5 - Example RTN graph (from [15]) ... 15
Figure 6 - Example CFT (from [16]) .. 18
Figure 7 - Example GHCFT (from [18]) .. 19
Figure 8 - SEFT notation (from [19]) ... 21
Figure 9 - Example of a HiP-HOPS component failure annotation .. 25
Figure 10 - HiP-HOPS synthesis phase .. 26
Figure 11 - Example system ... 27
Figure 12 - Example synthesised fault tree ... 28
Figure 13 - HiP-HOPS FTA results .. 30
Figure 14 - FMEA generation in HiP-HOPS .. 31
Figure 15 - HARA in safeTbox .. 32
Figure 16 - Generating CFTs from an annotated system architecture in safeTbox ... 33
Figure 17 - Results of a Component FTA in safeTbox (from https://www.safetbox.de/blog) .. 33
Figure 18 - Dymodia ... 34
Figure 19 - xSAP methodology (from the xSAP manual) .. 41
Figure 20 - Example SAML model (from [40]) ... 43
Figure 21 - Inheritance and allocation of safety requirements throughout development .. 46
Figure 22 - Example system for ASIL allocation ... 47
Figure 23 - Fault tree for ASIL allocation .. 48
Figure 24 - GSN Elements (from [48]) ... 51
Figure 25 - Example GSN argument structure (from [49]) ... 51
Figure 26 - The CAE 'Helping Hand'.. 53
Figure 27 - SACM elements (from [48]) .. 54
Figure 28 - Overall SACM metamodel ... 54
Figure 29 - Process of automatically generating safety arguments (from [58]) .. 56
Figure 30 - Composition of DDIs ... 57
Figure 31 - Illustrative DDI for a dependability assurance case ... 58
Figure 32 - An example neural network (from [64]) .. 63
Figure 33 - An adversarial example leading to a misclassification... 64
Figure 34 - Components of the Maribou tool (from [63]) .. 67
Figure 35 - R-separation (from [70]) .. 68
Figure 36 - SafeML concept ... 69
Figure 37 - Overlap between classes (from [78]) ... 70
Figure 38 - Example SafeML ECDF distance measures .. 71
Figure 39 - The SafeML process .. 72
Figure 40 - LIME example (from [83]) .. 75
Figure 41 - An example of how LIME works ... 76
Figure 42 - An example of how SMILE works .. 77
Figure 43 - SMILE flowchart for explaining image-based classification or regression ... 78
Figure 44 - SMILE flowchart for explaining text-based classification or regression ... 79
Figure 45 - SMILE block diagram for explaining graph neural networks‘ decisions ... 80
Figure 46 - Dynamic Risk Assessment Conceptual Overview [111] .. 91
Figure 47 - ConSert Composition Conceptual Overview ... 94
Figure 48 - Relation between safety concept and ConSert for an open adaptive system .. 95
Figure 49 - ConSerts Metamodel .. 96
Figure 50 - Safety Domain Model .. 98
Figure 51 - Classification of functional service types of open adaptive systems .. 99
Figure 52 - Engineering activities and the Safety Domain Model (SDM) .. 100
Figure 53 - Platooning safety concept .. 102
Figure 54 - Left: Platoon variant analysis, Right: Modular Platoon Safety Concept .. 102
Figure 55 - Platooning runtime DDIs and ConSerts for leader and follower trucks ... 103
Figure 56 - Abnormality detection and response (from [129]) ... 104
Figure 57 - Recommended repair of an erroneous fault tree... 106

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page vii

Confidentiality: Public Distribution

Figure 58 - The basic Executable Digital Dependability Identity architecture ... 108
Figure 59 - The Event/Action cycle .. 115
Figure 60 - Example system model for design time EDDI ... 118
Figure 61 - Fault tree for H2: UV overexposure ... 121
Figure 62 - State machine for the example (failure states are in red, nominal states in green) 122
Figure 63 - Modified fault tree for diagnosis .. 124
Figure 64 - More complex state machine with runtime actions .. 127
Figure 65 - Example ConSert for the runtime EDDI example ... 129
Figure 66 - V model for the design-time safety lifecycle ... 133
Figure 67 - Joint Safety & Security framework .. 134
Figure 68 - Vasilikos Power Station incident ... 140
Figure 69 - KIOS drone system model (GCS and drone at top, then drone subsystems below) 144
Figure 70 - Example fault tree for a drone .. 146
Figure 71 - SIL Decomposition in a nutshell .. 147
Figure 72 - A simplified Markov model of a hexacopter with identical rotors and PNPNPN configuration. 148
Figure 73 - An overview of the FT framework with symptoms and ML-related functions added 150
Figure 74 - Basic Events in a fault tree and their connection to failure symptoms ... 150
Figure 75 - High-level strategic ConSert .. 151
Figure 76 - Lower-level operational ConSert ... 151

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page viii Version 1.0 5 July 2023

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This deliverable describes the proposed safety analysis concept and accompanying

methodology to be defined in the SESAME project. Three overarching challenges to the

development of safe and secure multi-robot systems are identified — complexity,

intelligence, and openness — and in each case, we review state-of-the-art techniques

that can be used to address them and explain how we intend to integrate them as part of

the key SESAME safety and security concept, the EDDI.

The challenge of complexity is largely addressed by means of compositional model-

based safety analysis techniques that can break down the complexity into more

manageable parts. This applies both to scale — modelling systems hierarchically and

embedding local failure logic at the component-level — and to tasks, where different

safety-related tasks (including not just analysis but also requirements allocation and

assurance case generation) can be handled by the same set of models. All of this can be

combined with the existing DDI concept to create models — EDDIs — that store all of

the necessary information to support a gamut of design-time safety processes.

Against the challenge of intelligence, we propose a pair of techniques: SafeML for

estimating the confidence of a given classification, which can be used as a form of

reliability measure, and SMILE for explainability purposes. By enabling us to measure

and explain the reliability of ML decision making, we can integrate ML behaviour as

part of a wider system safety model, e.g. as one input into a fault tree or Bayesian

network. In addition to providing valuable feedback during training, testing, and

verification, this allows the EDDI to perform runtime safety monitoring of ML

components.

The EDDI itself is therefore our primary solution to the challenge of openness. Using

the ConSert approach as a foundation, EDDIs can be made to operate cooperatively as

part of a distributed system, issuing and receiving guarantees on the basis of their

internal executable safety models to collectively achieve tasks in a safe and secure

manner.

Finally, a methodology is defined to show how the relevant techniques can be applied as

part of the EDDI concept throughout the safety development lifecycle. A high-level

example based on one of the project use cases serves as an illustrative walkthrough of

the EDDI methodology.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page ix

Confidentiality: Public Distribution

LIST OF ABBREVIATIONS

AADL Architecture Analysis & Description Language

ADL Architecture Description Language

AI Artificial Intelligence

ALARP As Low As Reasonably Possible

ASIL Automotive Safety Integrity Level

BE Basic Event (i.e., root cause of a fault tree)

CAE Claims, Arguments, Evidence framework

CCA Common Cause Analysis

CCF Common Cause Failure

CFT Component Fault Tree

CMC Component Markov Chain

CNN Convolutional Neural Network

DAL Design Assurance Level

DDI Digital Dependability Identity

DFT Dynamic Fault Tree

DL Deep Learning

DNN Deep Neural Network

DRA Dynamic Risk Assessment

DSPN Deterministic Stochastic Petri Net

ECDF Empirical Cumulative Distribution Function

EDDI Executable Digital Dependability Identity

FMEA Failure Modes & Effects Analysis

FPTA Failure Propagation & Transformation Analysis

FPTC Failure Propagation & Transformation Calculus

FSAP/NuSMV Formal Safety Analysis Platform for NuSMV

FTA Fault Tree Analysis

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page x Version 1.0 5 July 2023

Confidentiality: Public Distribution

GHCFT Generalised Hybrid Component Fault Tree

GSN Goal Structuring Notation

HARA
Hazard Analysis & Risk Assessment (or Hazard And

Risk Analysis)

HAZOP Hazard & Operability Study

HiP-HOPS
Hierarchically performed Hazard Origin & Propagation

Studies

LIME Local Interpretable Model-agnostic Explanations

MAS Multi-Agent System

MBSA Model-based Safety Analysis

ML Machine Learning

MRS Multi-Robot System

MTTF
Mean Time To Failure (also, MTBF: Mean Time Before

Failure)

MTTR Mean time to repair

NN Neural Network

OAS Open Adaptive System

ODE Open Dependability Exchange

OOD Out of Distribution

PRA Probabilistic Risk Assessment (or Analysis)

QM Quality Management only (cf. ASIL)

RTN Real-Time Network

SACM Structured Assurance Case Metamodel

SAML Safety Analysis Modelling Language

SDM Safety Domain Model

SEFT State/Event Fault Tree

SIL Safety Integrity Level

SINADRA Situation-Aware Dynamic Risk Assessment

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page xi

Confidentiality: Public Distribution

SMILE
Statistical Model-agnostic Interpretability with Local

Explanations

TARA Threat Analysis & Risk Assessment

TFPG Timed Failure Propagation Graph

UAS
Unmanned Aircraft/Airborne System (also, UAV:

Unmanned Aerial Vehicle)

XAI Explainable AI

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OVERVIEW

Invisible to the majority of people, a crucial yet never-ending race is constantly being

run. With every year that passes, society benefits from new devices, new technologies,

and improved systems. At the same time, their expectations of those systems become

increasingly stringent even as they become more and more advanced.

One of the most vital expectations is that of safety. Society as a whole is generally more

safety-aware and risk-averse than ever before, both in terms of risk to human life and

risk to the wider environment. And yet to fulfil that expectation and ensure modern

systems remain safe means it is impossible for the field of safety engineering to stand

still: it is forever racing to keep up with new technologies and ever-increasing

complexity. Electronics and computer-based systems, in particular, pose difficulties for

traditional safety analysis approaches.

To compound the issue further, safety-critical systems — those whose failure may cause

harm to people, property, or the environment — are increasingly pervasive as we

incorporate more and more technology into our daily lives. With additional exposure

comes additional risk, and high-profile disasters like the Fukushima Daiichi nuclear

accident means that safety is in the public consciousness, making it a forefront design

consideration and not an afterthought.

To this end, various new safety standards have been introduced in recent years that

impose stricter requirements and stringent methodologies. Standards like ISO 26262
1

(for automotive safety), ARP4754-A
2
 (for the aerospace sector), and IEC 61508

3
 (for

general safety-related systems) define processes in which dependability — which

encompasses not just safety, but related characteristics such as reliability,

maintainability, and security — is a key design objective to be considered right through

the design lifecycle, from the initial concept to implementation to deployment and even

during operation. Similar methodological standards also exist in other fields, e.g. the rail

and process industries, and designers of safety-critical systems must also take into

account other related standards, like ISO 15858
4
 (regulating exposure of UV-C light).

Nor is regulation static; new standards are regularly introduced to deal with new

technologies and new concerns, such as ISO 21448
5
 (an extension of ISO 26262 with a

specific focus on functional insufficiencies and unsafe nominal behaviour) or the

increasing focus on regulating unmanned aircraft systems (UAS), as evidenced by

recent EU regulations
6
.

However, creating a standard is one thing but knowing how to implement it is quite

another. The introduction of ISO 26262, for example, led to something of a scramble as

automotive companies were forced to find or create new models, tools, and techniques

to meet the standard‘s requirements. Traditional methods of safety analysis are

1
 https://www.iso.org/standard/68383.html

2
 https://www.sae.org/standards/content/arp4754a/

3
 https://webstore.iec.ch/publication/5515

4
 https://www.iso.org/standard/55553.html

5
 https://www.iso.org/standard/70939.html

6
 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R0945 ; https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX%3A32019R0947

https://www.iso.org/standard/68383.html
https://www.sae.org/standards/content/arp4754a/
https://webstore.iec.ch/publication/5515&preview=1
https://www.iso.org/standard/55553.html
https://www.iso.org/standard/70939.html
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R0945
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R0947
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R0947

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 2 Version 1.0 5 July 2023

Confidentiality: Public Distribution

intensive, largely manual processes and as such are insufficient to handle the demands

of assessing modern safety-critical systems, which may be orders of magnitude more

complex than those they were intended to deal with. The Space Shuttle‘s flight

computer software, for example, consisted of around 400,000 lines of code
7
; by

contrast, the Boeing 787 avionics consist of 6.5 million lines of code and even a modern

passenger car may have upwards of 20 million in its navigation system alone
8
.

Techniques that were applicable to the design of something even as complex as the

Space Shuttle in the 1970-80s are simply not equipped to deal with much more

widespread technologies of the 2020s.

To address this, efforts in the field of safety engineering have focused on introducing

new computer-aided tools and new, more holistic approaches. In particular, model-

based safety analysis or MBSA [1] is an attempt to address the problem of keeping

dependability data in sync with an evolving design concept by sharing a common set of

models. System models are extended with safety-related information such as failure

data, and as the design model gets updated, so does the safety model. These models can

then be subjected to common analysis techniques semi-automatically, making it

possible to repeat the analysis as many times as necessary rather than relying on a

single, intensive — and often largely manual — analysis at the end, when it is too late

to make any significant changes to the design in response to any problems identified. In

this way, MBSA allows dependability to be considered as part of an iterative process

throughout the design lifecycle.

But even MBSA is not immune to the march of time and technology. Modern systems

are increasingly dynamic, complex, and distributed. Artificial intelligence (AI) —

particularly machine learning (ML) — plays an ever-more important role. Entirely new

fields, like UAS or self-driving vehicles, present both practical, regulatory, and even

ethical questions.

And safety engineering approaches like MBSA must continue to evolve to keep pace.

1.2 SESAME CONTEXT & KEY CHALLENGES

The context introduced by the SESAME project — with its emphasis on multi-robot

systems (MRS) — highlights several of the major challenges of modern safety

engineering. While robots are not a new invention in themselves, the way they operate

in increasingly interconnected, adaptive, and AI-driven ways poses distinct difficulties

when carrying out a comprehensive safety analysis. Conversely, UAS like multirotor

drones are a relatively new invention, and sufficiently different from manned aerial

systems to demand a novel approach — especially when multiple units are operating

together as part of a cohesive whole.

One of the most perplexing difficulties facing safety engineers is the fact that only a

portion of such systems is known at design time. When a system can learn and adapt

during its operational lifetime, or when a system adapts its behaviour dynamically (and

autonomously) at runtime in response to its environment or to cooperate with other

systems, a simple, static, design-time analysis is no longer sufficient by itself. In

addition, such systems need to understand the environmental context in a more

7
 https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlecomputers.html

8
 https://spectrum.ieee.org/this-car-runs-on-code

https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlecomputers.html
https://spectrum.ieee.org/this-car-runs-on-code

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 3

Confidentiality: Public Distribution

sophisticated way to come to safe and efficient adaptation decisions. That extends the

required scope of the safety analysis beyond simple internal failure propagation to

include interaction between the system and its environment, particularly in the case of

safety issues that originate from the dynamic environment rather than the system itself.

These challenges can be broadly separated into three main categories:

 Complexity of dynamic systems in a dynamic environment

 Intelligence of systems driven by AI & machine learning

 Autonomy and unpredictability of open & distributed systems

One of the goals of the SESAME project is to develop a concept, methodology, and

supporting tools to address these challenges. Central to this aim is the idea of an

Executable Digital Dependability Identity (EDDI), which is synthesised as part of a

design-time analysis but which operates alongside the host system at runtime to monitor

and respond to potential failures in real time.

This deliverable will describe each challenge, the state of the art in each case, and how

the proposed approach in SESAME aims to address them in Sections 2–4. The various

concepts and techniques are brought together to form an overarching methodology in

Section 5 and in Section 6 we present our concluding remarks and discuss the work

ahead.

1.3 UPDATES SINCE D4.1

1.3.1 Response to reviewers

As D4.5 is the 'final' version of the interim deliverable D4.1, we wished to address the

valuable feedback received during the M18 midterm review, which focused on the

following issues. We have tried to address this feedback wherever possible in this new

version of the deliverable. Our rationale is also provided below.

1. The final version is requested to also address physical robot safety.

 Robots are physically things with volume and mass. Physical hazards

that may indeed arise accidentally or as a result of malicious action.

These are captured in HARA (Hazard Analysis and Risk Assessment)

that forms part of the proposed methodology and should steer the design

of safety monitoring mechanisms, e.g. to prevent robot collisions or to

detect unexpected objects that raise safety concerns.

 Most other safety analysis processes also focus on physical hardware

faults and in many cases such faults are the only source of quantitative

failure data like failure rates and repair rates, which is used to estimate

probability of system failure. Software failures, while also included, are

generally harder to quantify and harder to detect. More examples have

been provided throughout sections 5 & 6 featuring hardware failures as

part of the EDDI analysis process, some of which may also arise as a

result of physical security attacks.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 4 Version 1.0 5 July 2023

Confidentiality: Public Distribution

2. Robot multiplicity shall also be addressed.

 Robot multiplicity is one of the key challenges addressed by the EDDI

framework — that of openness. However, design time analyses such as

those covered in WP4 can only work with information that is available at

the point of analysis and therefore cannot fully anticipate the type of

environments or MRS composition that might be encountered at runtime.

 It is for this reason that the EDDI concept includes a runtime aspect, so

that factors that cannot be fully analysed a priori — including dynamic

adaptations, changing environmental conditions, or the dynamic

composition and behaviour of the wider MRS — can be taken into

account by assessing dependability in real time.

 WP4 primarily covers the design-time side of the EDDI, while the

runtime aspects that better address robot multiplicity are covered in

WP7. Sections 5 & 6 also describe how the overall EDDI concept

includes runtime components capable of dealing with the complexities of

MRS, such as ConSerts (see also Section 4.2.3).

3. The deliverables could be more concise in future.

 Although we could have rewritten this report to omit or summarise much

of the information contained in the interim version (D4.1), it was decided

that it was better for the report to stand on its own, particularly as public

deliverables of projects can serve as useful resources to those outside of

the project.

4. Can scalability be addressed solely through composition?

 Modularity and composition of models is a technique used in many

scientific contexts (design, simulation, verification) to deal with

increasing scale and complexity of systems. In SESAME we use

hierarchical composition where possible to enable synthesis of systems

models from subsystem models. We also use heterarchical collaborative

resolution of safety in a system of systems like an MRS by enabling the

collaboration between EDDIs which are model-based safety monitors.

We do the latter precisely to capture unpredictabilities that cannot be

anticipated at design time, as well as to enable a non-monolithic system

in which every robot can pursue and satisfy its own safety goals using

local evidence and guarantees given by other robots.

 Various tools and techniques make use of such modularity, collaboration

and composition of models as described in section 2.2.1. However, we

do not claim that exploiting modularity in these ways is a complete

solution, let alone the sole solution. We do argue that it provides a

significant advantage and fits particularly well with MRS, which are

distributed by nature and consist of multiple robotic agents acting in

concert.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 5

Confidentiality: Public Distribution

5. Present concrete use cases.

 To help better illustrate the EDDI concept, two new examples based on

the Locomotec use case have been provided in section 5. An additional,

more detailed example based on the Cyprus Civil Defence/KIOS use

case serves as a illustrative, high-level walkthrough of the EDDI

methodology in section 6.2. This case study example is then continued in

D4.6 Tools for Automated Safety Analysis, which goes into more

detail on the application of tools. Finally, D7.3 Runtime Safety &

Security Concept (EDDI-based MAS and Communication) then

continues by describing the use of runtime tools and techniques within

this same use case. Further application and evaluation of the EDDI

approach to the use cases will be available in the use case evaluation

reports.

1.3.2 Summary of updates

As a 'final' version of an earlier deliverable, D4.5 uses the earlier document as a base to

build upon. Changes from D4.1 are as follows:

 The previous subsection 4.3 (EDDI Concept) has been expanded into a full

section (section 5) with greater detail, including conceptual examples of design-

time and runtime EDDIs.

 The original section on the ODE (2.2.5.1) has been moved to form part of

section 5. Rather than discuss the original (pre-SESAME) form of the ODE, it

now concisely summarises the changes made in SESAME (see also D4.2/D5.2)

for context.

 The previous section 5 (Methodology) has been moved to section 6 and updated

with references to the safety/security co-engineering process (see also D4.3).

 A new high-level example based on the KIOS/CCD power station inspection use

case has been added to illustrate the methodology (section 6.2). This acts as

useful walkthrough of the processes involved in creating, using, and executing

an EDDI.

 An appendectomy has been performed. The old section 8 from D4.1, which

covered initial investigations into the use cases, is replaced by the new

KIOS/CCD example.

 Minor updates throughout to reflect work done as of M30 (D4.5) rather than

planned as of M12 (D4.1).

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 6 Version 1.0 5 July 2023

Confidentiality: Public Distribution

2. THE CHALLENGE OF COMPLEXITY

2.1 DEFINING THE PROBLEM

While few would argue with the claim that modern safety-critical systems are more

complex than ever, complexity comes in many forms. A system may be complex due to

sheer scale — either physically, or when it includes a large amount of software (or

both). Alternatively, a system may be complex due to its dynamic behaviour: a system

with different behaviour in many different states can be challenging even if its scale is

relatively modest. And as will be discussed later, a system may also be complex due to

AI-driven operation, a distributed nature, or adaptation at runtime.

This section will address the first two specifically: complexity of scale and complexity

of state.

2.1.1 Definitions and general safety engineering approaches

Before delving deeper into the discussion, it is useful to define some common terms:

 Safety is the property of a system to avoid causing harm to people, property, or

the environment. A safety-critical system is therefore one that has potential to

cause harm if it fails. Note that safety is seldom absolute; it is unlikely for a

system to ever be 100% safe.

 Distinct from safety, reliability is the property of a system to continue

functioning as intended under stated conditions over a given period. An

unreliable system is not necessarily unsafe as long as its failure poses no danger

to people, property, or the environment.

 Dependability is an umbrella term encompassing safety, reliability, and related

characteristics, including availability, maintainability, and security. In this report

it primarily implies safety and reliability together.

 Risk describes the possibility of an adverse event, including one that has

consequences for safety. In safety engineering, risk is typically defined as a

combination of the severity of the consequences and the likelihood (i.e.,

probability) of the event occurring. Again, zero risk is typically impractical;

instead the target is often to achieve a risk that is ―as low as reasonably

practicable‖ [2] (or ALARP, though other comparable acronyms also exist).

 A hazard is a condition, situation, or possible event that leads to an undesirable

outcome. In a safety-critical context, a hazard is typically a potential source of

harm caused by a failure or similar occurrence.

 Faults, failures, and errors are all related terms treated slightly differently by

different sources. In general, a fault is an abnormal condition that can lead a

system or component to fail, i.e., to stop functioning correctly. A failure mode

is one possible manifestation of the way a system element can fail (and for the

purposes of this report is synonymous with a failure). An error is typically a

deviation between an intended value or condition and the actual value or

condition. In summary, a fault causes a failure which leads to an error.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 7

Confidentiality: Public Distribution

 A safety goal is a high-level requirement intended to address the risk of one or

more hazards (whether by avoiding it, reducing the likelihood, or mitigating the

effects). They may be decomposed into lower-level safety requirements across

system elements, which collectively must be satisfied to achieve the safety goal.

 A safety integrity level or SIL is essentially a ranking of the stringency of a

safety requirement. Different standards define different forms of SIL: in ISO

26262, they are known as ASILs and are ranked from A (least strict) to D (most

strict); in ARP 4754, they are known as DALs and range from A (most strict) to

E (least). IEC 61508 and CENELEC 50126 define SILs from 1 (least strict) to 4

(most strict). A SIL may be derived largely from probability (as in IEC 61508)

or may involve other attributes, like severity and controllability (e.g. ASILs).

These terms all occur as part of the various safety engineering methodologies defined in

various standards. While different standards can vary in the details, the overall process

of modern safety engineering is typically as follows:

1. An initial hazard and risk assessment (HARA) is carried out on the system

design. This is meant to identify the various potential hazards of the system and

to assess the risk each poses.

2. On the basis of the risk analysis, high-level safety requirements are defined.

Often these are linked directly to the hazards, as with safety goals, such that all

hazards are addressed in some fashion.

3. As the design evolves into greater levels of detail, these high-level safety

requirements are decomposed in parallel in a top-down, hierarchical manner. In

this way, subcomponents of the system responsible for meeting overall safety

goals are identified and the traceability of safety requirements is maintained

across all levels of the system.

4. To identify design flaws and verify whether the safety requirements are being

met, dependability analyses are performed. These analyses can be inductive —

starting from individual component failures and determining the consequences

— or deductive, starting with high-level hazards and working backwards to

identify possible causes. Typically, these analyses also include a probabilistic

component, but early on in the design, purely qualitative analyses may be

carried out.

5. As part of implementation, a variety of tests are performed, e.g. integration tests

or others depending on the stage. Again, this helps verify that requirements have

been met and forms part of overall system validation.

6. If requirements are not met, a new iteration of the design is begun, repeating the

steps 3–5 as necessary.

7. Although not strictly part of the design process per se, once complete, system

maintenance is often required as part of safe operation. Maintainability is often a

component of dependability-driven design, however, and as such efficient

maintenance may be a design objective.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 8 Version 1.0 5 July 2023

Confidentiality: Public Distribution

2.1.2 Classical safety analysis techniques

As mentioned in the introduction, safety analysis has historically been a largely manual

process requiring intensive effort, a high degree of expert knowledge, and consequently

a steep cost. In the past, this meant that a safety analysis was typically too expensive to

carry out repeatedly, and it was often employed near the end of the design as a kind of

acceptance test rather than being integrated as part of an iterative process. Even so,

many of the original concepts pioneered back in the 1950-60s are still relevant today,

and evolutions of classical techniques like Failure Modes & Effects Analysis (FMEA)

and Fault Tree Analysis (FTA) remain important components of modern safety

engineering.

As with modern techniques, many classical approaches are based on a form of

probabilistic risk assessment or PRA. A PRA is a systematic approach to identify

hazards and evaluate risk and as such is essentially a form of HARA. It involves three

main aspects:

1. Identifying possible hazards and failures;

2. Assessing the severity of those hazards;

3. Estimating the probability or frequency of the failures causing the hazards.

2.1.2.1 HAZOP

Various classical analysis techniques exist to fulfil each aspect. For example, HAZOP

(hazard and operability study) may be performed to identify and classify hazards [3].

HAZOP was developed in the 1960s in the chemical industry but spread to other similar

safety-critical industries. Traditionally, it involves a team of suitable experts with the

necessary domain- and system-specific knowledge who then follow a guided process to

identify design deviations, possible causes, and likely consequences, along with actions

necessary to safeguard against them. However, HAZOP is a very manual process that

relies heavily on the expertise and experience of its participants; furthermore, while it

does have formal elements, it is often based on an informal understanding of the subject

system rather than a formal model, and the findings rapidly become out of date if the

system design evolves.

2.1.2.2 FMEA

Alternatively, or in addition, an FMEA (Failure Modes & Effects Analysis) may be

performed. The goal of an FMEA is to review the components of a system, identifying

the potential failures of each one and then assessing the potential effects of those

failures. Dating back to the late 1940s [4], it is one of the first structured safety analysis

techniques. Like HAZOP, however, an FMEA is traditionally a manual process

conducted by human experts, who follow a systematic inductive process on the basis of

informal system knowledge [5]. While it can be effective in establishing the risk posed

by low-level failures — based on severity, probability, and detectability — it has a

number of drawbacks. Foremost amongst these is the inability to consider the effects of

combinations of failure modes, which would rapidly spiral out of control if even pairs of

failures are considered, let alone other combinations.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 9

Confidentiality: Public Distribution

Item Failure

Mode

Effect Potential

Causes

Sev. Prob. Det. RPN Action

Smoke

detector

Does not

detect

smoke

Failure to

detect fire

Sensor

malfunction

8

3 6 144 Replace detectors on a

regular basis

Battery failure 7 3 168 Ensure regular battery

testing

Heat

sensor

Does not

detect heat

Failure to

detect fire

Sensor

malfunction

8 3 4 96 Replace detectors on a

regular basis

Gremlins 1 8 64 Do not feed Mogwai

after midnight

Sprinkler No water Failure to

extinguish

fire

Water supply

disruption

6 3 4 72 Add local water storage

for emergency use

Nozzle

blockage

Failure to

extinguish

fire

Dust/debris

infiltration

6 2 5 60 Ensure nozzles are

cleaned regularly

Alarm No sound Failure to

warn of

fire

Speaker

malfunction

7 2 7 98 Test alarm periodically

Table 1 - Example FMEA table

Even so, FMEA remains an important and useful technique in certain scenarios. In

particular, when carried out effectively it excels in enumerating possible low-level root

causes. In modern usage, it is often extended to incorporate additional considerations,

e.g. as in FMECA (Failure Modes, Effects, & Criticality Analysis) or FMEDA (Failure

Modes, Effects, and Diagnostic Analysis).

2.1.2.3 Fault Tree Analysis

Fault Tree Analysis or FTA [6] is the other major classical safety analysis technique. It

was pioneered at Bell Labs in the 1960s for the purposes of evaluating intercontinental

ballistic missile systems but has since been used across just about every safety and

reliability engineering domain. It rose to particular prominence after its use in analysing

the causes of the Challenger shuttle disaster.

Unlike FMEA, FTA is a deductive, top-down process. It begins with the identification

of a particular hazard or undesirable event to be analysed, and then works backwards to

identify the root causes step-by-step. Since each intermediate event can have multiple

possible causes, whether singly or in combination, a tree of Boolean logic is formed

from AND and OR gates (e.g. see Figure 1). This lends itself well to hierarchical system

structures as well as analysis of failure propagation through a chain of system

components. By assigning probabilities and other attributes to the root causes at the leaf

nodes of the tree, calculations can be performed to obtain overall probabilities (amongst

other things) for the top event of the tree, i.e., the hazard being analysed.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 10 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 1 - Example fault tree

As with HAZOP and FMEA, FTA is traditionally a manual process. While software

tool support exists and the probabilistic calculations can be automated, creating the fault

tree itself is often still a manual process relying on the expertise and informal

knowledge of the analysts involved. While it is very effective at investigating the root

causes of particular events — and unlike FMEA, is capable of assessing the effects of

combinations of failures — it is less effective at capturing all possible failures, relying

instead on a suitably exhaustive hazard analysis to identify the initial high-level events

to investigate.

2.1.2.4 Dynamic state-based analysis

As with FMEA, variations of FTA have been proposed over the years to address

shortcomings. One major subset of evolved FTA techniques is meant to address the

limitations of purely Boolean logic when analysing dynamic systems; of these, the most

prominent is the Dynamic Fault Tree (DFT) approach [7], which extends FTA with

additional types of gates to model functional dependencies and sequences of events.

Other related approaches exist, such as Pandora [8] and Temporal Fault Trees [9].

Dynamic systems can also be modelled with other network-based modelling techniques.

State machines and Markov models are common (and the latter are sometimes used to

evaluate probability for DFTs), while Petri Nets and Bayesian networks are also

increasingly used.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 11

Confidentiality: Public Distribution

State machines are perhaps the most popular representations of dynamic behavioural

models. Although there are many different versions and languages (e.g. UML, SDL,

Statecharts), almost all share the same core elements:

 A state, representing a persisting condition;

 Transitions between them (typically with triggers labelled), indicating events

that can cause a change in state;

 Usually, an indication of the starting state.

Figure 2 - A simple example state machine

Many state machines are purely visual diagrams (e.g. Figure 2). However, various

similar models incorporate additional information to enable more sophisticated

analyses. One of the most common examples are Markov chains, which assign each

transition a probability:

Figure 3 - Example Markov model

In general, a Markov chain adds probabilities to the transitions of a state machine (e.g.

see Figure 3). As with state machines, Markov models come in many different forms,

though the most common type found in the dependability domain are continuous-time

Markov chains (CTMCs), which model stochastic processes using continuous time. The

state changes according to an exponential random variable (which effectively models

the passage of time) and the new state is decided according to the probabilistic weights

of the transitions, typically described by a table known as a stochastic matrix.

Petri nets are another form of dynamic model that can be used to describe state-based

systems. As with state machines, there are two main elements: places, represented as

circles, and transitions, which are rectangles. The major difference is that Petri nets also

have tokens, which reside in places. A transition is only available if all of its inputs

contain at least one token. Stochastic Petri nets are the most common form found in

Running on
mains power

Power
failure

Mains lost:
running on

battery

Power surge

leading to bat-

tery failure

Battery ex-

hausted

Mains

power failure

A B C

0.3

0.6

0.4

0.5

0.7 0.5

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 12 Version 1.0 5 July 2023

Confidentiality: Public Distribution

dependability, in which the transitions fire after a probabilistic delay according to a

random variable, similar to a continuous-time Markov chain.

Finally, Bayesian networks also have two main elements (nodes and edges) which can

be used to represent states and transitions. Unlike Markov chains and stochastic Petri

nets, in which the probability of the next state is memory-less and independent of any

prior states, a Bayesian network operates on conditional probability and each edge

indicates a conditional dependency. Conditional probability functions determine the

status of each node given the status of the other nodes on which it is dependent. One of

the advantages of Bayesian networks over similar approaches like Markov chains is that

they are capable of inference and can satisfy probabilistic queries, e.g. inferring the

knowledge about an unobservable node based on the status of the others that can be

observed.

Figure 4 - Example Bayesian Network (from [10])

A general drawback to all of these is the issue of state-space explosion when applied to

complex systems with lots of states; even relatively modest systems can soon surpass

the scope of human analysts, and even computer software can struggle to evaluate large

Markov models or Bayesian networks.

In any case, dynamic or not, the key commonality to all of these approaches is that they

are primarily manual and rely on the informal system knowledge of the human analysts.

If that knowledge is faulty, or if the design of the system changes, then the resulting

analysis can be faulty in turn.

2.2 STATE OF THE ART: MODEL-BASED SAFETY ANALYSIS

Traditional safety analysis methods are well-established and can yield a great deal of

valuable knowledge about the safety and reliability of a system, but as mentioned, their

relatively informal, ad-hoc, and manual nature limits their effectiveness when applied to

increasingly complex modern systems. Safety knowledge is separate from knowledge

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 13

Confidentiality: Public Distribution

about the system structure, which can result in discrepancies and means it quickly

grows out of date; manual processes tend to be more error prone and expensive; and

reuse of the information gained can be problematic, especially as part of an iterative

design process.

Model-based safety analysis, or MBSA, has been one of the primary responses to these

difficulties. Reflecting the move in engineering towards computer-aided, model-based

development, MBSA formalises the various classical techniques by explicitly linking

knowledge about the safety and reliability of the system to system design models,

whether architectural, behavioural, or both. Ideally, both system and dependability

engineering processes share a common model or set of models, meaning all the

information about the system is centralised in one place. The resulting models are more

formalised and lend themselves much more easily to reuse, analysis, and automation,

improving the quality of the dependability analysis process [1].

The benefits are manifold. Centralising knowledge within models helps with

coordination and communication because there is a single source of information about

the system. Standardised models also help to foster reuse and compatibility of exchange

between multiple stakeholders. They also aid in the design process itself by facilitating

iterative modifications, with hierarchical structures making it possible for different parts

of the system to be worked on simultaneously while preserving the integrity of the

overall architecture.

The advantages posed by model-driven engineering help explain the rise of modelling

languages and architecture description languages (ADLs) including, amongst others:

 SysML
9
, a general-purpose architectural modelling language based on UML;

 AADL
10

, an ADL originally developed for aerospace applications but applicable

for modelling any software/hardware architecture of embedded, real-time

systems;

 AUTOSAR
11

, created by a consortium of automotive companies for

standardising modelling of embedded automotive software applications;

 EAST-ADL
12

, an ADL intended for automotive applications and compatible

with AUTOSAR, in effect forming a superset capable of modelling wider

automotive systems architecture throughout the design process.

 The ODE
13

 (Open Dependability Exchange) metamodel, originally developed

during the DEIS project to support MBSA of cyber-physical systems via the

creation of Digital Dependability Identities.

In some of these, some degree of dependability information can be included directly (as

in AADL‘s error annex [11] or EAST-ADL‘s error model [12]). In others, dependability

information can be stored in other models linked with traceability elements to ensure

9
 https://sysml.org/

10
 https://aadl.info

11
 https://www.autosar.org/

12
 https://east-adl.info/

13
 https://github.com/DEIS-Project-EU/ODEv2

https://sysml.org/
https://aadl.info/
https://www.autosar.org/
https://east-adl.info/
https://github.com/DEIS-Project-EU/ODEv2

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 14 Version 1.0 5 July 2023

Confidentiality: Public Distribution

that dependencies are maintained. Alternatively, model transformation tools such as

ATLAS
14

 or Eclipse Epsilon
15

 can be used to translate between systems engineering and

dependability models [13].

Modelling is just one component of MBSA, however; models alone are insufficient

without accompanying analysis techniques. Model-based analysis offers many

advantages over ad-hoc traditional approaches, particularly in terms of automation of

synthesis (i.e., automatic generation of analyses from dependability models) and in the

usefulness of the results (since problems identified can be linked to specific, originating

elements of the system model).

Two general paradigms of MBSA analysis techniques have emerged: compositional

safety analysis approaches and behavioural simulation approaches [14]. These will both

be described below, along with other related techniques such as safety requirement

allocation and generation of safety argumentation.

2.2.1 Compositional safety analysis approaches

Compositional safety analysis approaches are generally deductive in nature, generating

analysis results by working backwards from system failures to determine root causes,

and construct their failure models using a process of hierarchical composition. These

models are then typically evaluated with variations on established analysis techniques

like FTA.

For the most part, compositional approaches are so named because they compose a

system-wide failure propagation model from smaller component-level failure

descriptions. These localised failure descriptions may be static (e.g. fault trees) or

dynamic (e.g. state machines, Markov chains), but connect together to form the overall

model of system failure behaviour.

The key difference with respect to behavioural approaches lies in the form of analysis

used. Behavioural approaches make use of formal verification methods like model-

checkers to simulate the occurrence and effects of failures with a high level of detail.

Compositional approaches require less detail and do not rely on simulation or model-

checking, making them better suited for use earlier in the development process, e.g.

when only functional information is available and detailed decisions about timing

constraints etc. have yet to be made.

Examples of compositional MBSA approaches include Failure Propagation &

Transformation Calculus (FPTC), State-Event Fault Trees, Component Fault Trees, and

HiP-HOPS.

2.2.1.1 Failure Propagation & Transformation Calculus

Failure Propagation & Transformation Calculus (FPTC) allows modular, compositional

representation and analysis of both hardware and software components. In common

with most compositional MBSA techniques, the intention is to show how system-level

failure behaviour can be derived from component-level behaviour. FPTC accomplishes

this by allowing an analyst to annotate components in a model of the system

14

 https://www.eclipse.org/atl/
15

 https://www.eclipse.org/epsilon/

https://www.eclipse.org/atl/
https://www.eclipse.org/epsilon/

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 15

Confidentiality: Public Distribution

architecture with modular failure expressions that describe how each component can

fail.

FPTC is intended foremost for the real-time safety-critical software domain, so the

primary element of FPTC is a statically schedulable code unit, modelling a single

sequential thread of control. Code units are connected via software communications

protocols such as handshakes, buffers, and prods etc., each modelled separately. The

software architecture itself is statically determined, i.e., everything is known to the

designers and assumed to exist on initialisation, with no dynamic creation or destruction

during operation. Allocation of software units to the underlying hardware & network

architecture is also taken into account, thereby making it possible to model e.g. the

effects of a damaged processor on the software it is executing.

The system architecture is represented using a Real-Time Network (RTN) style

notation. Essentially, an RTN is a graph consisting of nodes and arcs, where nodes

represent hardware or schedulable code units while arcs are the communications

between them, with the label being the type of protocol (e.g. blocking, non-blocking

etc). RTN models can be hierarchical and can define code units as state machines, as

well as allow automatic code generation.

Figure 5 - Example RTN graph (from [15])

The FPTC process proposes a HAZOP-style system of guidewords (which can be

tailored to the specific system or domain) and an inductive, FMEA-esque approach to

studying each individual component. Each unit is considered in turn, with analysts

determining how it originates failures or behaves in response to potential input failures

of different types, e.g. timing failures, value failures, sequence failures etc. ―Normal‖

behaviour is also part of the set of possible failure types (i.e., a lack of failure), which

allows absorption of an input failure where appropriate, e.g. in the case of components

capable of error correction. In general, component behaviours are either ―propagational‖

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 16 Version 1.0 5 July 2023

Confidentiality: Public Distribution

(i.e., failures are transmitted from input(s) to output(s)) or ―transformational‖ (the

failure type is transformed from one type to another during the course of propagation).

A functional pattern-based notation is used to represent this behaviour. For example:

omission late

means that a component transforms an input failure of type ―omission‖ into an output

failure of type ―late‖.

early *

The * symbol indicates ―no failure‖ (i.e., normal behaviour), so this expression

indicates that the component is capable of correcting an input failure of type ―early‖

with no effect on output behaviour. Combinations of values can be handled with tuples,

e.g.:

late (value, late)

Wildcards can be used to represent arbitrary inputs, e.g. (omission, _) means an

omission failure at the first input and any other type of failure — including no failure —

at the second input.

Both components and the connections between them are annotated with as many of

these expressions (known as ―clauses‖) as is needed to describe their behaviour in

response to all the different types of failure. Connections are included since the

protocols involved may also be capable of originating or modifying the propagation of

failures.

The resulting annotated RTN model then effectively becomes a token-passing network,

in which tokens represent failures and are passed from one node to another (potentially

being transformed or destroyed along the way). An FPTC analysis therefore functions

as a kind of simplified simulation, in which all of the clauses for each component are

―executed‖ and any resulting output failures passed from the outputs, potentially

triggering other clauses in connecting components. The process terminates once no new

output failures are generated and all relevant clauses have been considered.

Because FPTC makes use of an existing software design model (RTN), both nominal

and dependability information about the system is centralised in a single model. This

makes it easy to adapt to changes to the design: when new components are added, they

merely need to be annotated and the analysis re-run to see the impact of the changes.

Like FMEA, however, FPTC is an inductive process that works best when analysing the

effects of individual failures; its ―simulation‖ must be re-run for every originating

clause of every component in order to achieve coverage, and even then this does not

take into account the potential for combinations of failures. Cases where a critical

system failure occurs as a result of two or more component failures occurring in

conjunction can easily be missed.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 17

Confidentiality: Public Distribution

2.2.1.2 Component Fault Trees

Component Fault Trees (CFTs) are an MBSA approach that aims to introduce

hierarchical decomposition to fault trees by integrating them within the hierarchy of the

system architecture [16], [17]. In effect, each component of the system is represented by

its own extended fault tree (i.e., an eponymous Component Fault Tree). Overall system

failure logic is obtained by connecting these component fault trees via ports, which

represent the interface of a component. CFTs are still recognisably fault trees and can

thus be analysed with standard FTA algorithms.

One of the primary motivations behind CFTs is the concept of reuse: rather than create

an entire system architecture and accompanying dependability model from scratch for

each new design, a library of components — each stored with their associated

dependability information (i.e., their component fault trees) — can be made available,

and relevant components can simply be imported. There are many advantages to such

an approach; most obviously, this reduces effort, since a component only needs to be

modelled once and any subsequent designs that use that component can simply import

it. Different components can also be worked on separately and simultaneously. This

form of reuse also potentially cuts down on modelling errors (assuming it was modelled

correctly in the first place) and also allows future designers to make use of the

components without necessarily possessing expert knowledge of those components —

though it could be argued that this is not always a good thing.

The decompositional approach offered by CFTs also lends itself well to an iterative,

top-down development process in which an initial, more abstract, top-level model is

created first and then progressively evolved as the design matures by adding new

hierarchical levels with more detail. This is the approach taken by EAST-ADL, for

instance, with its initial feature and functional layers giving way to more detailed,

lower-level hardware layers.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 18 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 6 - Example CFT (from [16])

The fact that the fault trees are component-based means that branches may be shared, as

in the figure above, acting as a common cause for multiple components. In this sense,

CFTs are technically directed acyclic graphs, called Cause Effect Graphs by the authors.

Unlike normal fault trees, multiple top-level system failures are also possible; in effect,

the CFTs form a ―forest‖ of classical fault trees, with roots and branches being shared

across multiple trees with different outputs.

Although this may require some adjustment, in most cases it is still possible to represent

the graph for a given system failure with a Boolean formula and thus evaluate it using

traditional FTA algorithms, though in practice this means exporting the CFTs to a

suitable FTA tool, thus potentially losing some of the traceability between the analysis

results and the originating model.

Equally, however, the similarity between CFTs and classical fault trees mean CFT also

inherits most of their disadvantages, particularly in terms of expressivity and ability to

handle dynamic or temporal scenarios. Perhaps for this reason, various attempts have

been made to extend or adapt CFTs with new functionalities, such as Generalized

Hybrid Component Fault Trees or State/Event Fault Trees, both discussed below.

2.2.1.3 Generalized Hybrid Component Fault Trees

Generalized Hybrid Component Fault Trees (GHCFTs) are an evolution of CFTs

intended to incorporate new features to enable the modelling of temporal or state-

dependent behaviour [18]. The idea is to combine the best features of fault trees, which

excel at modelling combinatorial failures, and Markov chains, which can handle

stochastic state-based analysis, to produce an integrated solution: GHCFTs.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 19

Confidentiality: Public Distribution

As with CFTs, the key principle is compositionality. But where CFTs made use of

compositional component-based fault trees, GHCFTs introduce Component Markov

Chain (CMC) elements to fulfil a similar role. CMCs are intended to be modular,

compositional, and reusable, and when used in combination with normal CFTs, both

combinatorial and sequential/state-based failure behaviour can be modelled within the

system architecture.

Figure 7 - Example GHCFT (from [18])

The advantage here is that static, non-dynamic components can be modelled using

simple CFTs, while the more complex dynamic components can make use of CMCs.

This helps limit the scope of the state-based modelling required and to a degree

therefore helps to contain the state-space explosion problem. Since CMCs and CFTs are

bound within their parent components and largely isolated from each other, they interact

through the ports that comprise the component interfaces: failures propagate from the

output of one component and are received at the input of the next with no need for

knowledge of whether they originate in a CFT or a CMC.

Both qualitative (logical) and quantitative (probabilistic) analysis of GHCFTs is

possible. In the former case, CMCs are converted into CFTs as follows:

 Every transition between two states is converted to a basic event.

 If the transition is connected to an input failure, then an OR gate is created and

all input failure modes become children of the gate.

 For each output failure mode of the CMC, every path leading from the initial

state to an error state connected with the output is enumerated and all transition-

derived events encountered along the way are collected under an AND gate. If

multiple paths exist, each becomes an AND gate and all are fed into a top-level

OR gate.

This algorithm effectively flattens a CMC into a static fault tree, enabling it to be

readily combined with existing CFTs and analysed using traditional FTA algorithms.

The downside is that all dynamic information is lost in the process, and as such the

qualitative analysis results are purely combinatorial, which can be misleading in some

cases.

The quantitative analysis, on the other hand, typically employs a numerical integration

scheme with step-size control for the CMCs. GHCFTs restrict themselves to Continuous

Time Markov Chains (CTMCs) with constant transition rates; in most cases this is

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 20 Version 1.0 5 July 2023

Confidentiality: Public Distribution

sufficient, but does mean that cases with more exotic failure distributions (e.g.

Binomial, Poisson, Weibull, or other variable failure distributions) are incompatible.

One important drawback is that common cause failures arising from repeated events

(i.e., events that appear more than once in a fault tree) are incompatible with Markov-

based analysis of the CMCs; unfortunately, this converts one of the advantages of CFTs

(natural handling of common causes) into a disadvantage. Furthermore, in common with

other state-based approaches, the state-space explosion problem can become an issue

for larger models with many states, although the compositional nature helps keep them

contained such that individual CMCs in theory can be analysed separately.

2.2.1.4 State/Event Fault Trees

The State/Event based Fault Tree (or SEFT) is an attempt to remedy one of the major

drawbacks of classical FTA: its inability to model dynamic scenarios in which specific

sequences of events or state transitions can cause failures. SEFTs are intended to

overcome this limitation by introducing new capabilities for representing states and

more complex types of events [19], [20]. In this sense, they are an evolution of the

Component Fault Tree approach described above.

SEFTs allow direct modelling of states and transitions on a per-component basis. States

are interpreted as conditions that prevail for a given period of time; events by contrast

are defined as being instantaneous and may trigger state changes. This means that

dynamic system failure behaviour can be modelled directly, without resorting to the use

of separate types of models (e.g. an architecture model and a behavioural model) or

relying solely on static dependability models.

In SEFTs, events occur in one of three ways:

 they may be triggered by other events;

 they occur after a deterministic delay;

 or they occur after an exponentially distributed probabilistic delay, beginning

when the preceding state is entered.

There is a distinction between an event and its occurrence: the former represents a class

of events that can occur at different times, while the latter indicates a specific

occurrence of an event at a given time.

As in FTA, gates act as junctions and allow different operators to be applied to multiple

inputs, meaning the effects of combinations of failures is also modelled. Unlike

traditional FTA, however, the gates are not limited to purely Boolean operators. A

distinction is also made between purely causal relations and temporal/sequential

relations; the former apply to events while the latter to states.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 21

Confidentiality: Public Distribution

Figure 8 - SEFT notation (from [19])

Each component has its own state (and thus can only be in one state at any given time).

As with the other compositional approaches, they also allow decomposition: each

system or component can be decomposed into subcomponents, each in turn with their

own state-transition mechanisms. Interfaces of components are defined via ports, which

are typed according to input/output and whether they are state ports or event ports.

Probabilities can be assigned to states as well as events, indicating the likelihood of a

given state being the active state for that component. Gates can also apply to states, thus

enabling the modelling of scenarios where e.g. two components must be in given states

in order for some other event to occur.

In addition to basic Boolean AND and OR operators, more complicated timing

scenarios are handled with a variety of dynamic and temporal operators. Delay Gates,

for instance, can be used to model deterministic or probabilistic delays between events.

History-AND gates check whether an event has previously occurred, while Priority-

AND gates check which order a set of events occurred. Duration gates can be used to

test whether a state has been active for a given duration.

Given the breadth of its modelling entities, SEFTs effectively act as a kind of superset

of both fault trees, state machines, and Markov chains, capable of combining them all

and integrating them into a representation of the system architecture.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 22 Version 1.0 5 July 2023

Confidentiality: Public Distribution

While the process of creating a SEFT model is primarily component-based, where the

behaviour of each component is considered in turn, SEFTs are not an inductive

technique. Unlike FPTC, SEFTs are intended to function in a deductive FTA-like

fashion, where system-level failures are traced back through the system from one

component to the next. This ensures that failures with combinations (or sequences) of

causes can be handled correctly. The inclusion of states also means that more complex

scenarios and triggering conditions are modelled, e.g. in terms of considering what state

a component must be in for a given event to occur.

Analysis of SEFTs is typically achieved via conversion to Deterministic Stochastic Petri

Nets (DPSNs), which are an extension to general Stochastic Petri Nets with added

functionality for modelling deterministic delay [21]. The DSPNs are then evaluated

separately, e.g. via the TimeNET tool [22]. Conversion from SEFT to DSPN is achieved

using the ESSaRel (Embedded Systems Safety and Reliability Analyser) tool, which

sadly now appears to be defunct.

The separation between the model and the DSPN analysis tool is not ideal, since some

of the traceability between the model and the analysis results is lost and troubleshooting

errors is made more problematic. And as with most state-based approaches, the state-

space explosion problem can be an issue for larger models with many states. While

SEFTs offer compositionality and the states are per-component, when converted to the

resulting DSPNs, these nuances are lost as the model gets ―flattened‖. Thus there is a

trade-off between the wide range of capabilities SEFTs offer and the limitations in the

analysis support available.

2.2.1.5 HiP-HOPS

HiP-HOPS, or ―Hierarchically Performed Hazard Origin & Propagation Studies‖ to give

it its full title, is a comprehensive model-based safety analysis methodology with a tool

of the same name. Originally developed in the late 1990s [23], it has been the focus of

continuous development over the ensuing 20+ years and its initial foundation has since

played host to a wide range of advancements and additional functionalities [24], [25].

Like CFTs and SEFTs, HiP-HOPS uses fault trees as a foundation. The central principle

is the integration of data about component failure behaviour into a system architecture

model, which facilitates the synthesis of fault tree-based failure propagation models that

can then be further evaluated to produce FTA and FMEA results.

The core HiP-HOPS methodology consists of four main phases:

 System modelling

 Failure annotation

 Synthesis of fault propagation models

 Fault tree analysis & FMEA synthesis

Phase 1: System Modelling

System modelling consists of developing a system architecture modelling along the

lines of a block diagram, featuring components (which may be hardware, software,

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 23

Confidentiality: Public Distribution

purely functional, or just about anything else) and the connections between them (again,

these may be hydraulic, electrical, electronic, mechanical, data-based, or other).

Components may have subcomponents, allowing a compositional system hierarchy to

be built up. Various system modelling tools are compatible with HiP-HOPS, including

Matlab Simulink
16

, SimulationX
17

, and MetaEdit+ (with EAST-ADL)
18

. Export and

model transformation to HiP-HOPS format is also possible for various other modelling

languages, e.g. AADL [26].

Interfaces for components are defined via ports. Unlike SEFTs, ports do not have a type,

nor are they necessarily restricted to either input or output only. Instead, input and

output flow is defined via connections, as will be explained shortly.

Support also exists in HiP-HOPS for ―multi-perspective‖ modelling. This is intended to

facilitate modelling of multiple interconnected layers (or perspectives), e.g. different

software and hardware layers with allocation from one to the other, as found in

languages such as EAST-ADL [12]. These allocations present new lines of possible

failure propagation, similar to how FPTC allows modelling of the effects of hardware

processor failure on software it is executing.

Phase 2: Failure data annotation

The next phase is the annotation of components and connections with logical

expressions that describe local failure behaviour, similar in principle to FPTC or CFTs.

These expressions indicate how deviations at component outputs (output deviations) are

caused by some combination of corresponding input deviations or internal failures of

that component. Annotation is possible at all levels of the system hierarchy; output

deviations at a component‘s output may be caused by inputs or internal failures of that

component, or by output deviations deriving from subcomponents within that

component.

Input and output deviations are also assigned a failure class. This facilitates matching of

deviations at different ports. Typical classes include omissions (i.e., no input/output

when it was intended), commissions (i.e., unexpected input/output), timing errors (e.g.

late, early), and value errors (e.g. high, low, or just a wrong value), but classes are user-

defined and additional failure classes can be added as required. As well as the failure

class, deviations also refer to the component and port at which they occur, e.g.:

 omission-sensor.out (omission at port ‗out‘ of component ‗sensor‘)

 value-brake.in2 (value error at port ‗in2‘ of component ‗brake‘)

Internal failures are given a name that is unique within the component, though to avoid

ambiguity are often referred to with their parent component‘s name, e.g.:

 valve.blocked

 switch.stuckOpen

16

 https://www.mathworks.com/products/simulink.html
17

 https://www.esi-group.com/products/system-simulation
18

 https://www.metacase.com/mep/

https://www.mathworks.com/products/simulink.html
https://www.esi-group.com/products/system-simulation
https://www.metacase.com/mep/

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 24 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Together, deviations and internal failures can be combined into logical expressions that

define the causes of output deviations, e.g.:

 omission-valve.out = valve.blocked OR omission-valve.in

As with FPTC, there is no requirement for the same failure class to be used on both

sides of the expression: it is possible (and indeed not uncommon) for a failure class to

transform as it is propagated from input to output. For instance, a controller may be able

to mitigate sensor failures by failing silent when erroneous input is detected, omitting its

output instead of passing along incorrect data:

 omission-controller.out = (value-in1 AND value-in2) OR
(value-in1 AND value-in3) OR (value-in2 AND value-in3)

Boolean operators AND and OR are most typical, but other gate types are available with

varying degrees of support, from non-coherent gates (NOT, XOR) to temporal gates

like Priority-AND, Priority-OR, and Simultaneous-AND. As mentioned earlier, it is

also possible for an output deviation to be caused by e.g. a failure propagating along an

allocation relationship, or via a common cause failure (CCF) that is not specific to any

given component.

Potential CCFs are defined per component and then explicitly linked to actual CCFs

defined at the system level; for example, multiple components in the same physical

compartment of a ship may refer to a potential CCF ―Flood‖, but this only becomes a

valid cause once connected to an actual CCF. This helps support reuse, since a

component can be used in environments where its potential CCFs are inappropriate (e.g.

in a situation where flooding is not possible).

In addition to these logical descriptions of cause and effect, probabilistic failure data

can be added to failure events such as internal failure modes and CCFs. A variety of

different failure distributions are supported, from simple exponential failure rates or

MTTF/MTTR to Poisson, Binomial, and Weibull models.

The process of annotating the model with failure data is typically performed component

by component, in which all possible output deviations are considered for each output

port, their causes evaluated, and the necessary input deviations and internal failures

defined accordingly. In doing so, the failure behaviour of the components is defined,

illustrating how they generate, mitigate, propagate, or transform failures across their

inputs and outputs. The result is a virtual table like the following:

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 25

Confidentiality: Public Distribution

Valve Malfunctions

Failure mode Description Failure rate

blocked e.g. by debris 1e-6

partiallyBlocked e.g. by debris 5e-5

stuckClosed Mechanically stuck 1.5e-6

stuckOpen Mechanically stuck 1.5e-5

Deviations of Flow at Valve Output

Output

Deviation

Description Causes

Omission-b Omission of

flow

blocked OR stuckClosed

OR Omission-a OR Low-control

Commission-b Commission

of flow

stuckOpen OR Commission-a

OR Hi-control

Low-b Low flow partiallyBlocked OR Low-a

 control

 a b

Figure 9 - Example of a HiP-HOPS component failure annotation

This table shows the various data annotated for a simple valve. Failure modes are

defined, along with descriptions and failure rates (using an exponential distribution with

no repair rates, in this case). And three possible output deviations are defined, each with

a different logical expression describing the cause.

Note that these annotations are generic in the sense that they do not reference the

surrounding context in which the valve operates: no knowledge of the immediate

environment is needed beyond the component‘s interface ports. This helps with reuse of

failure data, in the sense that the same logic can be used for any other valve of similar

design.

Although annotation is done per component, at its heart HiP-HOPS is a deductive

technique, and as such it is best employed when starting with top-level system failures

(annotated as hazards) and working back to determine which high-level output

deviations may cause them. The causes of those output deviations may then be

investigated further in turn.

In addition to components, connections can also be annotated with failure behaviour.

Unlike components, however, connections are assumed not to originate failures: they

have no internal failure modes. If such behaviour is required, they should be modelled

as components in their own right (e.g. a network bus or a pipeline subject to blockage).

Connections can, however, propagate different failure classes in different ways. For

example, a 2-to-1 connection joining two outputs to a single input may use OR logic for

commission failures (a commission at either output will be received at the input) but

AND logic for omissions (only an omission at both outputs will result in an omission at

the receiving input port).

This custom propagation logic also provides better support for different types of

connections; mono-directional, bi-directional, and many-to-many connection types are

all possible in HiP-HOPS.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 26 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Annotation of the system models can be performed via interfaces with supported

modelling tools. Alternatively, an annotated model file in XML format can be generated

directly and provided to HiP-HOPS.

Phase 3: Synthesis of fault propagation models

Although phases 1 & 2 must be performed manually (albeit with tool support), phase 3

is entirely automatic. Once the system model has been suitably annotated with

component failure behaviour, HiP-HOPS can perform a deductive investigation to

create a network of interconnected fault trees that relates top-level hazards to their root

causes, with the path of propagation being maintained via intermediate nodes.

Figure 10 - HiP-HOPS synthesis phase

The process is as follows:

1. For each hazard, link to the top-level output deviations that cause it.

2. Traverse the output deviation backwards to find any input deviations.

3. Using the connection logic, connect the leaf nodes (input deviations) with the

corresponding output deviations of the matching failure class at the other end of

the connections.

4. Continue from step 2 until no further input deviations are found.

5. If at any stage output deviations of the same failure class are found on multiple

levels of the system hierarchy, connect them with an OR gate.

6. Allocation propagations are traced backwards to their originating model

perspective, where synthesis continues as normal.

As an example, consider the following system:

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 27

Confidentiality: Public Distribution

Figure 11 - Example system

The component failure logic for the system can be found in the table below, where "O"

is shorthand for an Omission failure and "V" for a value failure.

Component Output
Deviation

Cause

Power supply O-motorPower PSU_failure OR mains_supply_failure

O-controllerPower PSU_failure OR mains_supply_failure

Motor O-motivePower

(system output)

Motor_failure OR O-power OR O-control

Controller O-output Controller_failure OR O-power OR V-sensor OR O-
sensor

Sensor O-data Sensor_failure

V-data Sensor_misalignment

If the system-level hazard is defined as ―No motive power from motor upon demand‖,

then we start by investigating the omission of output from the motor:

 O-motivePower

We can then substitute this for its expression:

 Motor_failure OR O-power OR O-control

And expand each input deviation until none are left:

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 28 Version 1.0 5 July 2023

Confidentiality: Public Distribution

 Motor_failure OR (PSU_failure OR mains_supply_failure) OR O-control

 Motor_failure OR (PSU_failure OR mains_supply_failure) OR (Controller_failure OR O-
power OR V-sensor OR O-sensor)

 Motor_failure OR (PSU_failure OR mains_supply_failure) OR (Controller_failure OR O-
power OR V-sensor OR O-sensor)

 Motor_failure OR (PSU_failure OR mains_supply_failure) OR (Controller_failure OR
(PSU_failure OR mains_supply_failure) OR V-sensor OR O-sensor)

 Motor_failure OR (PSU_failure OR mains_supply_failure) OR (Controller_failure OR
(PSU_failure OR mains_supply_failure) OR Sensor_misalignment OR O-sensor)

 Motor_failure OR (PSU_failure OR mains_supply_failure) OR (Controller_failure OR
(PSU_failure OR mains_supply_failure) OR Sensor_misalignment OR Sensor_failure)

This results in a simple fault tree showing all possible causes of the hazard ―No motive

power from the motor upon demand‖:

Figure 12 - Example synthesised fault tree

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 29

Confidentiality: Public Distribution

Although the fault tree above is simplified to save space, it still maintains the path of

propagation through the system model. For example, we can see how the failure mode

―sensor misalignment‖ propagates through the sensor, then the controller, and finally

the motor in order to cause the hazard.

Although the interconnected fault trees generated during the synthesis phase can

provide useful information about the global failure behaviour of the system in

themselves, to obtain the full benefit, the resulting fault trees must be analysed.

Phase 4: Fault tree analysis & FMEA generation

HiP-HOPS employs various FTA algorithms to analyse the generated fault trees.

Classical algorithms are not directly applicable due to the nature of the trees; loops are

possible, repeated events are common, and there may be dead end branches in the trees

(e.g. if there is no corresponding output deviation to provide input to an input

deviation). Therefore analysis includes several pre-processing steps before the fault

trees can be fully analysed, whether qualitatively or quantitatively. Qualitative analysis

involves obtaining the minimal cut sets, while for quantitative analysis, an estimate of

the probability of the top event is obtained (along with probabilities for all the cut sets).

For the example fault tree above, the cut sets are very simple since there are no AND

gates. However, two basic events — PSU_failure and Mains_supply_failure — each

occur twice, resulting in a redundancy that must be addressed. The minimal cut sets are

thus:

 Motor failure

 PSU failure

 Mains supply failure

 Controller failure

 Sensor failure

 Sensor misalignment

Had we provided failure rates for these basic events, an estimate of top event probability

would also have been calculated.

An example of HiP-HOPS output for FTA is shown below:

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 30 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 13 - HiP-HOPS FTA results

Minimal cut sets are useful because they show the necessary and sufficient causes of the

hazard. However, sometimes it can also be useful to obtain inductive information as

well. HiP-HOPS achieves the best of both FTA and FMEA by generating the latter from

the analysis results. Unlike a regular FMEA, a HiP-HOPS FMEA also considers the

effects of combinations of failures. For each failure mode of each component, the

hazards it causes by itself are displayed (referred to as ―direct effects‖) as well as any

hazards caused in conjunction with other failures (referred to as ―further effects‖).

This is especially useful in that it highlights which failures only have further effects

(i.e., they never cause system hazards by themselves) and which failures can cause

multiple system hazards, as in the case of C5 in Figure 14 below.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 31

Confidentiality: Public Distribution

Figure 14 - FMEA generation in HiP-HOPS

Other features

HiP-HOPS has been extended many times with a wide range of additional functionality,

including:

 Architectural optimisation [24], allowing optionality to be defined within the

system architecture (by defining alternative implementations of components

with different cost and reliability characteristics) that can then be subjected to a

multi-objective optimisation process to achieve an optimal balance of cost and

reliability.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 32 Version 1.0 5 July 2023

Confidentiality: Public Distribution

 Automatic allocation of safety requirements using the propagation logic as a

basis. If a strong requirement is assigned to a system function, HiP-HOPS can

determine how that requirement can be decomposed amongst the

(sub)components of the system that fulfil that function. Prototype support for

decomposition of ASILs [27] and DALs [28] exists.

 Integration of HiP-HOPS with model-checking technologies, thereby combining

HiP-HOPS‘s compositional safety analysis capabilities with the behavioural

simulation capabilities of model checkers [29].

 Incorporation of various approaches for dynamic safety analysis via dynamic

fault trees [30].

 Experiments with using HiP-HOPS to perform security analysis with attack

trees, thus introducing another pillar of dependability [31].

2.2.1.6 safeTbox

safeTbox
19

 (Safety Toolbox) is an extensive model-based safety analysis approach (and

tool) that combines architecture design, hazard analysis, fault analysis, and safety

argumentation all in a single package. It places a strong emphasis on reusability,

traceability, and maintainability of safety-related artefacts. Integrating with existing

UML and SysML modelling tools like Enterprise Architect and MagicDraw, it enables

integration of dependability data with system architecture information.

safeTbox has evolved over time, growing out of earlier projects such as I-SafE [32].

System modelling is based on UML/SysML block diagrams in which component

interfaces are defined using ports which can be connected together. This is then

followed by a model-based hazard and risk assessment (HARA) along the lines of that

mandated by ISO 26262, and which benefits from integrated traceability by being able

to link to pertinent architectural elements.

Figure 15 - HARA in safeTbox

19

 https://www.safetbox.de/

https://www.safetbox.de/

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 33

Confidentiality: Public Distribution

A process of annotating the model with more detailed safety information then follows.

The nature of the failure data added to the architecture depends on the desired form. For

example, safeTbox supports Component Fault Trees, enabling the representation of

component-level fault propagation and failure generation.

Figure 16 - Generating CFTs from an annotated system architecture in safeTbox

Both qualitative and quantitative analyses are supported. The former produces minimal

cut sets on the basis of a system-wide FTA, while the latter evaluates the top-event

probability for high-level system failures. Integration with widely used FTA tools such

as Isograph‘s Fault Tree+ (now part of Reliability Workbench
20

) enable rapid evaluation

with powerful capabilities.

Figure 17 - Results of a Component FTA in safeTbox (from https://www.safetbox.de/blog)

20

 https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-software/

https://www.safetbox.de/blog
https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-software/

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 34 Version 1.0 5 July 2023

Confidentiality: Public Distribution

The focus on traceability and maintainability is important because it also supports the

generation of safety argumentation such as safety cases that can be used as part of the

certification process. Rather than using separate documents, in SafeTbox the safety

cases are integrated with the rest of the model, reducing the risk that the documentation

becomes out of date and ensuring that the various concepts are interlinked for ease of

use. SafeTbox further supports generation of safety cases by directly integrating Goal

Structuring Notation
21

, widely used for safety cases (see Section 2.2.4.1 below).

2.2.1.7 Dymodia

The Dymodia tool
22

 is an MBSA software tool that allows architectural, behavioural,

and failure modelling and analysis to be combined as part of a single platform. As with

other compositional approaches, it is built on the concept of being able to annotate

system components with logic that describes their failure behaviour. However, rather

than try to embed behavioural models (in the form of state machines) as part of this

component-level logic, as in SEFTs or GHCFTs, in Dymodia the state machines are

separate models that link to a given system model. Then either different failure logic

can be defined per state or generic failure logic can be used to describe state-

independent behaviour instead. Standalone fault trees can also be defined to model

failure-related behaviour that does correspond directly to system architecture elements

or system states.

Figure 18 - Dymodia

Links and cross references are possible across multiple models. For example, a state

machine transition could be triggered by the deviation of a component output, or by the

top event of a standalone fault tree. Leaf nodes in a fault tree can be standard basic

events, or they can be references to events in a system model, allowing e.g. a single

fault tree to combine output from multiple system architecture models.

21

 https://scsc.uk/gsn?page=gsn%202standard
22

 https://dymodiansystems.com/dymodia/

https://scsc.uk/gsn?page=gsn%202standard
https://dymodiansystems.com/dymodia/

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 35

Confidentiality: Public Distribution

Once models have been created and suitably annotated with failure behaviour, Dymodia

can automatically synthesise state-aware failure propagation models (in the form of

dynamic fault trees) to describe the dynamic failure behaviour of the system and

produce a global view of system dependability.

Both FTA and FMEA are supported. FTA results track changes in state, so that not only

combinations but also sequences of events that cause failures can be included. Because

all of the models are interlinked as part of an all-in-one platform, the results also

maintain links to the relevant model entities (such as the component where a failure

mode occurs, or the node in a standalone fault tree).

2.2.2 Behavioural simulation safety analysis approaches

Unlike compositional MBSA approaches, behavioural approaches tend to be inductive

in nature and generate analyses by hypothesising a failure and evaluating the effects via

simulation. Typically this is done by first creating a formal specification of the system,

simulating the nominal behaviour of the system, injecting a fault to determine its

effects, and then verifying the system safety properties (i.e. determining whether safety

requirements are still met).

Most approaches in the behavioural simulation paradigm introduce their own formal

specification language to formally model the system behaviour. This often leads to a

greater level of behavioural detail than compositional approaches; for example, most

behavioural approaches can differentiate between transient and permanent failure

events, as well as imposing more complex timing constraints. The analysis itself is

typically carried out by a model checker tool.

Although it is possible to obtain more detailed information via behavioural approaches

than compositional approaches, they also share the same general drawbacks: they are

more complex and time-consuming (both in terms of modelling and the computational

cost for analysis), and the level of detail required typically means that they can only be

applied later in the development process, when the in-depth data required is available.

Examples of behavioural simulation approaches include AltaRica, FSAP/NuSMV and

its successor xSAP, FPTA, and SAML.

2.2.2.1 AltaRica

AltaRica
23

 is a modelling language, methodology, and supporting tools for the formal

description and verification of complex systems [33]. In AltaRica, a system model has

two dimensions: like the various compositional techniques, AltaRica models a system

architecture as a hierarchy of components and subcomponents, but it also models the

system behaviour using a combination of states and events.

Component behaviour is defined in AltaRica using state variables and flow variables.

The former represent the internal state while the latter define the external interactions.

For example, a switch would have one state variable (on/off) and two flow variables,

one for input and one for output. Both types of variables are discrete rather than

continuous, meaning that continuous properties such as voltage etc. must be divided up

23

 https://altarica.labri.fr/wp/

https://altarica.labri.fr/wp/

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 36 Version 1.0 5 July 2023

Confidentiality: Public Distribution

into intervals (e.g. low voltage, normal voltage, high voltage). A transition occurs when

a variable changes from one value to another and must be caused by an event.

Two types of event are available in AltaRica: local events that are internal or local to

the component, and invisible events, which are external and not directly connected to

the component — and thus not visible to it. Keeping the switch example, toggling the

switch would be an example of a local event: it changes the state variable and is integral

to the switch component itself. On the other hand, a failure of the power supply could

be an invisible event: it changes the flow variables to e.g. ―low voltage‖ but the source

of the event is beyond the scope of the component. Priority values can also be assigned

to events, allowing high-priority events to supersede low-priority events.

All of this information is captured for each basic component in an interfaced transition

system. This contains descriptions of the various events, possible observations, available

configurations (i.e., possible combinations of state and flow variables), mappings from

observations to configurations, and the transitions that exist for each configuration.

Basic components can then in turn be composed into nodes, which are sets of

components that act together under a controller. The system itself is the top-level node.

Like components, nodes are also defined as interfaced transition systems. Unlike

components, nodes also have two additional fields: a description of the node‘s controller

and a set of broadcast synchronisation vectors.

As the name implies, broadcast synchronisation vectors are a form of synchronisation

mechanism and allow events from one component or node to be synchronised with

another. Other information can be included, e.g. indications of whether or not an event

is mandatory or constraints upon which combinations of events must or must not occur

together. In this way, the mechanisms can be used as Boolean operators or to define e.g.

k-out-of-n constraints.

Controllers are responsible for coordinating the configuration and behaviour of their

subordinate nodes. For example, a controller may ensure that an actuator is only active

when the switch is on and power is flowing. Because they act as parent components for

their subcomponents, a transition in a controller may also affect variables in the nodes

beneath it.

This knowledge of the behaviour of its subordinate nodes also enables a controller to

respond to failures. For example, a controller monitoring a primary component may

detect the transition of its operating state variable from ―Active‖ to ―Failed‖ and

activate a standby component in response by switching its state variable from

―Dormant‖ to ―Active‖.

An example AltaRica specification for a single-state node is provided below:

 node block
 flow
 O : bool : out ;
 I, A : bool : in ;
 state
 S : bool ;
 event

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 37

Confidentiality: Public Distribution

 failure ;
 trans
 S |- failure -> S := false ;
 assert
 O = (I and A and S) ;
 extern initial_state = S = true ;
 edon

This defines three flow variables (one output, O, and two inputs, I and A), a single state

variable S, and one event (failure). The failure event causes the transition of the state

variable S from true to false (i.e., it becomes inoperative). The last two elements define

an assertion (output O is true only if there is input at I, the control signal A is active, and

the operating state S is true) and the initial value of S (true, i.e., operational).

More complex specifications are possible, e.g. using temporal logic to define transitions

or assertions. Once defined, specifications for nodes can be stored in libraries for later

reuse.

Once the system model is complete, it can be simulated and analysed in a variety of

ways. Analysis involves transformation of the model into some other form first.

Simplified fault trees can be generated for analysis of non-dynamic failures, Petri nets

or Markov chains might be used to analyse dynamic failures, and transformation into a

model-checking language like SMV can be used to verify whether requirements are

met.

AltaRica provides a powerful and expressive language for model-based analysis of

systems. It grants a lot of flexibility, allowing transformation of the model into a variety

of other forms that can then be processed or analysed in different ways. However, as

mentioned earlier, the level of detail required can be burdensome and generally restricts

its use to later stages of development. Another issue is the problem posed by loops, bi-

directional signals, or circular propagations in the model, as might be found in electrical

networks or hydraulic systems — this can result in circular logic, i.e., something

causing itself, which will be rejected by AltaRica.

2.2.2.2 FSAP/NuSMV-SA

FSAP/NuSMV-SA
24

 is a tool consisting of two main parts: the Formal Safety Analysis

Platform, which is the graphical user interface, and NuSMV-SA, an extension to the

NuSMV model-checking engine with safety analysis capabilities [34]. It incorporates a

variety of features, from formal specification, model checking, automatic synthesis and

analysis of fault trees, and more.

The FSAP/NuSMV-SA process is generally as follows:

 System modelling, in which the system model is formally specified in the

NuSMV language. It can be a nominal system model, a dependability model, or

a combination of both.

24

 https://fsap.fbk.eu/

https://fsap.fbk.eu/

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 38 Version 1.0 5 July 2023

Confidentiality: Public Distribution

 Failure mode identification and model annotation, in which the failure

behaviour of the system components is specified. This can be achieved with

fault injection to obtain an extended system model, which describes the failure

modes of the constituent components. As with AltaRica, definitions can be

saved in libraries and reused in other models — or in the case of failure modes,

injected later for the purposes of simulation.

 Requirements capture, in which the functional and safety requirements are

defined. The system is then later evaluated and verified against these

requirements.

 Model simulation and analysis, which primarily involves formal verification via

model-checking but may also involve e.g. generation of fault trees for FTA

purposes.

The last stage is where the properties of the model are validated and verified, both for

nominal functional requirements and for safety requirements. Faults can be injected to

observe the effects and counter-examples are generated to document cases where

properties fail validation or verification. While model-checking is the primary aim,

FSAP/NuSMV-SA is also capable of conducting safety analysis directly via a modified

form of fault tree analysis. NOT gates can be included (imposing constraints on the

occurrence of events, e.g. that a failure only occurs if another event does not occur), as

can ordering information to cover cases where the sequence of events is important.

The NuSMV language itself is built on the concept of finite state automata (a form of

state machine). Component hierarchies can be defined and their behaviour is specified

using a form of temporal logic. NuSMV expressions can then be parsed and checked

against specified properties to see whether they hold true.

An example NuSMV description for a two-bit adder is provided below:

 MODULE bit(input)
 VAR
 output : {0,1};
 ASSIGN
 output := input;

 MODULE adder(bit1, bit2)
 VAR
 output : {0,1};
 ASSIGN
 output := (bit1 + bit2) mod 2;

 MODULE main
 VAR
 random1 : {0,1};
 random2 : {0,1};
 bit1 : bit(random1);
 bit2 : bit(random2);
 adder : adder(bit1.output, bit2.output);

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 39

Confidentiality: Public Distribution

First a bit is defined, capable of holding a value of either 0 or 1. The adder is then

defined as a function taking two bits. The main component then sets up two random

variables, two bits taking values from those variables, and the adder.

We can then inject a fault into the bit module:

VAR output_nominal : {0,1};
 output_FailureMode : {no_failure, inverted};
 ASSIGN output_nominal := input;
 DEFINE output_inverted := !output_nominal;
 DEFINE output := case
 output_FailureMode = no_failure : output_nominal
 output_FailureMode = inverted : output_inverted
 esac
 ASSIGN next(output_FailureMode) := case
 output_FailureMode = no_failure : {no_failure,
inverted};
 output_FailureMode = inverted : inverted;
 esac

Here we see that in addition to the nominal output (0 or 1), the bit component now has a

failure state (no_failure or inverted, i.e. the bit is flipped). The behaviour is then defined

(i.e., inverted output is the inverse of nominal output, the no_failure state produces

nominal output, and the inverted state produces inverted output), and finally we

introduce the possibility of changing state from no_failure to inverted (and once

inverted, we cannot change back). In practice, this would be defined via the FSAP

interface rather than textually — and once defined, can be stored in a library for later

reuse (or injection).

Annotations of failure behaviour like this can be used in multiple ways:

 They can form the basis of a behavioural fault simulation, which results in a

trace showing the effects of the fault and the system failures (if any) it causes.

 They can serve as input to a property validation, proving whether or not the

property holds (and if not, forming part of the counterexample demonstrating

why not).

 They can be used to automatically synthesise fault trees, illustrating the root

causes of a given failure event.

 And they can be used as part of a failure order analysis.

Fault trees are generated via a reachability analysis. This begins with the initial state(s)

of the system and produces successor states iteratively until a top-level system failure

state is reached. The result is the set of all states in which that failure event occurs, with

all nominal information removed and leaving only the failure modes. These can then be

simplified to produce minimal cut sets. One may note that this is the opposite of how

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 40 Version 1.0 5 July 2023

Confidentiality: Public Distribution

FTA is normally conducted: it is an inductive process rather than a deductive one. This

increases the computational expense considerably, since every single variable needs to

be tested in every possible combination to arrive at all possible causes of system failure.

Unlike FMEA, however, which is similarly inductive, effects of multiple combinations

of failures are considered (and is the cause of the combinatorial explosion).

It should also be noted that the fault trees obtained are ―flattened‖, i.e., they directly link

root causes to the system failure top event. The information about the propagation of

failure through the system is lost in the process. They also do not include any temporal

or dynamic information. Instead, if such effects are to be considered, a failure order

analysis is needed. This is based on the same process (and thus the two can be run

together) except additional timing and ordering constraints are applied to cut sets. The

failure order analysis results in a precedence graph displaying the order of events

necessary to cause the system failure event.

One of the major advantages of FSAP/NuSMV-SA is the wide range of capabilities all

contained within a single package. The same model is used for multiple purposes:

system architecture description, validation & verification of functional properties,

verification of safety requirements, model-checking and behavioural simulation, and

safety analysis. This contrasts with e.g. AltaRica, in which model-checking and analysis

is done separately after a model transformation (to NuSMV itself, for instance). The all-

in-one nature of FSAP means that everything is more tightly integrated and the

dependability information evolves along with the nominal system design, helping to

prevent errors and discrepancies from slipping in.

In addition to the downsides shared by other behavioural approaches, FSAP/NuSMV-

SA also suffers from the state-space explosion problem for larger models, where the

computational expense of analysis can become prohibitive. Due to the inductive way it

generates fault trees, even a purely static fault tree analysis is costly.

2.2.2.3 xSAP

To address some of the problems with FSAP/NuSMV-SA, a successor project emerged

through collaboration between the FBK (Fondazione Bruno Kessler) Group and Boeing:

xSAP
25

. Like its predecessor, it consists of two parts: the user interface package xSAP

and the underlying model-checking engine, nuXMV, itself an extension to NuSMV.

xSAP extends FSAP with a variety of new features, including:

 Library-based specification of faults and fault dynamics;

 Automatic model extension with fault specifications via fault injection;

 FTA and minimal cut set generation for dynamic systems

 FMEA generation

 Mode Transition Cut Set analysis

25

 https://xsap.fbk.eu/

https://xsap.fbk.eu/

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 41

Confidentiality: Public Distribution

 Common Cause Analysis

 Fault propagation analysis based on Timed Failure Propagation Graphs

 Fault detection and isolation

xSAP extends support to infinite state automata (as well as finite state automata) and

has expanded capabilities with regard to generation of counter-traces during property

validation and verification, including SAT-based bounded model checking. To support

safety certification processes required by newer safety standards, probabilistic FTA

support has been improved over FSAP and common cause analysis has been introduced.

xSAP can also be used to automatically synthesise Timed Failure Propagation Graphs

(TFPGs), which model Boolean derive of events, like fault trees, but can also model

quantitative timing delays between them [35]. A TFPG consists of nodes representing

failure modes or discrepancies (deviations from nominal behaviour) and edges that

represent the temporal dependency between nodes.

The xSAP methodology is shown below:

Figure 19 - xSAP methodology (from the xSAP manual)

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 42 Version 1.0 5 July 2023

Confidentiality: Public Distribution

As with FSAP, the system is formally modelled in two parts: the nominal functional

behaviour and the failure behaviour. The latter is part of the extended system model and

can be derived manually or with automatic support via fault injection (once suitable

failure modes have been defined).

Once modelled, requirements can be validated and functional properties can be verified.

Validation includes property consistency (checking that requirements are not mutually

exclusive), property assertion (i.e., that a property is a logical consequence of the

requirements), and property possibility (checking that a property is logically compatible

with the requirements). Model-checking for functional verification purposes supports

deadlock checking (ensuring the system does not cause terminating conditions). xSAP

also supports interactive simulation of system execution.

In addition to the variety of safety analysis techniques supported (FTA, FMEA, CCA,

TFPGs etc.), xSAP also supports analysis of fault detection/monitoring functionality,

including requirements based on inference of faults via indirect observations. It should

be noted that this is a design-time analysis, however, not runtime.

Like FSAP before it, xSAP has been integrated as an engine by other tools, such as

COMPASS [36] and AUTOGEF [37]. It provides a wide range of features and

capabilities presented as part of an all-in-one package. However, as with all behavioural

simulation approaches, xSAP requires detailed knowledge of the system to function and

tends to be more computationally expensive than compositional approaches.

2.2.2.4 FPTA

Fault Propagation & Transformation Analysis (FPTA) is a development of FPTC [38].

FPTA aims to address some of the limitations of FPTC, described earlier, by

introducing probabilistic model checking. The PRISM model checker is used to perform

the checking [39].

FPTA defines a system (the top-level element) as a set of components linked with

connectors. As with most compositional approaches, components possess an interface

defined by a set of input/output ports. Similar to SEFTs, however, components in FPTA

also possess one or more states known as ‗modes‘, including both normal operating

modes and any failure modes. These form Markov chain-esque state machines, and each

component therefore needs annotating with a set of possible transitions of the format:

 input_port.failuremode --> output_port.failuremode, probability

This both represents the probabilistic propagation of faults from inputs to outputs but

can also be used to encapsulate the generation of failures by giving a probability for a

‗normal‘ input to yield an output failure mode, e.g.:

 input.normal --> output.normal, 0.9999

 input.normal --> output.omission, 0.0001

As with the various compositional approaches, the component-level state machines

defined by these expressions can be connected together across the system to provide a

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 43

Confidentiality: Public Distribution

system-level view of failure. This is then passed to the PRISM model checker as a form

of Markov model and analysed accordingly.

The downside of creating a system-wide probabilistic model in this way is that it is

prone to the state-space explosion problem. Unlike GHCFTs or even SEFTs, which

attempt to modularise the model and limit the scope of the Markov analysis, in FPTA

the entire system must be analysed whole.

2.2.2.5 SAML

SAML — the Safety Analysis Modelling Language — is a tool-independent modelling

framework for the creation of system models with both probabilistic and non-

deterministic behaviour [40]. It acts as an intermediate layer between graphical

modelling tools (like Matlab Simulink or SCADE
26

) and model-checkers or other

verification tools (like NuSMV or PRISM). Model transformation is used to switch

between the input and output languages of different tools, with the intention of allowing

access to multiple tools and thereby taking advantage of the best features of each of

them (at the cost of complexity and the necessary transformations).

SAML takes the form of textual annotations to existing nominal system elements. The

annotations take the form of a formal representation of finite state automata, not unlike

FSAP or xSAP. These automata are executed synchronously in discrete time-steps and

can feature both non-deterministic and probabilistic transitions.

Figure 20 - Example SAML model (from [40])

26

 https://www.ansys.com/products/embedded-software/ansys-scade-suite

https://www.ansys.com/products/embedded-software/ansys-scade-suite

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 44 Version 1.0 5 July 2023

Confidentiality: Public Distribution

In the example above, two components (or modules) are defined, A and B. A has one

state variable (V_A) while B has two (V_B1, V_B2); V_A can have values 0, 1, 2,

while the variables in B are binary. Both modules then define a set of ―updates‖, which

are roughly equivalent to transitions in AltaRica and represent change in values of state

variables. The first update in A, for example, indicates a non-deterministic choice

between retaining the value 0 (with probability P_A, defined at the top as 0.1) or

moving to a value of 1 (with probability 1 – P_A). The update in B, by contrast, is

solely non-deterministic with no probability.

For specifying properties in a SAML model, a temporal logic is generally used. This is

usually CTL for qualitative properties or PCTL (a probabilistic extension of CTL) for

quantitative properties. These properties form part of the extended system model, which

(like FSAP) indicates the additions to the nominal model containing the failure

behaviour and other pertinent information, e.g. about the environment.

Verification and analysis of a SAML model requires transformation into a format

suitable for the target analysis tool. This can be done as part of the S
3
E SAML

workbench, based on the Eclipse platform [41]. Alternatively, or in addition, Deductive

Cause Consequence Analysis [42] can be used to perform a qualitative analysis

analogous to FTA, in which the minimal cut sets are computed. Probabilities can then

be calculated subsequently if required.

This transformation and reliance on other tools to perform analysis represents the key

disadvantage of the SAML approach. While in principle it offers more flexibility, in

practice differences in the semantics between the languages and tools involved can

present difficulties. NuSMV, for instance, does not support the parallel, synchronised

assignment of values that SAML relies on. Versus AltaRica, the model of time used is

different: SAML uses a synchronous yet discrete time model in which multiple

automata update simultaneously, whereas AltaRica uses continuous time with discrete

events in which only one transition is fired at a time [43].

2.2.3 Allocation of safety requirements

Analysing the causes and effects of failures on a system is only one part of the wider

dependability design process. As described above, several behavioural simulation

approaches also support validation and verification (V&V) of system properties,

including safety requirements (and often functional requirements too). Fault and failure

analysis is complementary to these activities, as identifying the possible failures and

evaluating their effects is necessary to determine whether the requirements are violated

or not.

This duality is captured by modern safety standards such as ISO 26262, where safety

requirements are established on the basis of an initial HARA and then subsequently

verified using safety analysis.

In ISO 26262, once hazards have been identified, a risk analysis takes place as part of a

HARA. Risks are evaluated along three axes: controllability (how easy it is to contain

and mitigate the hazard), severity (the degree of potential harm posed by the hazard),

and exposure (how frequently or how long the system may be vulnerable to the hazard,

or in other words, the likelihood of the hazard occurring). Each of these is scored along

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 45

Confidentiality: Public Distribution

a 4-point scale (either 0–3 for controllability and severity, or 1–4 for exposure). For

example, severity:

 S0: No injuries

 S1: Light or moderate injuries

 S2: Severe or life-threatening injuries (but survival probable)

 S3: Life-threatening injuries (survival uncertain), fatal injuries

On the basis of these scores, an ASIL — Automotive Safety Integrity Level — is

determined for each hazardous event according to a table:

 C1 C2 C3

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

Table 2 - ASIL determination according to ISO 26262

ASILs are effectively a qualitative measure of risk. QM means there is no need for any

special requirements and ordinary quality management controls are sufficient. A

represents a low risk, requiring only minimal measures to ensure safety, while D

represents the highest risk, requiring much stricter measures.

With ASILs determined, the next step is the definition of safety goals — the top-level

safety requirements that define the measures needed to avert or mitigate hazards and

reduce risk to acceptable levels. Each safety goal therefore inherits the ASIL assigned to

its relevant hazard and this serves as a kind of benchmark of the level of evidence

needed to show that the requirement is met. If different ASILs are assigned to similar

safety goals, the highest ASIL is the one used to represent the combined safety goal.

From safety goals, several stages of iteration follow in which functional safety

requirements are derived from the safety goals and then in turn technical safety

requirements — indicating how to fulfil the safety measures in the functional safety

requirements — are derived. Along the way, the critical parts of the system are

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 46 Version 1.0 5 July 2023

Confidentiality: Public Distribution

identified, indicating those components that are responsible for meeting the various

requirements. Those components then inherit ASIL values indicating how critical they

are to the overall safety of the vehicle and thus how stringent their development needs

to be. If multiple independent components are collectively subject to a requirement, the

responsibility of meeting that requirement can be shared amongst them according to a

simple algebra in which A = 1, B = 2, C = 3, D = 4, and an ASIL requirement can be

met by summing the ASILs of its components (e.g. A (1) + B (2) = C (3).

This latter process is known as ASIL decomposition. It is particularly important because

a component‘s ASIL can significantly impact its development and production cost, and

costs tend to rise exponentially with higher ASIL ratings. Thus it may be more cost

effective — and potentially more reliable — to e.g. use two ASIL B components rather

than a single ASIL D component. The figure below illustrates this idea:

Figure 21 - Inheritance and allocation of safety requirements throughout development

The concept may be straightforward enough — ASILs are allocated based on a

component‘s contribution to the overall safety requirements. But how is that determined

exactly? In order to allocate the right ASIL, we first need to understand how critical a

component is, how it responds to failure, which hazards it contributes to (and thus

which safety requirements it is subject to), and which other components it shares

responsibility with. All of this requires detailed knowledge of how the components are

connected and how failures propagate between them. And while the discussion above

has focused on ISO 26262, similar processes exist in other related standards, like

ARP4754-A.

Hardware Architecture

Design Architecture

Safety goal

ASIL D

Functional safety req.

ASIL D

Technical safety req.

ASIL D

Software/hardware

safety req.

ASIL D

E
v
o

lu
tio

n
 o

f th
e
 d

e
s
ig

n

inherited

inherited

inherited

Functional Architecture

Function 1

[ASIL D]

Compo-
nent 1.1
[ASIL B]

Compo-
nent 1.2
[ASIL B]

Acme
Widget
[ASIL B]

Ecma
Doodad
[ASIL B]

allocation

allocation

allocation

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 47

Confidentiality: Public Distribution

This is where MBSA techniques and compositional safety analysis approaches in

particular come in useful, because most of them function by analysing a system to

determine failure propagation and in doing so linking component-level failures to the

system-level hazards they cause. If a safety analysis shows that a given component

failure can lead directly to a hazard, then it must be allocated the full integrity level

necessary to meet the safety requirement associated with that hazard. If, on the other

hand, the analysis shows that a component can never cause that hazard, or does so only

in conjunction with other failure events, then a lower integrity level may be acceptable

[44].

As an example, consider the following system:

Figure 22 - Example system for ASIL allocation

Assume an ASIL of C has been assigned to the fire warning subsystem, on the basis that

its failure leads to the severe hazard ―No warning of fire‖. During development, the

design of this subsystem led to three subcomponents: the alarm and two different

sensors, either of which alone can trigger the alarm if fire or smoke is detected. We

could simply allocate ASIL C to all three subcomponents, but instead a preliminary

qualitative safety analysis has produced a fault tree showing that both sensors must fail

to cause the hazard (see below).

Fire warning system

Alarm

Heat

sensor

Smoke

detector

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 48 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 23 - Fault tree for ASIL allocation

In this case, we know we must assign ASIL C to the alarm, since it is a single point of

failure for the subsystem — failure of the alarm directly causes the hazard. However,

the two sensors together share responsibility for detecting the fire and thus must jointly

meet ASIL C. This presents us with four options for decomposition:

Heat sensor Smoke detector

QM C

A B

B A

C QM

Other combinations are of course possible, like allocating ASIL C to both sensors, but

this would not be cost effective. This can be seen more readily if we assign cost values

to each ASIL, e.g.:

 QM = 0

 A = 1

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 49

Confidentiality: Public Distribution

 B = 10

 C = 100

 D = 1000

We can then determine the total cost of each possible allocation in the table:

Heat sensor Smoke detector Cost

QM C 0 + 100 = 100

A B 1 + 10 = 11

B A 10 + 1 = 11

C QM 100 + 0 = 100

As can be seen, the most cost-effective allocation here would be to assign ASIL A to

one sensor and ASIL B to the other.

More complex scenarios exist where requirements overlap. Consider a situation where

the heat sensor somehow contributes to another hazard (and thus is subject to another

safety requirement) but the smoke detector is not. In such a case, the second

requirement may impose a minimum ASIL requirement on the detector — e.g. ASIL C

— which rules out all but the last row in the table above. In other cases, the

decomposition might produce too many options, making it difficult to manually choose

an allocation or even for a tool to deterministically derive an optimal solution; in such

situations, an automatic optimisation process can be used to rapidly determine optimal

solutions. The HiP-HOPS approach is capable of such a process and has been applied to

both ASILs for ISO 26262 [27] and DALs for ARP4754-A [28].

Beyond supporting allocation of decomposed SILs, safety analysis is also vital for

demonstrating that the requirements have been met to the desired standard. Qualitative

analyses indicate failure cause and effect, potentially highlighting places where e.g.

components contribute to hazards but they have not been subjected to the necessary

requirements due to an oversight. And quantitative analysis produces probability

estimates that can be used to show whether requirements have been met according to

guidelines that govern the likelihood of hazards (since reducing the likelihood is one

way to reduce risk). For instance, a high integrity level might mandate a maximum

probability of no higher than 1e-6, while a low level might only impose a threshold of

1e-4. Analysis can then demonstrate whether these thresholds are met.

2.2.4 Safety argumentation

In addition to failure analysis and support for the allocation of safety requirements,

another aspect of the dependability-driven development process that can benefit from

MBSA is in the generation of safety argumentation. Standards do not just impose a

methodology to follow: they typically also require the documentation of evidence of

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 50 Version 1.0 5 July 2023

Confidentiality: Public Distribution

any actions taken to argue that a system is safe. Such documentation is often referred to

as a safety case.

Although there is no single formal definition of what a safety case should contain or

how it should be specified, the definition in [45] is a good indicator: ―A safety case

should communicate a clear, comprehensive and defensible argument that a system is

acceptably safe to operate in a particular context.‖ Safety cases have been adopted by

various standards across various industries, including ARP4754-A. Each has their own

slightly different definition of what a safety case is; for example, the UK Ministry of

Defence defines a safety case as:

―... a comprehensive and structured set of safety documentation which is

aimed to ensure that the safety of a specific vessel or equipment can be

demonstrated by reference to safety arrangements and organisation,

safety analyses, compliance with the standards and best practice,

acceptance tests, audits, inspections, feedback and provision made for

safe use including emergency arrangements.‖ [46]

Generally speaking, common aspects covered by a safety case may include:

 Definition and/or description of the system, including its scope.

 The hazards identified.

 The safety requirements.

 A risk assessment.

 Risk reduction measures and safety mechanisms etc. applied.

 Safety analysis results to provide evidence of the efficacy of such measures and

to show that the requirements have been met.

 Information about the development process undertaken.

However, the primary aim of a safety case is to argue that a system is sufficiently safe,

and in that respect the most important three elements are the safety requirements,

arguments as to how the requirements have been addressed, and evidence to prove the

claims (e.g. in the form of safety analysis results).

2.2.4.1 Goal Structuring Notation

Due to the informality in the definitions and the ensuing lack of clarity involved in

producing safety cases, a variety of different safety argumentation notations have been

proposed to try to formalise and structure the process more clearly. Perhaps the most

prominent is the Goal Structuring Notation (GSN), developed at the University of York

in the 1990s and now maintained by the Assurance Case Working Group (ACWG) [47].

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 51

Confidentiality: Public Distribution

Figure 24 - GSN Elements (from [48])

The core elements of GSN include:

 Goals represent safety claims made;

 Strategies represent the inference between a goal and any supporting goals;

 Solutions provide references to evidence to support a claim;

 A Context can be a statement or a reference to some contextual information;

 An Assumption is a hypothesis made as part of the argument;

 A Justification is a rationale behind the choice of a strategy;

 And undeveloped elements act as placeholders for future argumentation.

Together, these elements form an interconnected argument structure. For example:

Figure 25 - Example GSN argument structure (from [49])

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 52 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Here, the top-level argues that the ―control system is acceptably safe to operate‖. Two

context elements are linked, and two supporting goals are defined: one stating that all

hazards have been eliminated or mitigated and the other stating that the control software

has been developed to the appropriate SIL. Further context elements provide support for

these, including a reference to hazards from a hazard analysis.

Each of these subgoals is elaborated further via two strategies. The first deals with each

hazard, claiming that some hazards have been eliminated and that the probability of

others has been reduced to a given level; the former is argued on the basis of a formal

verification solution, while the latter is determined by an FTA. The second strategy,

referring to the SIL, likewise has solutions providing evidence to support the claims —

in this case, documentation from the development process.

The structured nature and graphical layout of GSN are a significant improvement over

informal, ad-hoc safety cases, particularly in terms of making the logic of the safety

argument clear. Over time, GSN has matured and been standardised, allowing

production of supporting materials to flourish.

However, just like early safety analysis approaches, one of the drawbacks of GSN is

that it is separate to the development models used during the design process — and also

to the safety models and analysis artefacts.

2.2.4.2 CAE – Claims, Arguments, Evidence framework

GSN is not the only notation used for safety argumentation. CAE — the Claims,

Arguments, Evidence Framework — is another. Developed by Adelard LLP, it was

originally intended for reasoning about the safety and trustworthiness of systems, as in a

safety or assurance case
27

. Over time, its uses have broadened to reasoning more

generally about complex systems and across the system lifecycle.

As the name implies, there are three key elements to CAE:

 Claims, which are true/false statements about a property of an item (e.g. ―the

train is safe‖);

 Arguments, which are rules that link evidence or assumptions with the claim

being investigated;

 Evidence, which consists of artefacts that establish trusted facts and thus support

a claim.

A variety of building blocks are used to help assemble assurance cases, acting like

templates that address particular types of problems. For example, decomposition breaks

up a claim into multiple sub-claims: if it can be established that a property holds for all

subcomponents of an object, then that property holds for the object itself too (for a

given context, at least). Substitution indicates that if a property holds for one item, then

it also holds for an equivalent item. Others include ‗concretion‘ (making a claim more

precise), ‗calculation‘ (computing a property from other related properties), and

evidence incorporation.

27

 https://claimsargumentsevidence.org/

https://claimsargumentsevidence.org/

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 53

Confidentiality: Public Distribution

These building blocks can be illustrated by the ‗helping hand‘:

Figure 26 - The CAE 'Helping Hand'
28

Although there are plenty of cosmetic differences, CAE and GSN are generally

comparable in what they express and have both been successfully used to create safety

cases. Like GSN, however, the information recorded by the CAE model is largely

separate to those of the development models used during the design process (though

these models could be included as evidence artefacts).

2.2.4.3 SACM

The Structured Assurance Case Metamodel (SACM)
29

 is one attempt to address this

shortcoming. Developed by the Object Management Group, it is a metamodel intended

for the representation of structured arguments such as safety cases/assurance cases. An

assurance case is defined in SACM as a set of claims, arguments, and supporting

evidence to justify a claim that a system satisfies some set of requirements.

The goal behind SACM is to provide a model-based approach to system assurance and

supports existing graphical notations like GSN and the Claims, Argument, Evidence

approach. It is a package consisting of five main elements:

28

 https://claimsargumentsevidence.org/wp-content/uploads/2018/01/helping_hand.jpg
29

 https://www.omg.org/spec/SACM/2.2/About-SACM/

https://claimsargumentsevidence.org/wp-content/uploads/2018/01/helping_hand.jpg
https://www.omg.org/spec/SACM/2.2/About-SACM/

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 54 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 27 - SACM elements (from [48])

The AssuranceCase element, as the name would suggest, encapsulates all the concepts

necessary to produce an assurance case, like a top-level container. This is further

supported by the Argumentation component (for making claims and arguments), the

Artifact component (representing concepts used in defining evidence for the

arguments), and the Terminology component (which helps to define the vocabulary

used to express system properties and characteristics). The Base component,

meanwhile, encapsulates all basic entities such as multi-language strings.

Compound assurance cases can be constructed via bindings to link subordinate

assurance cases together (along with structured information that justifies why such a

link between the systems being represented is possible in terms of compatibility and

trustworthiness).

SACM also provides an ―Interface‖ concept for the purposes of model exchange etc. By

means of an AssuranceCasePackageInterface, some part of the assurance case can be

exposed, e.g. to make it queryable or exchangeable at runtime. The Base component can

also define the necessary formats to support machine readability as well as human

readability.

Figure 28 - Overall SACM metamodel
30

30

 https://www.omg.org/spec/SACM/2.2/PDF

https://www.omg.org/spec/SACM/2.2/PDF

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 55

Confidentiality: Public Distribution

These features for compositionality and modularity make it easier to divide up an

assurance case into smaller, more manageable (and understandable) components,

particularly when dealing with different but related concerns, such as security and

safety. It also makes it more feasible for assurance cases to be used at runtime, e.g. in

multi-agent or cooperative systems of systems, where different agents must negotiate

their demanded safety requirements and provide safety assurances to attempt to

guarantee collective safe operation.

Newer versions of SACM also define its own graphical notation (in addition to

supporting multiple existing approaches, like GSN and CAE) and there are tools that

support this, as illustrated by the ACME tool (Assurance Case Modelling Environment)

[50].

2.2.4.4 Automatic generation of Safety Cases

With the aid of model-based dependability approaches, it is possible to both combine

safety cases with dependability models (as in the case of safeTbox, for example) and in

some cases generate safety cases semi-automatically from dependability models.

In the context of model-based safety analysis, the advantages offered by such a

capability are obvious. Just as it can be a challenge to keep a safety analysis current

with an evolving design, so can it be a challenge to keep the safety argumentation up to

date (an even greater challenge, arguably, since the latter depends on the safety analysis

too). If all of these could be linked together as part of a cohesive, over-arching model

framework, then they can all move in lockstep and be updated together. As the design

changes, the safety analyses can be re-run on the same model to ensure the safety

requirements still hold (or if not, why not). This means any safety implications

introduced by the design change can be identified immediately and any conclusions

reached can thus be fed into the next design iteration. If the safety argumentation can

then also be generated, this means that the safety argumentation for the model is

automatically updated so that it always reflects the current state of the design without

the need for extensive (and potentially costly) manual revisions.

Given the potential benefits it offers, there has been a range of work in this area in

recent years. The FLAR2SAF (Failure Logic Analysis Results to Safety Case Argument

Fragments) approach [51] is one such work, which makes use of FPTC and the CHESS

toolset [52]. FPTC expresses how a component can propagate, transform, or even

absorb a failure received at its input and transmitted from its output, and from this a

type of safety contract can be defined. Such contracts indicate safety properties that a

component either requires or guarantees during its operation, and may be either ‗weak‘

(context dependent) or ‗strong‘ (context independent). The output of the FPTC analysis

itself can then be used as evidence in support of the safety contract, forming a kind of

component-level safety case (or fragment).

Another approach is the THRUST methodology [53]. THRUST uses the concept of a

process line, which are sequences of tasks that can potentially vary or branch out. Tasks

are assigned to specific people (or rather, people serving specific roles) and specific

tools that are used to create products and complete those tasks. An argumentation line

uses this same concept to create a safety argument, supporting a given process line.

Although different languages are used (SPEM or vSPEM for the process line,

S-TunExSPEM for the argumentation line), both are modelled in parallel and the

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 56 Version 1.0 5 July 2023

Confidentiality: Public Distribution

process line model can also be transformed to help serve as the basis for the

argumentation line. This helps ensure that both are kept in sync while also enabling

information in the process line model to be reused directly as part of the argumentation

line, although there is no formal metamodel encompassing both lines.

Other works have adopted a verification-oriented approach using formal verification.

The technique in [54] uses code along with formal specification, the safety

requirements, and FTA to identify flaws in either the specification or the code by means

of path and coverage analyses and verifying whether the formal specification holds. In

[55], formal software verification is used to produce arguments from argument patterns.

Safety properties are formally specified, defining the goals of the safety case, and then

analysis evidence is collected to support these goals and verify the requirement over the

course of multiple phases, beginning with high-level hazards and moving on to low-

level failures. Here the claims of the safety cases are manually created but then backed

with evidence generated automatically by the verification process.

Finally, there have also been several approaches built on the HiP-HOPS tool. [56] and

[57] present an approach for automatically generating safety arguments for software

product lines by combining variability management, MBSA (via HiP-HOPS), and

assurance cases (via SACM). An integrated metamodel encompassing functional,

architectural, and failure models is used to model the software product lines;

HiP-HOPS‘s capability for automatically allocating SILs is used to guide the

argumentation (in the form of SACM), and evidence is provided by safety analysis

techniques such as the AADL error annex and HiP-HOPS. A more generic approach is

presented in [58], in which argument patterns are used to algorithmically control the

generation of safety argumentation when combined with the ability to automatically

allocate DALs. This process is illustrated by the diagram below:

Figure 29 - Process of automatically generating safety arguments (from [58])

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 57

Confidentiality: Public Distribution

Matlab Simulink and HiP-HOPS are used to illustrate the process. Functional and

system modelling is performed in the former, while hazard analysis and local failure

behaviour annotation is performed via the HiP-HOPS plugin. Reliability analysis (in the

form of FTA and FMEA) is performed on this model via HiP-HOPS. On this basis,

DALs (or other forms of integrity levels) can be allocated across the subcomponents,

representing how the safety requirements are distributed over the system. Finally, the

model, analysis results, and decomposed requirements are used in conjunction with a

given argument pattern to instantiate the (preliminary) safety case argumentation

structures.

Regardless of the exact technique employed, the ability to automatically generate safety

cases (or parts of them) from joint nominal/dependability models offers significant

advantages in ensuring that safety argumentation is comprehensive, up-to-date, and

accurate with respect to the underlying design models. Furthermore, by significantly

reducing the effort involved, it means that the safety argumentation can be generated

much earlier and kept in sync with the evolving design during development, rather than

only being created at the end.

2.2.5 Digital Dependability Identities: a comprehensive approach to model-based safety

Digital Dependability Identities, or DDIs, are self-contained, analysable, and

composable models that combine all the information necessary to uniquely describe the

dependability characteristics of a component or system [59]. Originally developed as

part of the H2020 DEIS project
31

, the motivation behind the DDI is to encapsulate

model-based descriptions of all required dependability artefacts — hazard and risk

analyses, fault trees, FMEAs, Markov models, system architectures, safety

argumentation etc. — in a standardised, machine-readable form. A DDI can then be

composed hierarchically or otherwise connected to other DDIs to form a description of

an entire system (or even system of systems).

Figure 30 - Composition of DDIs

Because they capture all the necessary dependability properties into a single

standardised entity, DDIs can streamline the exchange and evaluation of information,

both within a developer organisation and outside the organisation (by providing a

limited interface that exposes pertinent data while hiding implementation detail). They

also serve as living dependability assurance cases, including both the dependability

requirements for the component, arguments for how they are met, and evidence (in the

31

 https://www.deis-project.eu/

https://www.deis-project.eu/

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 58 Version 1.0 5 July 2023

Confidentiality: Public Distribution

form of safety analysis artefacts) to support the arguments. An example of this can be

seen below.

Figure 31 - Illustrative DDI for a dependability assurance case

It is important to note that DDIs are intended to be evolving artefacts and may assume

different forms and contain varying content depending on the intended recipient and the

current stage of the system lifecycle. Early DDIs may be more abstract, for instance,

becoming more detailed as the design evolves. Alternatively, DDIs could be divided

according to exposure: white box DDIs would be used for internal development,

containing (and exposing) all information; grey box DDIs could then be provided to

integrators/suppliers and would contain the same range of information but limit some of

the implementation details for the purposes of IP protection; and black box DDIs that

contain only the dependability guarantees could be employed in the field.

Experimental work has also been undertaken to apply DDIs at runtime as part of a

cooperative vehicle platooning system using ConSerts (c.f. 4.2.2) [60]. Here, the

information about the vehicles stored in the DDIs is combined with ConSerts‘ ability to

exchange conditional safety guarantees and a runtime monitoring architecture to show

how systems can react dynamically to changing environmental conditions to maintain

safe operation. This paves the way towards the EDDI, or Executable DDI, as discussed

in Section 5.

Prototype tool support for DDIs already exists for the safeTbox and HiP-HOPS tools,

achieved via model transformation using the Apache Thrift
32

 framework.

Specification and standardisation of DDIs is achieved via the Open Dependability

Exchange (ODE) metamodel
33

. The ODE comprises two main parts: the assurance case

metamodel (a version of SACM, which has already been discussed in Section 2.2.4.3)

32

 https://thrift.apache.org/
33

 https://github.com/Digital-Dependability-Identities/ODE

https://thrift.apache.org/
https://github.com/Digital-Dependability-Identities/ODE

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 59

Confidentiality: Public Distribution

and the product metamodel (which models the system dependability information). In

effect, the ODE is therefore a superset of SACM with added features for system and

failure modelling.

A summary of updates made to the ODE in SESAME is provided in section 5.2. More

detailed information can also be found in D4.2/D5.2: Safety/Security-targeted ODE

and EDDI Specification.

2.3 SAFETY ANALYSIS IN SESAME

The overall goal of SESAME is to develop an open, modular, configurable, model-

based approach for systematic engineering of dependable multi-robot systems (MRS).

The unique challenges of MRS — namely, complexity, intelligence, and autonomy —

all pose obstacles to that goal, and a holistic solution needs to tackle them all together

rather than coming up with disparate, disconnected answers to each problem.

At the core of any solution, therefore, there needs to be a common foundation of

knowledge: a model or set of models that supports all the necessary activities to achieve

the goal. These models need to be compatible with each other, modular (to support the

open and distributed nature of an MRS), and be applicable both at design time and at

runtime.

When it comes to dependability in SESAME, the key model is the EDDI or Executable

Digital Dependability Identity. Like DDIs, these are intended to be model-based

artefacts that contain all the required dependability information about a given system or

component — such as safety and security hazards, their potential causes, effects, and

possible corrective actions, as well as safety argumentation and information about the

system architecture itself. They should also support any relevant dependability

activities, whether that be safety analyses, allocation of requirements, or synthesis of

safety argumentation. Unlike DDIs, however, EDDIs are intended to be fully executable

at runtime, capable of communicating and adapting to changing circumstances to help

ensure continued safe operation.

A model-based solution to dependability and safety in particular is critical to developing

this capability. In particular, several of the tools and technologies discussed in this

section will prove valuable in this regard.

2.3.1 Application of MBSA at design time

While much of the focus in SESAME is on runtime capabilities, design time activities

are not neglected either. Although not all aspects of an MRS can be argued to be safe

purely on the basis of design-time analyses, thanks to the uncertainty inherent in their

dynamic, autonomous operation, there are aspects that can benefit from such a process

— particularly those which are static or limited to a single platform.

Furthermore, much of the work to ensure safety at runtime relies on a solid foundation

of prior dependability analysis done at design time: investigating possible hazards,

establishing potential causes and effects, hypothesising mitigation measures etc. Even if

some issues can only be solved at runtime, they have to be identified first before

solutions can be developed.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 60 Version 1.0 5 July 2023

Confidentiality: Public Distribution

To this end, many of the MBSA techniques described earlier can prove invaluable. In

particular, tools and techniques that support compositional safety analysis — like

HiP-HOPS‘s support for FTA and FMEA, or safeTbox‘s Component FTA —allow an

integration between the nominal system architecture models and the models of failure

behaviour. They also provide some support for other activities that cover more of the

design lifecycle, whether that be in terms of decomposing requirements via the

allocation of integrity levels or in the generation of safety argumentation in the form of

safety/assurance cases. Additionally, work has already been done to enable these tools

to support the ODE.

Use of such tools enables us to:

 model a system architecture at various levels of abstraction;

 identify potential hazards;

 develop and decompose safety requirements across the system;

 annotate the model with failure behaviour and subsequently perform safety

analyses (whether static, such as FTA or FMEA, and dynamic, e.g. Markov);

 verify that safety requirements are met and, if so, potentially generate safety

argumentation semi-automatically.

Deliverable D4.2/D5.2: Safety/Security-targeted ODE and EDDI Specification

describes the changes made to the ODE to support EDDIs, including:

 More support for dynamic models, including generic state machines and

Bayesian networks.

 A degree of support for ML safety techniques.

 Specification of runtime evidence monitoring requirements, i.e., events, event

monitors, actions.

 Means to capture information about situation-aware dynamic risk assessment.

 More interconnections between different model types to support later runtime

diagnosis.

 Further extensions to support security analysis and runtime security monitoring.

Deliverable D4.6: Tools for Automated Safety Analysis of EDDIs presents more

information on how these tools — and other supporting applications — have been

adapted for use in generating design time EDDIs.

2.3.2 Generation of runtime artefacts

Though the generation of EDDIs at design time is a worthwhile endeavour in itself, it is

insufficient on its own to help ensure safe operation of MRS: it is also necessary to have

runtime capability in order to tackle the other challenges of intelligence and autonomy.

To that end, EDDIs capable of being executed at runtime to provide monitoring,

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 61

Confidentiality: Public Distribution

diagnosis, and potential adaptation capabilities are needed, and these will derive to a

significant degree from the initial design-time EDDIs generated via the various MBSA

approaches.

While it may not ever be possible to completely automate their generation, being able to

synthesise frameworks or templates that can then be augmented with additional

runtime-specific information will both save effort and ensure that the valuable

information acquired at design time is able to be taken advantage of at runtime.

Although the runtime aspects of EDDIs are primarily the domain of WP7, they are also

touched on further in Section 5 of this document.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 62 Version 1.0 5 July 2023

Confidentiality: Public Distribution

3. THE CHALLENGE OF INTELLIGENCE

3.1 DEFINING THE PROBLEM

Artificial intelligence is not a new topic. The term itself was first coined in 1956 by

acclaimed computer scientist John McCarthy [61] and the field began to develop across

the 1960s and 70s with work on neural networks, natural language processing, and

symbolic reasoning. The term ―machine learning‖ (or ML) was defined in 1959 [62],

though work in the field was already taking place before an umbrella term existed for it.

Three main paradigms of ML exist:

 Supervised learning, in which the program attempts to learn general rules from

example inputs and corresponding desired outputs;

 Unsupervised learning, in which the program is left to create its own structures

about input data;

 Reinforcement learning, in which the program receives feedback to reward

success or penalise failure.

Artificial neural networks, one of the most common forms of ML model, actually

predate the term artificial intelligence, originating in the 1940s as a form of

unsupervised learning and then evolving over the following decades with the

development of back-propagation and multi-layer networks for deep learning. Artificial

neural networks (NNs) are inspired by the biological structures of the human brain and

consist of a group of interconnected neurons, typically organised in several layers as

part of a directed, weighted graph. Each neuron is represented by a node in a graph and

is generally connected to other nodes in the next layer by weighted links, with the

weight indicating its relative importance.

A neural network is then evaluated by assigning input values to the neurons of the first

(input) layer, and then using those to calculate the values of the next layer. This process

repeats for each subsequent layer until the values of the final output layer are obtained.

The value of a neuron can be obtained in different ways, but typically involves

calculating a weighted sum of all inputs to the neuron and then applying an activation

function, such as the Rectified Linear Unit function (where ReLU(x) = max(0, x)) [63].

Critically, during training NNs act as an adaptive system, meaning they are able to

change their structure (or weightings) based on the input to the network. In general

terms, this is thus how a neural network ‗learns‘: sample input is provided and

compared to expected output, and the weightings of the network are adjusted

accordingly to minimise the deviation between expected and actual output. In this way,

a NN can be trained to generalise a task — such as recognition — from a finite set of

training data to unseen, real-world data. Doing so is often more efficient than

developing an equivalent algorithm manually, especially since NNs can be tailored to

specific uses based on the training data provided.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 63

Confidentiality: Public Distribution

Figure 32 - An example neural network (from [64])

Neural networks can come in a variety of forms and have a range of applications. For

example, one of the most common forms of NN used for image recognition and

computer vision is the convolutional neural network (or CNN). More generally, deep

neural networks (or DNNs) are those in which there are multiple ‗hidden‘ layers

between the input and output layers. DNNs are a typical tool used in deep learning, a

form of ML that focuses on artificial neural networks specifically.

It is only in recent years, however, that the potential for widespread usage of machine

learning in general and deep learning in particular has emerged. In many cases, these

applications are safety-critical systems, such as environmental perception and self-

navigation in robots or diagnostic support in the medical domain. There are several such

examples from amongst the SESAME use cases; for example, the ability of a drone or

robot to detect the presence of a nearby human is important to prevent unintended

exposure to UV-C light in the Locomotec disinfection robot use case, and the ability to

detect fungal infection in crops via drone observation is a key element of the Domaine

Kox / Aero41 / LuxSense vineyard use case.

Autonomous systems like MRS stand to benefit enormously from the potential offered

by ML — but only if the artificial intelligence can be trusted to perform safely [65].

While performance of ML algorithms continues to improve, safety assurance is perhaps

the key challenge to be overcome before ML solutions to such problems can find

widespread acceptance.

Part of the reason for this is that one of the fundamental problems facing ML

proponents is that the decisions made by ML components are both opaque and

inherently uncertain. While this uncertainty can never be entirely erased, methods for

quantifying the degree of uncertainty would at least provide some measure of

confidence in the results and allow for requirements on ML safety and performance to

be more easily verified. One key aspect of this is the property of robustness, i.e., the

quality of a DL model such that its decision is unaffected by small perturbations of its

input [66]. Even highly accurate neural networks can be fooled by so-called adversarial

examples [67] — taking a correctly classified input, applying a slight modification to it

(e.g. random noise), and receiving an incorrect classification as a result.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 64 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 33 - An adversarial example leading to a misclassification
34

More generally, even the best trained DL model would likely be unpredictable in the

face of unexpected input it had not been trained for — data which is out-of-distribution

(or OOD) [68]. The ability to detect such input and assign a low confidence to the

ensuing decision at least enables the system to warn of potential risk in such cases.

This latter point touches on another important aspect of ML safety: that of

explainability. As mentioned earlier, one of the issues with ML components is that their

behaviour is largely opaque; they are not like manually crafted algorithms, where the

underlying code can be examined, and so it can be difficult to know why they behave as

they do. Finding ways to explain and justify the decision made by a NN on the basis of

its input helps reduce the opacity of the ML component, thereby improving trust. This

latter quality is sometimes termed ‗XAI‘ — explainable AI.

The ability to determine the accuracy (and thus safety) of ML components, as well as

explain their reasoning, is a vital step towards the effective assurance and regulation of

AI in safety-critical applications. A safety requirement is of little use if there is no way

to determine whether or not it has been upheld, and safety argumentation is difficult to

produce if there is no explanation behind the behaviour of the system in question. An

analysis of the ISO 26262 methodology, for instance, found that up to 40% of software

safety methods are not directly applicable to ML models [69]. Consequently, until such

methods exist, it is also hard to develop suitable standards to govern the use of AI-

enabled safety-critical systems [70].

3.2 STATE OF THE ART: SAFETY OF MACHINE LEARNING

Unlike traditional system safety, which has had decades of development across a wide

range of domains to produce tried and tested analysis techniques such as FMEA or FTA

and well-regarded paradigms like MBSA, ML safety is still a new and evolving field.

While many approaches have been proposed, they often focus on different goals or have

a relatively narrow applicability (e.g. a specific type of model or a certain type of input).

The table below provides a summary of some relevant research in the field. Afterwards,

key examples will be discussed in further detail. The table indicates whether an

approach is model-specific (i.e., needs access to the model‘s underlying parameters and

structure) or model-agnostic (i.e., treats the model as a black box and requires only the

34

 http://machinelearningintro.uwesterr.de/attacks-on-ml-models.html

http://machinelearningintro.uwesterr.de/attacks-on-ml-models.html

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 65

Confidentiality: Public Distribution

inputs and outputs), the type of input (e.g. images, tabular/numeric data), the type of

task (regression or classification), and whether or not it can operate at runtime.

Table 3 - Summary of various ML safety approaches

Approach Features Access

Type

Input

Type

Task

Type

Run-

time?

DeepCert [71] Aims to verify the robustness of DNN image

classifiers in terms of sensitivity to image-based

perturbations, e.g. blur, haze, contrast etc. Instead of

measuring small pixel variations, these contextually

relevant perturbations are encoded and quantified

specifically. Demonstrated via integration with the

Marabou DNN verification toolbox.

MS I C No

DeepImportance

[64]

Presents a systematic methodology for DL testing with

new Importance-Driven Criteria. This allows a layer-

wise functional understanding of DL components —

the causal relationships between neurons — and thus

makes it possible to assess the semantic diversity of a

test set in terms of testing important neurons (in effect,

a form of test coverage). Has an open source tool.

MS T/I R/C No

Marabou [63] A verification tool that can query fully connected and

convolutional DNNs to provide a reachability and

robustness assessment for a given neural network.

Requires internal knowledge of the DNN to work as it

performs a lazy search to locate solutions to non-linear

constraints on the model.

MS T/I R/C No

NN-Dependability

[72]

Proposes new dependability metrics to measure the

effect of uncertainty elimination in the ML/DL

lifecycle. Also provides a formal reasoning engine to

guarantee ML/DL behaviours.

MS T/I/TS C Yes

ReAsDL [70], [66] Focuses on the impact of the operational profile on

robustness. Divides the input space into small cells and

evaluates the reliability of the ML/DL based on

robustness and operational profile of those cells.

Prototype tool available online.

MA T C No

Safe AI [73], [74],

[75], [76]

A collection of related approaches, e.g. DiffAI, DL2,

AI
2
, PRIMA etc. Their main focus is on possible

perturbation to the input space (adversarial examples)

and providing robust, safe, and interpretable solutions

and certifications.

MS T/I C No

SAFE-DNN [77] Investigates the property inference in DNNs as part of

the verification process. Combines supervised and

unsupervised learning by augmenting the feature space

of the (supervised) DNN with features extracted by an

MS T/I C No

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 66 Version 1.0 5 July 2023

Confidentiality: Public Distribution

(unsupervised) spiked neural network, increasing

robustness of the DNN.

Safeguard AI [68] Calculates probability for out-of-distribution input as

confidence loss and adds that probability to the

existing loss function. Intended for use during training

by identifying OOD samples and generating improved

training data using a GAN to minimise confidence

loss.

MS I C No

SafeML [78] Uses statistical distance measures to quantify the

distributional shift. Then estimates the accuracy,

updates the uncertainty, and evaluates reliability.

MA T/I/G
35

 C Yes

Uncertainty

Wrappers [79], [80]

Focuses on three main ML verification domains:

model performance, input quality, and scope

compliance. Provides a set of useful functions to

evaluate the existing uncertainties in each step.

MA T/I C No

Key:

 MA/MS = Model-agnostic / Model-specific

 T/I/TS/G = Tabular numeric data / Image data / Time-series / Graph data

 R/C = Regression / Classification

Most of the approaches in the table are model-specific, meaning they require internal

knowledge of the DNN to operate. While this can yield more in-depth information, it

also limits the applicability of the approach and generally increases the complexity in

the process. Model-agnostic approaches, while potentially less expressive, require only

the inputs and the outputs (e.g., test data and resulting classifications), meaning they can

be applied to a wider range of DL components, including those where access to the

underlying model structure is not available.

The ability to operate at runtime is also valuable in a SESAME context, though few

approaches allow this.

3.2.1 Maribou

Maribou [63] is a DNN verification and analysis tool
36

 which builds on an earlier

project called Relupex [81]. Both transform the problem of DNN verification into a

constraint satisfaction problem and use an SMT
37

-based, lazy search technique to obtain

a solution that meets the given constraints. Non-linear constraints are treated lazily as it

is possible that they may prove to be irrelevant and thus do not need to be addressed.

Maribou further attempts to simplify the non-linear constraints by deducing new facts

about them.

35

 Use of graph data input for SafeML is still in early development
36

 https://github.com/NeuralNetworkVerification/Marabou
37

 Satisfiability Modulo Theories

https://github.com/NeuralNetworkVerification/Marabou

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 67

Confidentiality: Public Distribution

Maribou has native support for fully connected convolutional DNNs. Unlike its

predecessor, it is not limited to only ReLU activation functions. It also has support for a

divide-and-conquer approach to solving, in which an initial time limit is set; should this

timeout be reached, the input query is decomposed into further sub-queries (with a new,

larger time limit) and each sub-query is then processed individually (and potentially in

parallel). A simplex-based linear programming core is used as the internal solver while

input queries can be obtained via text format or via a TensorFlow model; similarly,

properties can be provided via text format or compiled into the solver via Python code.

Figure 34 - Components of the Maribou tool (from [63])

The tool treats each neuron as a variable, and thus attempts to find an assignment of

neurons that satisfies the constraints. Lower and upper bounds are also maintained for

each variable over the process, and in each iteration, variable assignments are adjusted

to attempt to correct any violated constraints. The loop is guaranteed to eventually

terminate, although only for activation functions that are piecewise-linear. The

deduction mentioned earlier helps to tighten and refine the upper and lower bounds via

network-level reasoning.

As Maribou is a model-specific technique, it requires internal knowledge of the DNN in

question.

3.2.2 ReAsDL

The ReAsDL approach [70] is an attempt to address the potential impact of operational

profiles on DL robustness. Operational profiles are a concept that originates in software

testing; an operational profile is meant to quantify how software will be operated, thus

allowing testing efforts to be focused on the parts of the software liable to be used the

most.

Robustness, as defined earlier, is the property of a DNN to resist the effects of small

perturbations of input on its decisions. This can be framed as saying that all inputs in a

particular region have the same predicted label. If there are inputs in that region which

receive a different classification, then they are adversarial examples that reduce

robustness. Note, however, that robustness is not necessarily the same as reliability or

accuracy: a DNN that always outputs the same classification for any given input is

perfectly robust, but hardly reliable. Robustness only translates into reliability if the

classifications produced are accurate with respect to the ground truth.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 68 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Robustness is heavily impacted by the r-separation property, i.e., the distance in the

input space between input data points with different ground truth labels. This is

intuitive: if there are larger differences between inputs with label X and inputs with

label Y, the DNN is more likely to be robust; conversely, if there is little difference

between them, then robustness is likely to be reduced.

Figure 35 - R-separation (from [70])

ReAsDL takes advantage of this concept via the use of partitioning. The input space is

divided up into cells according to the r-separation value. There are three types of cell:

 For cells with existing test data points (i.e., inputs from the training set) that

share the same ground truth label, the ground truth of all future real-world inputs

in that cell is based on that of the test data. For example, if all test inputs in a cell

C have ground truth label X, then ReAsDL assumes that all future inputs in C

should also have label X.

 For cells without any test data points, ReAsDL assumes that the DNN‘s

classification is always correct (in the absence of any evidence to the contrary).

 For cells with test data points with mixed ground truths (e.g., C contains test

data with labels X and Y), the estimated accuracy is set to 0 as a conservative

measure.

In this way, the problem is decomposed into a series of sub-problems: given cell C with

known (or assumed) ground truth label Y, what is the probability of a random input in

that cell being misclassified? Then the operational profile concept is essentially used to

estimate the probability that an input will be in a given cell, which is derived from the

original training set as a kind of weighting factor — determining how many data points

are in each cell and assuming the same holds true for live data. The more likely a cell is

to contain a future input, the bigger its impact on the overall robustness.

The assessment itself involves generating further test data using Monte Carlo methods

to see how many match the predicted classification for the given cell. The original

training data is effectively used to seed new test cases around them in the input space,

and the expected classification of the new test data is based on the r-distance and the

seed‘s ground truth label. Overall reliability is therefore a summation of how reliable

each cell is estimated to be combined with how frequently an input is expected to

belong to that cell.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 69

Confidentiality: Public Distribution

ReAsDL is model-agnostic and designed for pre-trained DL models. By analysing data

input and model output it can yield pessimistic estimates of the probability of

misclassification per input with confidence levels.

3.2.3 SafeML

SafeML
38

 is a framework for the exploration of techniques for safety monitoring of ma-

chine learning classifiers at runtime. By using statistical distance measures, the aim is

to be able to evaluate — and quantify — the difference between a given operational in-

put and the trained context [78], [82]. By doing so, SafeML can yield a form of ‗confi-

dence measure‘, i.e., how confident we can be that the classification is correct based on

how similar it is to the original training context. If the confidence is below a given

threshold, mitigating actions can be taken in response, such as reverting to some safe

state and/or disregarding the classification. In this sense, SafeML can therefore be used

to monitor the uncertainty in the operational context of the ML system; when the sys-

tem is operating out of its intended context, SafeML can warn us.

This basic concept is illustrated below.

Figure 36 - SafeML concept

38

 https://github.com/ISorokos/SafeML

https://github.com/ISorokos/SafeML

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 70 Version 1.0 5 July 2023

Confidentiality: Public Distribution

ML classification algorithms such as DNNs are typically employed to categorise inputs.

The nature and purpose of the categories varies according to context. For example, in

the medical domain, the purpose of the classification is often to detect abnormalities

based on exceeding normal ranges. In other cases, such as object recognition, classifica-

tion is often used to distinguish between classes of object or detect the presence of a

given object (such as people or cars).

As described earlier, when the r-separation is low, classification errors become more

likely because there is less conceptual distance between inputs that ought to receive dif-

ferent classifications. The diagram below illustrates this with a very simple example:

Figure 37 - Overlap between classes (from [78])

On the left, we see a range of input measurements given to a classifier D, where:

 () {

The threshold between classes is shown as the red dotted line but note that there are a

few inputs that cross the threshold yet belong to the other class — reducing the r-

separation. Because of this, the probability distribution functions (PDF) of the true clas-

ses overlap, as seen on the right of the diagram. It is this kind of overlap that makes

misclassifications more likely, whether they be false positives (incorrectly identifying

something as a given class) or false negatives (failing to identify something correctly as

a given class). It can be shown therefore, as in [78], that there is a relation between the

probability of error and the statistical difference between the cumulative distribution

functions (CDFs) of two given classes. Because of this, Empirical CDF-based statistical

measures can be used as a yardstick for the probability of error of a given input, and it

is on this basis that SafeML functions.

Examples of the distance measures employed include Kolmorogov-Smirnov, Kuiper,

Wasserstein, and Cramer-Von Mises, as illustrated below. Because these various

measures assess different aspects of the ECDF — e.g. maximum distance, sum of the

maximum distances in both directions, or the area between the two (continuous or

stepwise) — they are used together to create an overall picture, thus minimising the risk

that a single measure might cause an error.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 71

Confidentiality: Public Distribution

Figure 38 - Example SafeML ECDF distance measures

The following flowchart shows the SafeML process in its current state. In this

flowchart, there are two main phases: 1) the training phase, which is an offline or de-

sign time procedure, and 2) the runtime phase, which is an online or real-time proce-

dure.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 72 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 39 - The SafeML process

In the training phase, it is assumed that there is a trusted dataset that has been certified

by a group of safety experts, i.e., so that the true classification of the data is known. The

trusted dataset is needed to make sure that dataset labelling itself does not add any fur-

ther uncertainty to the SafeML calculation.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 73

Confidentiality: Public Distribution

Given the trusted dataset, the chosen ML/DL algorithm can then be trained and its

performance can be evaluated through existing key performance indices such as

accuracy, f1-score, area under ROC curve, etc. If the selected KPIs fail to meet the

desired levels, the training phase is repeated until the trained model reaches a certain

level of performance.

Having obtained a high-performance model, the next step is to check the explainability

of the trained model. For checking the explainability we would apply our novel

explainability approach called SMILE (see Section 3.2.5). There should be a trusted

ground-truth for explainability to be able to measure the model explainability KPIs.

With a model with high level of accuracy and high level of explainability, SafeML can

store statistical parameters and a trusted dataset with regards to the true label of each

class. In addition, both ―number of misclassified samples‖ and ―number of mis-

explained samples‖ are stored to be used for reliability evaluation of the ML/DL

classification task.

In the runtime phase, a buffer is used to store a certain number of samples to perform

statistical analysis. Once enough samples have been collected, they are fed to the

trained classifier to get the predicted labels. Based on the predicted labels, the statistical

parameters (e.g. ECDF) of the collected data will be extracted. The extracted ECDF

from runtime and design-time are then compared using various statistical distance

measures, such as those described earlier. Furthermore, a bootstrap-based p-value

evaluation is executed for each statistical measure to make sure their values are valid.

Any invalid statistical distance measure will be filtered.

The statistical distance measures can then be compared to a desired/expected

confidence level threshold. Based on the result, the reliability profile of the system is

updated accordingly. There will be three main choices:

 If the result is acceptable (i.e., the confidence threshold is achieved), that means

there is no distributional shift in the incoming data and the output of the trained

classifier can be accepted with high confidence;

 If the result is not acceptable but very close to the threshold, the system may ask

for more data (e.g. a second or third reading);

 If the result is not acceptable and falls well below the threshold, a proposed

human-in-the-loop procedure can be applied. It should be noted that the decision

of the human or expert in this scenario can be stored in the system as trusted

data and it can be used to improve the system in the future.

SafeML has been applied to a variety of different case studies and different types of

data. This includes artificial tabular/numeric data, security logs to detect DDoS attacks,

and image recognition, as in the case of traffic sign recognition for autonomous

vehicles [82]. Because SafeML is a model-agnostic technique, it does not require in-

depth knowledge of the ML model in question, whether that be a DNN or something

else. Nevertheless, it does require some adaptation to the type of data. For image data,

for example, the images were converted to flattened vectors, allowing pixel-wise

ECDF-based comparison.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 74 Version 1.0 5 July 2023

Confidentiality: Public Distribution

How best to determine the acceptance distance/confidence thresholds in a systematic

manner remains a subject of investigation. So far, acceptable distance thresholds have

been specified only in terms of correlation to accuracy based on trusted datasets. If a

method for systematically determining such thresholds can be found, it can be

integrated as part of a wider ML quality assurance process, helping to improve overall

performance of the approach.

3.2.4 Explainability of ML

As described earlier, one of the shortcomings of machine learning models is that they

are generally black boxes: whether their decisions are correct or not, it is not easy to

understand why those decisions were made. Such explanations are, however, critical in

determining the trustworthiness of ML models. Explainability also helps with the

development of models; if we can see and understand the cause of errors, we can

attempt to correct them.

Although explainability of ML is still a nascent field, two approaches that work towards

achieving it are described next.

3.2.4.1 LIME: Local Interpretable Model-agnostic Explanations

Local Interpretable Model-agnostic Explanations — known as LIME — is a model-

agnostic algorithm that aims to explain the predictions of an ML model by

approximating it locally with an interpretable model [83]. ―Locally‖, in the context of

LIME, means local fidelity; while an explanation separate from the model itself (as in

the case of all model-agnostic approaches) by definition can never be 100% faithful,

local fidelity means that it corresponds to the model behaviour in the vicinity of the

instance being predicted. This means that features which are less important overall may

be more important for the given explanation, or vice versa.

The other key objective of LIME is interpretability, i.e., providing a human-

understandable explanation of the relationship between input variables and the ML

model‘s response or decision. Note that making it easy to understand is prioritised over

comprehensive coverage; rather than showing a bewildering number of input variables,

for instance, it may limit it to only those that are most important or have the biggest

impact, to make the relationship easier to follow. This priority sets up a tension between

fidelity (a comprehensive explanation would cover all factors) and interpretability (i.e.,

ease of understanding).

To achieve local fidelity in its explanations, LIME randomly samples the local context

of a given input needing to be explained. These samples are then weighted by the

distance between them and the original instance/input. From these, an explanation that

is locally (but not globally) faithful is generated. This process is illustrated in the figure

below.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 75

Confidentiality: Public Distribution

Figure 40 - LIME example (from [83])

Here, the model‘s decision function is represented by the two colours, but is too

complex to be represented linearly (at least globally). The bolded red cross indicates the

instance needing to be explained. LIME then randomly samples other instances

(represented by the other dots and crosses), asks the model for their predictions, and

weights them according to distance (here indicated by relative size). The dashed line is

the learned explanation — one that is interpretable, since it is an easily understood

linear function, and locally faithful to the instance in question.

More generally, the LIME process is as follows:

1) Generate random samples and feed them to the black box ML classifier to get the

predicted labels.

2) Calculate the Euclidean distance between the given sample and each randomly

generated sample.

3) Using a kernel function, the calculated distances can be mapped to weights.

4) Having a set of positions, predictions, and weights from previous steps, a

weighted linear regression can be trained and its coefficients can be used as the

local explanation for each feature and each class.

The following figure illustrates the overall view of the procedure explained above.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 76 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 41 - An example of how LIME works

Since it is model-agnostic, LIME is not restricted to a given model. Consequently, it has

been applied to a variety of models, including text-based and image-based problems.

3.2.4.2 SMILE: Statistical Model-agnostic Interpretability with Local Explanations

Understanding and predicting the behaviour of machine learning algorithms through

explainability and interpretability is one of the vital steps towards making them

dependable. LIME is one of the well-known approaches that has received significant

attention in the field [83]. However, it is proven that this approach is able to be fooled

by adversarial attacks [84]. To make this approach more robust to adversarial attacks

and more reliable, we are currently developing a new approach called SMILE:

Statistical Model-agnostic Interpretability with Local Explanations (with publications

to come). The proposed approach uses the same overall procedure as LIME but hopes to

improve robustness by modifying its weight calculation and embedding empirical

cumulative distribution function (ECDF)-based statistical distance measures.

SMILE supports tabular (numerical), image, text and graph-based datasets and its

capabilities and performance have been measured through various examples, though

development work is ongoing. It should be noted that SMILE is capable of dealing with

both classification and regression tasks and it is completely model-agnostic. Thus, the

approach can be applied to any machine learning algorithm. Regarding graph-based

datasets, it can perform node, edge, and feature explainability with a high level of

consistency and faithfulness.

SMILE for tabular/numeric datasets

Similar to LIME, in SMILE, for a given sample, the local explanation can be generated

using the following steps:

1) Generating random samples and predictions as with LIME.

2) For each randomly generated sample, the other samples in its vicinity are found and

the expected value of their labels (machine learning predictions) is calculated.

3) In comparison to the LIME approach, instead of calculating the Euclidean distance,

the ECDF-based statistical distance between two sets: a) given sample plus some

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 77

Confidentiality: Public Distribution

random samples around it and b) each randomly generated sample and some random

samples around it.

4) Using a proper kernel function, the calculated statistical distances can be mapped to

weights.

5) Similar to the LIME approach, having a triple set including positions, the expected

value of the predictions and weights from previous steps, a weighted linear

regression can be trained and its coefficients can be used as the local explanation for

each feature and each class.

The following figure illustrates the overall view of the procedure explained above.

Figure 42 - An example of how SMILE works

SMILE for image datasets

This idea can be expanded further for image and text-based datasets. In the distance

calculation part, instead of using cosine distance between a vector representing each

perturbed image or text and a vector representing the original image or text (as in

LIME), we can use the ECDF-based statistical distances. The result shows more

accurate results for image and text explanations.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 78 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 43 - SMILE flowchart for explaining image-based classification or regression

The figure above delineates the flowchart of SMILE for the image-based dataset (either

classification or regression tasks). In this figure, it is assumed that we already have a

trained image classifier (e.g. a trained classifier for traffic sign recognition). For each

input image, its super-pixels will be extracted to reduce the SMILE distance

calculations and make it faster. Based on the number of detected super-pixels, K

number bi-nominal random perturbation vectors are generated, a factor that impacts the

scalability, accuracy, and consistency of the approach. Each element of a perturbation

vector represents the status of a corresponding super-pixel (0: means the super-pixel

should be off, and 1: means the super-pixel should be on). So, based on these

perturbation vectors, K perturbed image can be generated and for each one of them, we

can get the prediction from the trained machine learning algorithm (e.g. image

classifier).

The ECDF-based statistical distance measures can be used to generate the distance of

each perturbed image from the original sample. A proper kernel function can be used to

convert statistical distances into weight values. The kernel function maps the distance

values to the weight value that can be used in the weighted linear regression. In SMILE

we have used a Gaussian kernel function with hyper parameters of epsilon and kernel

width. The accuracy of the explanations can be tuned with these hyper-parameters. It

should be noted that the effects of using other kernel functions (like Weibull) will also

be investigated.

Having a triple set of perturbations, predictions and weights, a weighted linear

regression model can be trained as a surrogate model. By sorting the coefficients for the

trained weighted linear regression model, M super-pixels that gained bigger coefficients

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 79

Confidentiality: Public Distribution

can be selected and presented as explainability. Therefore, those M super-pixels can

show which part of the image has more impact on the machine learning‘s decision.

SMILE for Text Datasets

Similar to the flowchart above, the text-based version is illustrated in Figure 44. Instead

of finding super-pixels we have some functions for text pre-processing. Also, to

compare perturbed text strings with the original one with ECDF-based statistical

distance measures, we need to use word2vec embeddings. In our implementation, we

have used Gensim Word Embeddings. The rest of the procedure is the same as

explained for image datasets.

Figure 44 - SMILE flowchart for explaining text-based classification or regression

SMILE for Graph Datasets

The implementation of SMILE for graph datasets — or in other words, for explaining

the decisions of graph neural networks — is a bit different. In graph datasets, we can

have node, edge and feature explainability. The feature explainability part is similar to

tabular datasets. However, for node and edge explainability, we need to find a way to

calculate the Cumulative Distribution Functions (CDFs) of each graph to calculate

statistical distance measures.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 80 Version 1.0 5 July 2023

Confidentiality: Public Distribution

To do so, we have used the idea of Shimada, et al. [85] to create CDFs from given N x

N adjacency matrices. The generated CDFs are based on the cumulative distribution of

elements of the r
th

 eigenvector. The original method used Kruglov distance to measure

the statistical distance between two different graphs or sets of graphs. In SMILE, we

have used the Wasserstein statistical distance measure instead.

Figure 45 illustrates the proposed overall procedure for generating the explainability for

a given input graph and a given graph neural network. Each graph has two main parts

including the feature matrix and adjacency matrix. In the middle of the figure, we have

a perturbation-based mask generator which can generate random binary numbers with

the length of features, edges or nodes. Depending on the type of explainability (node

feature, edge, or node explainability), the perturbation-based masks can be used to, for

example, remove a mask or remove a node from the original graph and generate a new

set of perturbed graphs. Using the aforementioned method, the statistical distance

between each perturbed graph and the original graph can be calculated. Moreover, the

calculated statistical distance measures can be converted to weight values using a

Kernel function. Also, the perturbed graphs are given to a graph neural network to get

predictions. With triple sets of weights, predictions and perturbations, a weighted linear

regression can be fitted as a surrogate model and its coefficients can be used for graph-

based explainability.

Figure 45 - SMILE block diagram for explaining graph neural networks’ decisions

3.3 SAFETY OF MACHINE LEARNING IN SESAME

Machine learning already plays an important role in many robotic systems and is likely

to increase in prominence. As explained earlier, this makes it vital to develop methods

to assess and understand the safety of ML models where they are used as components in

safety-critical systems like MRS. As such, dependability assurance of AI components in

MRS is one of the areas where SESAME intends to push beyond the state of the art.

Several of the use cases in SESAME feature ML components already:

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 81

Confidentiality: Public Distribution

 The Locomotec use case, Disinfection of Hospital Environments using Robotic

Teams, makes use of ML for the purposes of human detection. Given the

hazardous nature of the UV-C light being projected by the robots for the

purposes of disinfecting surfaces, it is important to be able to detect nearby

humans in the environment in order to switch off the lamps and prevent

inadvertent irradiation of unfortunate passers-by.

 The Domaine Kox / Aero41 / LuxSense use case, Autonomous Pest

Management in Viticulture, likewise makes use of object detection (for cars and

people) to avoid having drones inadvertently spray them with fungicide. ML

models like convolutional NNs, Support Vector Machines, and Random Forest

classifiers are also used to evaluate the vines and detect problems such as fungal

infections or pest infestations.

 The Cyprus Civil Defence / KIOS use case, Power Station Inspection using

Autonomous Multi-Robot Systems, may also make use of ML models to help

detect anomalies during routine inspection of the power station and to identify

people or vehicles in hazardous environments during emergency situations.

Given the widespread use of ML models, frequently in critical scenarios (e.g. the person

detection in the Locomotec use case), there are ample opportunities for application of

ML assurance methods. SafeML and SMILE both offer the potential for significant

advancements.

SafeML is designed to provide confidence levels in the classifications or decisions of an

ML model. Along with DeepImportance from the University of York, they may be

employed during testing phases during development, both to evaluate the training of the

ML models themselves and also to assess performance during testing with preliminary

real-world data. On the strength of these findings, the ML component may be

redesigned or re-trained until a suitable level of confidence in the accuracy of the model

is obtained. Further work in this area is conducted as part of WP6.

Moreover, SafeML can be applied at runtime as a form of event monitor, providing

warning of situations where confidence in ML decision making has dropped below an

acceptable threshold. In this role, it can be employed as one sub-component of an EDDI

(see Section 5). In particular, this helps address the problem of distributional shift and

can warn of situations where the system is operating in a context or environment it was

not designed for (or, perhaps more accurately, trained for).

Explainability is also an important element of dependable ML and equally applicable to

multi-robot systems, such as those in the use cases mentioned above. Explainability is

particularly useful at design-time, since it can help evaluate and inform the results of

training and testing of ML models. Knowing that accuracy is low during testing is one

thing; knowing why it is low is another. With that understanding in place, corrective

measures can be taken to adjust the model or the wider system to compensate for any

issues before they can become major problems at runtime.

Given its advantages over major approaches like LIME, SMILE seems to be an

excellent candidate for application in SESAME. It could be of particular benefit when

tuning person or object detection algorithms.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 82 Version 1.0 5 July 2023

Confidentiality: Public Distribution

While explainability might be less directly applicable to autonomous systems at

runtime, where the ability to explain every decision to a human is unlikely to be

necessary, there will be cases where explainability remains important, especially in the

case of any errors detected. Where e.g. SafeML detects that confidence has fallen below

the required threshold, explainability techniques like SMILE will prove valuable in

explaining not just the behaviour of the ML component but also forming part of the

behavioural log of the wider system.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 83

Confidentiality: Public Distribution

4. THE CHALLENGE OF AUTONOMY AND OPENNESS

4.1 DEFINING THE PROBLEM

The preponderance of safety standards, techniques, and tools — many of which are

described in Section 2 — might lead the naïve to believe that it is possible to guarantee

that a system is safe. Alas, this is not the case. Even if every effort is made, every

technique applied, and every standard followed to the letter, no system can ever be

made 100% safe.

Part of this is simply due to human fallibility; even the most experienced expert, the

most capable analyst, cannot envisage every possible problem — and even if they do, it

may not be feasible (or more likely, not cost effective) to adjust the system design to

prevent them. But the other major reason is that there is only so much that can be done

at design time to ensure safety. No battle plan, as they say, survives contact with the

enemy, and the same is true of safety: a system in operation will very likely encounter

things at runtime that were either entirely unforeseen at design time or that may have

been anticipated but the system was not designed to deal with.

Most obviously, random hardware failures can occur at any time in even the best

designed, most well-maintained systems. To some extent, these can be planned for at

design time, e.g. by selecting robust components, ensuring redundancy (such as k-out-

of-n or primary/standby configurations), adding monitors, and specifying a rigorous

maintenance schedule. But they cannot be prevented completely.

Furthermore, while a system can be meticulously designed, no designer or engineer has

complete control over the environment in which that system may eventually operate.

Environmental conditions are often inherently unpredictable and, all too often,

completely uncontrollable. A drone may experience a wide variety of rapidly changing

weather conditions, for example, and even the best weather forecast may turn out to be

wrong.

These problems are only amplified when it comes to autonomous, multi-agent,

cooperative systems like MRS. Ensuring the safety of a single system in a specific

operating environment is difficult enough; attempting to ensure the safety of a robot

expecting to function as part of a wider — as yet unknown — open system, operating in

an unpredictable environment with other robots whose own safe behaviour cannot be

guaranteed, is considerably harder. Needless to say, design-time efforts can only go so

far when uncertainty, openness, and autonomy are such inherent characteristics of the

systems in question.

It is for reasons such as these that techniques exist to help assure runtime safety. From

fault detection and diagnosis to safety mechanisms and safe states to runtime safety

assurance, such approaches help to resolve the uncertainty present at design time and

enable systems to monitor and react to dynamic changes in their runtime dependability

profiles.

Nevertheless, runtime safety assurance cannot be achieved in isolation. It is frequently

more difficult than design time measures, requiring much greater overhead and

infrastructure, and any runtime safety measures must themselves be subject to safety

assurance procedures. As such, any runtime measures need to be built upon a solid

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 84 Version 1.0 5 July 2023

Confidentiality: Public Distribution

foundation of design time dependability assurance activities, and only those aspects

which are necessary should be moved to runtime.

One of the first requirements of any runtime dependability solution is the acquisition of

evidence. In general, this is a platform-dependent problem, reliant as it is on the precise

nature and capabilities of the system in question. Evidence must be gathered from

onboard sensors (or, in some cases, environmental sensors or those on other platforms

in the vicinity) and while certain patterns and commonalities exist, for the most part

implementation is specific to the platform.

Even so, it is possible to crudely describe the features of a generic event monitor.

Typically it will need some form of buffer or memory (e.g. a ring buffer), recording past

values in order to determine trends and filter out spurious or transient readings. It will

need access to one or more sensors to do so and may need to transform the raw sensor

data in some fashion. If it is designed to monitor for specific events, then the triggering

conditions for those events also need to be defined. This may be a simple threshold

value (e.g. exceeding a given maximum value), some form of Boolean or temporal

expression, a mathematical equation (e.g. differentiation to obtain the rate of change), or

something else.

Evidence and events alone are insufficient, however. For the system to respond

appropriately, semantics are needed: what does the event mean for the system? This

leads to the area of fault diagnosis. In the majority of cases, there is no one-to-one

relationship between a sensor and a fault; simply knowing that there is no power to a

given component is not enough to explain why there is no power. Yet without that

additional knowledge, it may be impossible to decide on the correct course of action.

Fault diagnosis uses a variety of methods to help determine causes and consequences of

the events that have been detected, typically in the form of some kind of causal logic or

model.

With a diagnosis, it is then possible to respond — whether to simply report the presence

of the problem to a human operator or to automatically shift the system into a safe or

degraded operating state.

In open multi-agent systems, however, this may not be enough. In such systems, tasks

are achieved cooperatively, with different actors all dependent on each other. This

requires a level of trust between agents: guarantees that they can achieve the goals that

others depend on — and do so safely. As such, in an MRS or other multi-agent system,

it may be necessary to warn other agents that such guarantees no longer exist or need to

be renegotiated, e.g. to allow other agents to reorganise and attempt to compensate for

the faulty agent.

By bringing together multiple levels of functionality (detection, diagnosis, response, and

assurance) in a single, comprehensive framework, one that takes full advantage of

rigorous design time dependability assurance processes, it may be possible to eliminate

at least some of the uncertainty and achieve a degree of runtime dependability assurance

that has never been possible before.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 85

Confidentiality: Public Distribution

4.2 STATE OF THE ART: SAFETY OF MULTI-AGENT SYSTEMS AT RUNTIME

This section discusses some of the techniques used to address different problems in

runtime dependability assurance, from runtime fault diagnosis to evidence monitoring to

distributed safety assurance.

4.2.1 Runtime Fault Diagnosis

Design-time safety analysis is valuable in helping to identify potential failures and their

possible causes. Causal models such as fault trees make these logical relationships

clearer, and hazard and risk analyses help to assess the consequences, which is

important in revising the design to help eliminate any problems identified.

It is impossible to correct all possible faults at design time, however, and it would be

prohibitively expensive to even try. Rather than trying to remove all possible problems

(those that can be foreseen, at least), it may be necessary to add mechanisms to mitigate

potential faults, or even to leave them entirely unaddressed if their consequences are not

too severe. Common design patterns like primary/standby, parallel vs serial, or k-out-of-

n voter configurations can be used to enable a system to adapt to a failure and continue

operating; in other cases, the system may fall back to a degraded state of operation or a

non-functional safe state instead. In other cases, the system itself might not be capable

of any form of adaptation but it may warn a human operator of a problem instead.

In all of these cases, however, the system must first detect and diagnose the faults that

occur at runtime.

Fault detection is the first step. Monitoring systems observe the system parameters and

detect when those parameters exceed normal thresholds and become abnormal. This

requires additional system complexity, internal sensors, monitors, and appropriate

processing units in addition to those components necessary for the system to carry out

its primary function(s).

However, detecting abnormal parameters is not always enough for a system to know

how to respond; in many cases, fault diagnosis is required to relate those abnormalities

— or symptoms — to a probable cause. A rise in engine temperature may not be of

concern in isolation, but when coupled with a drop in coolant pressure, diagnosis may

hint at a failure of the cooling system, which will likely warrant some remedial action

(such as switching the engine off or at least reducing its output). Replacing or repairing

a component is also made much harder if one does not know which component is at

fault. The difficulty in fault diagnosis is that failures seldom have single, mutually

exclusive symptoms, and thus it is typically not possible to determine a single

responsible fault from a given symptom.

Causal models like fault trees (and to a lesser degree FMEAs) can help with this

because they relate combinations of failures to one or more effects. Intermediate nodes

of a fault tree may also represent symptoms; "drop in coolant pressure", for example,

could be a node with multiple children, each representing different possible causes. The

difficulty would then be in choosing which of the possible causes is the one responsible

— and that assumes the model itself was correct and complete in the first place.

It is for these reasons that many different fault diagnosis approaches have been

developed over the years. Typically, these approaches function by predicting how the

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 86 Version 1.0 5 July 2023

Confidentiality: Public Distribution

system should operate in a given state and comparing this prediction to how the system

is actually operating at present. In all cases, however, in-depth knowledge is required

about the system, how it operates, and the potential causes and effects of failures it may

experience.

Broadly speaking, there are three general categories of runtime fault diagnosis

techniques:

 Rule-based diagnosis operates on the basis of a collection of logical "if-then"

style rules of causality: "if condition X exists, then Y". These rules may be

deductive and used to determine causes ("if parameter X exceeds value Y, then

failure Z has occurred"); they may be inductive and used to predict

consequences ("if event X occurs, then Y will happen next"); or they may be

some combination thereof.

 In Model-based diagnosis, instead of the knowledge of the system failure

behaviour being captured in a series of logical rules, it is represented instead by

a model (often, but not always, a derivative of a design-time model). The model

may represent normal functioning of the system, e.g. in a kind of simulation, and

then diagnosis occurs when the simulated behaviour of the model deviates from

what is expected; alternatively, the model may represent the failure behaviour of

the system, modelling causes and effects of faults only. Combinations of the two

are also possible, though tending to favour a focus on one or the other.

 Finally, data-driven diagnosis focuses on long-term observation of historical

trends and deviation from them. ML-based approaches to fault diagnosis may

also be considered to fall into this category, at least in some cases [86].

This section will provide a brief overview of these categories and some of the

approaches within them.

4.2.1.1 Rule-based diagnosis

Perhaps the oldest form of diagnosis approach, rule-based diagnosis operates on the

basis of simple cause and effect: if we know condition X exists and we know that fault

F is the only cause of condition X, then we can also say that fault F has occurred.

Obviously, this becomes more difficult when multiple potential causes exist or when

multiple conditions or events have occurred.

Rule-based diagnosis has its roots in the medical domain, e.g. the MYCIN expert

system [87]. Expert systems are designed to emulate the decision making of human

experts (hence the name). They typically contain a knowledge base containing

declarative facts and a series of production rules, usually if-then style, to enable

reasoning over the knowledge. In the case of fault diagnosis, these rules are typically

causal rules that describe the relationships between system components or states, their

failures, and their effects.

Both "forward" and "backward" chaining of rules is possible. In the former case, system

parameters are monitored for certain conditions that trigger the activation of particular

rules. Once activated, a rule's effects are considered to be new facts about the system,

which may in turn trigger new rules at a later point. If a rule's effect is considered to be

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 87

Confidentiality: Public Distribution

a system failure, then the chain of activated rules captures the sequence of events that

caused it.

In backward chaining, hypotheses are tested instead. A hypothesis is typically a

malfunction or system failure. Testing the hypothesis is achieved by working backwards

to see if the hypothesis is the outcome of any of the rules; if one is found, then it is

provisionally set as true and its preconditions or triggers are treated as new hypotheses

to be tested in turn. This continues until either the hypothesis is proved false (e.g.

because no preceding rule can be found, or because its triggers are unsupported by

recorded system observations) or the hypothesis is verified (because all preceding rules

match the recorded system observations).

It is also possible for both to be used together, e.g. as in the REACTOR expert system

designed for use with nuclear reactors [88].

One limitation with this simple if-then style of rule is the inability to perform any kind

of serious temporal reasoning, as in cases where long-term trends or particular

sequences of events are important. This can be addressed with more complex rules that

feature temporal logic or similar time-based operators.

Another problem, perhaps more fundamental, is that of uncertainty. The relationship

between the measurement of a particular system parameter and a fault or failure is often

not absolute; there can be many potential causes, some more likely than others, and

there may not necessarily be a causal relationship at all if the reading is anomalous

somehow (or if the knowledge base is incorrect or incomplete). In some such cases,

"certainty factors" are applied as a measure of uncertainty or even probability for

different diagnoses (as with the MYCIN system).

Despite these disadvantages, there are advantages to rule-based systems too. The

separation of knowledge (i.e., facts) and reasoning (rules) makes the approach relatively

generic, helping to explain why such systems have been applied across a wide range of

domains. The ability to use both inductive and deductive reasoning is also of benefit,

allowing diagnoses to be confirmed using multiple methods. Their flexibility also

means that rule-based systems can relatively easily be combined with other approaches,

e.g. the QUINCE system combines a neural network for symptom detection and a rule-

based system to diagnose the causes of those symptoms [89].

However, rule-based systems tend to struggle when applied to larger, more complex

systems. Inconsistencies emerge that can be impossible to resolve, at least without some

degree of uncertainty, and it can be much harder to guarantee completeness of the

knowledge base and rule set.

4.2.1.2 Model-based diagnosis

Model-based diagnosis approaches still rely on expert knowledge, like rule-based

approaches, but instead represent this knowledge in a separate model of the system.

This provides a deeper understanding of the system in question, capturing more of its

essence than a simple set of facts and rules. For example, the model may be

architectural, thus encapsulating the relationships of the various components to each

other; or it may be behavioural, allowing some degree of simulation or at least better

representation of the various system states and actions. Diagnosis is less about

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 88 Version 1.0 5 July 2023

Confidentiality: Public Distribution

attempting to match specific rule patterns against a set of data recorded in a database,

but rather about following causal relationships as they propagate through the model of

the system.

As mentioned, models may primarily represent either the normal functional behaviour

of the system or the abnormal failure behaviour, though combinations of both are also

possible. Abnormal behaviour models are typically fault propagation models while the

normal models are generally simulation-based models. A kind of hybrid model category

is that of causal process graphs, which describe interactions between system processes

over the course of a disturbance (e.g. a failure, though not necessarily) rather than fault

propagation directly. Various examples of these types are briefly described in the table

below:

Table 4 - Summary of model-based fault diagnosis approaches

Name Type Description

Cause Consequence

Diagrams [90]

Fault

propagation

One of the earliest forms, developed for use with nuclear

reactors. They represent causal relationships using a

network of cause and consequence trees; the former

describe the causes of hazards in terms of combinations of

failures, while the latter begin with a hazardous event and

describe how other conditions or mitigating actions can

lead to safe or unsafe system states.

Fault Trees Fault

propagation

Fault trees can be used directly for fault diagnosis, as long

as there also exists some form of monitoring/fault

detection system. Different patterns of sensor readings are

associated with different trees (or nodes within a tree),

and when such patterns are detected, the associated nodes

are assumed to be 'true'. One can then work up or down

the tree as required to determine consequences and causes.

Diagnostic Decision

Trees [91] [92]

Fault

propagation

DDTs are binary trees; each node represents a true/false

question to narrow down a diagnosis. Can be constructed

from fault trees or trained on historical system telemetry.

The latter also enables them to adapt to faults that were

unknown or unpredicted at design time.

Digraphs [93] [94] Causal

process

An example of causal process graphs, these model the

effects that changes in process parameters can have on

other process parameters. For example, a dependent

parameter may have a positive relationship with a

preceding parameter (i.e., if the first parameter increases,

so does the dependent one) or a negative relationship.

Diagnosis is achieved by tracing the propagation of value

deviation through the graph.

Logic flowgraph

[95] [96]

Causal

process

An extension of digraphs to improve expressiveness. Able

to represent continuous and binary state variables as well

as logic gates and various conditions. Varieties of

flowgraphs exist, e.g. dynamic flowgraphs.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 89

Confidentiality: Public Distribution

Goal Tree Success

Tree [97]

Normal

behaviour

GTSTs are logical trees similar to fault trees containing

AND and OR gates that decompose high-level safety

objectives into sub-goals and the conditions necessary to

achieve those goals. Their flexibility means they have

often been combined with other approaches such as

inference engines or probabilistic techniques.

General Diagnostics

Engine [98]

Normal

behaviour

An assumption-based truth maintenance system; uses a

predictive engine that propagates both values and

underlying assumptions. When discrepancies are detected,

a set of suspects is generated. Further conflicts reduce the

set of suspects — only those suspects that remain can

explain all detected deviations from expected behaviour.

QSIM [99] Normal

behaviour

A qualitative simulation tool which simulates the system

as a set of qualitative constraints. QSIM predicts

qualitative values (e.g. increasing, stable, decreasing) and

ranges for each monitored parameter. When deviations

between predictions and actual readings are detected,

hypotheses are generated and a new QSIM model created

to test them. Hypotheses are discarded if simulation does

not match the observed behaviour.

Rodelica & RODON

[100] [101]

Normal

behaviour

Rodelica is a declarative, equation-based, object-oriented

language derived from Modelica and intended for fault

diagnosis. Allows better numerical representation than

QSIM with intervals, ranges, and constraints etc. Once

modelled, the Rodelica system model can then be

processed by the RODON reasoning engine for diagnosis,

first detecting deviations between predicted and observed

behaviour, then generating and eliminating hypotheses.

4.2.1.3 Data-driven diagnosis

In data-driven approaches, a predictive model of the system behaviour is generated from

empirical data collected from the system operation (whether during testing or after

deployment). Generally speaking, this predictive model encapsulates the relationships

between the input and output parameters of the system.

Examples of data-driven approaches include statistical process monitoring approaches,

qualitative trend monitoring, and neural networks.

 Statistical process monitors are either univariate, in which a single fitting

function is employed to relate one dependent variable (e.g. an output) to

multiple independent variables (e.g. inputs), or multivariate, in which statistical

methods and historical data are combined to create more accurate predictive

models for both dependent and independent variables. An example of the latter

is CART, or classification & regression trees [102], which uses binary

partitioning to enable analysis of large datasets.

 Qualitative trend analysis generally consists of two steps: identification of trends

on the basis of system measurements, then interpretation of those trends. Trends

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 90 Version 1.0 5 July 2023

Confidentiality: Public Distribution

are qualitative, e.g. increasing, stable, decreasing etc. Deviations from the

expected trends are then detected and diagnosed.

 Neural networks, as already explained in Section 4, are ML models that are

trained on an established dataset. For the purposes of fault diagnosis, they are

typically trained to differentiate between normal behaviour and abnormalities.

As with other forms of ML, neural networks are an increasingly popular choice for fault

detection (and sometimes fault diagnosis) [86]. Statistical approaches are found to be

fast and effective for fault detection, but less so for diagnosis, while ML and other

pattern recognition techniques tend to be much better at diagnosis but slower at

detection.

4.2.2 Dynamic Risk Assessment

Runtime fault diagnosis and the respective approaches mentioned in the previous

section focus on detecting causes for observed safety-related errors or failures within

the multi-agent system. However, whether a particular error or failure is safety-critical

and poses an actual risk depends on the current operational situation the system finds

itself in during runtime. For instance, if a planned trajectory of a drone differs from

specification due to a fault in the system, a collision with other dynamic or static objects

may only occur if those objects are present in the current operational situation. Thus,

hazardous events and their associated risk are always conditioned on the operational

situation.

Current safety standards address this issue by designing the system in a way that safety

goals and their integrity will lead to safe behaviour in all operational situations based on

worst-case assumptions. Put differently, the system always expects the worst-case

situation to happen. This approach indeed leads to safe behaviour and cost-effective

safety assurance, as the situation space needs to be analysed only for the identification

of worst-case situations. In reality, however, worst-case situations rarely occur and in

the majority of operational situations, the risk is low. This results in situations where

diagnosed faults lead to the execution of minimum risk manoeuvres or to a transition to

the safe state, although the actual risk would not demand it. Consequentially, if we

monitor the presence of risky/non-risky operational situations, we can increase MAS

performance by a) being able to tolerate certain faults and failures if their associated

risk is low in the current situation and b) actively reducing particular risk parameters

with tactical decisions, where severity, controllability or the operational situation itself

is changed.

Dynamic risk assessment (DRA) techniques thus treat the MAS or a constituent system

as a black box and provide means to analyse the consequences of MAS behaviour

deviations on the risk in the current operational situation. Note that DRA can be both

performed for constituent systems and on the MAS as a whole. The difference lies in

the definition of hazards resulting from deviating behaviour. Such hazards can be

analysed for MAS collaborative behaviour or single system behaviour.

For autonomous systems, in particular in the automotive domain, DRA techniques have

been applied to address the trade-off between performance and safety risks. The existing

approaches can be classified broadly in three categories.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 91

Confidentiality: Public Distribution

1. DRA is incorporated into motion and trajectory prediction frameworks by

specifying behavioural or kinematic constraints that are input to the trajectory

planner. Such constraints come either in the shape of an augmented map, which

treats risk as occupied spaces the planner has to avoid, or they come in as boundary

conditions the trajectory planner needs to respect, e.g. speed less than a particular

threshold. The result of these approaches is usually a planned trajectory that is

claimed to be safe. Representatives of this class are [103] and [104].

2. DRA is performed during the online verification of an already planned yet

potentially unsafe trajectory. Thus, this class of approaches uses the output of the

trajectory planner and checks afterwards whether it may lead to unsafe behaviour in

the current operational situation. If the safety criteria of the verifier are violated, a

transition to a safe state or degraded operation mode is triggered. Representatives of

this class are [105] and [106].

3. DRA is not performed in direct relation with a planned trajectory, but instead

monitors influence variables that enable distinction between the presence/absence of

a hazardous event and influence its criticality through risk parameters such as

exposure, external controllability and accident severity. Such DRA approaches are

closely related to design-time hazard and risk assessment models, as the monitors

capture the observable variability in these models. The output of these approaches is

usually a list of safety goals that are relevant in the current operational situation

along with the dynamic risk rating of these safety goals based on a dynamic

assessment of the risk parameters. Representatives of this class are [107] [108] [109]

[110] and [111].

Although different architectures for incorporating DRA into autonomous systems exist,

all of them need to decide which particular risk-influencing situation features are to be

observed in the present, project the evolution of these features into the future by using a

set of assumptions, and rate the risk of the projected future situation (Figure 46). For

each of these DRA sub tasks, respective design time engineering activities are required.

Figure 46 - Dynamic Risk Assessment Conceptual Overview [111]

Situation Description demands a risk-driven situation space decomposition. This task is

already performed during hazard analysis and risk assessment (HARA), where those

operational situations are sought for indicating the highest risk. In contrast, DRA needs

to identify risk-variable operational situations and thus extend current design-time

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 92 Version 1.0 5 July 2023

Confidentiality: Public Distribution

HARA activities with a more fine-grained situation space analysis. This analysis

requires an understanding of the intended operational domain and may consider

situation features of dynamic and static objects, environmental conditions as well as

interactions between actors.

Based on a selection of situation features being risk-relevant in the intended operational

domain, Situation Prediction predicts the future state of the selected situation features

based on different assumptions and prediction models. For instance, for autonomous

vehicles, such behaviour prediction models may assume traffic rule adherence or

constraints on the kinematic state such as constant speed or acceleration. The

assumptions can be either deterministic or probabilistic.

Having a predicted state of situation features, finally their relation to risk needs to be

established during Situation Risk Assessment. For this purpose, risk metrics are used.

Such risk metrics are typically highly domain- and even application-specific. Although

on a high level, risk metrics always combine the likelihood of an unwanted event with

its impact severity, the concrete relation between the predicted situation features and

those risk parameters needs to be explicitly modelled. Examples for DRA metrics are

Time-To-Critical-Collision-Probability (TTTCP) [112] or Deviation-From-Expectation

[113].

Further information on situation prediction techniques and concrete risk metrics can be

found in relevant literature reviews (see [111], [114], [115], and [116]).

Up to this point during design-time, situation features have been selected based on a

risk-driven analysis of the operational domain (possibly through a HARA analysis with

a more fine-grained situation analysis), prediction models for those situation features

have been selected based on a set of deterministic or probabilistic assumptions and

domain-specific risk metrics have been selected to quantify the situation risk based on

the predicted situation feature state.

In order to enable machines to perform DRA, modelling formalisms are required to

technically capture the relationship between situation features and risks. For this

purpose, different classes of models can be used, which are model-based (e.g. structural

equation models), rule-based (Boolean models), generative (Gaussian Mixture Models,

dynamic Bayesian networks, Hidden Markov Models), discriminative (Decision Tree,

Random Forest, Support Vector Machines) or deep learning-based (Multi-Layer

Perceptron, Convolution Neural Network – CNN, Recurrent Neural Network – RNN,

Long-Short-Term-Memory Network – LSTM). Some of them are developed purely

based on expert knowledge, some of them can be adapted to new operational domains

with machine learning techniques. Depending on the concrete modelling formalism

selected, support for deterministic or probabilistic assumptions may be given as well as

the consideration of uncertainties during feature perception is possible.

At Fraunhofer IESE, DRA for autonomous systems was considered in a recent

dissertation [115]. The work contributed a conceptual taxonomy of DRA and provided a

concrete application of DRA using concrete instances of controllability and severity

metrics to rate collision risks for automated driving. In order to be applicable in many

different operational situations, one explicit requirement in [115] is that the risk metric

is supposed to be situation-agnostic, i.e. it is only allowed to use the kinematic state of

dynamic actors. Situation-specific features such as road structure, lighting and weather

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 93

Confidentiality: Public Distribution

conditions, traffic rules, actor interactions were consequentially not considered. To

account for the fact that risk is often influenced by exactly those situation-specific

features, the work in [115] was extended to the Situation-Aware Dynamic Risk

Assessment (SINADRA) framework [117]. The approach uses Bayesian networks as a

modelling formalism and explicitly considers the mentioned situation-specific features

as risk influences. A proof-of-concept and tool implementation of the approach is

presented in [118]. The design-time method for building situation prediction models

with machine learning techniques is presented in [119].

In summary, DRA enables a system or MAS to automatically assess the risk of a

(malfunctioning) behaviour in the current operational situation. Based on this dynamic

risk estimate, the unavailability of safety capabilities can be potentially tolerated in low-

risk situations or tactical decisions can be enacted to actively lower the risk to an

acceptable level. For this purpose, situation features need to be selected, their future

state predicted, and a risk metric be calculated on the future state to get a qualitative or

quantitative risk rating. Apart from a fully formal inference mechanism at runtime, quite

some effort needs to be put into the safety engineering of the DRA mechanism for a

particular use case in a particular domain. To come up with a meaningful

trustworthiness argument for a DRA monitor, the selection of considered situation

features needs to be grounded in a systematic HARA, the validity of the assumptions

behind the situation prediction needs to be demonstrated and the adequacy of selected

risk metrics for the concretely considered risks needs to be argued.

4.2.3 Dynamic Safety Concepts: Conditional Safety Certificates

One challenge in ensuring the safety of cooperative automated systems is to deal with

uncertainties and unknowns with respect to the cooperation partners. In other words,

one might not know what kind of guarantees come along with a certain information or

service of a 3rd party system. Still, it is clearly beneficial to utilize such information and

services for safety-critical applications, because there is such a huge potential in terms

of new applications, improved performance and also improved safety. As an example

for the latter, consider systems warning other systems regarding obstacles, systems

orchestrating at a crossroad, and so on. Unfortunately, the lack of knowledge regarding

external services and their safety properties typically leads to worst case assumptions,

which in turn severely constrain performance, or even lead to the decision not to use

external services or information at all. A straightforward solution to this problem can be

to enable constituent systems of a MAS to explicitly negotiate their safety-related

properties at runtime. This implies that we establish runtime safety models describing

these properties for a (constituent) system and standardize a protocol for their

negotiation.

Conditional Safety Certificates (ConSerts) [120] [121] is an approach to do exactly that.

ConSerts operate on the level of safety requirements. They are specified at development

time based on a sound and comprehensive safety argumentation (e.g. an assurance

case). They conditionally certify that the associated system will provide specific safety

guarantees. Conditions are related to the fulfillment of specific demands regarding the

environment and the fulfillment of the conditions is checked during runtime. In the

same way as ―static‖ certificates, ConSerts shall be issued by safety experts,

independent organizations, or authorized bodies (depending on the respective

application domain) after a stringent manual check of the safety argument. To this end,

it is mandatory to prove all claims regarding the fulfillment of provided safety

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 94 Version 1.0 5 July 2023

Confidentiality: Public Distribution

guarantees by means of suitable evidence and to provide adequate documentation of the

overall argument – including the external demands and their implications.

There are some significant differences between ConSerts and static certificates that are

owed to the nature of open cooperative systems: A ConSert is not static but conditional;

it therefore comprises a number of variants that are conditional with respect to the

(dynamic) fulfillment of demands; and it must be available in an executable (and

composable) form at runtime.

Conditions within a ConSert manifest in relations between potentially guaranteed safety

requirements ("guarantees") and the corresponding demanded safety requirements

("demands"). Demands always represent safety requirements relating to the

environment of a component, which cannot be verified at development time because the

required information is not available yet. These demands might directly relate to

required functionalities from other components.

On the other hand, evidence can be required beyond that, since safety is not a purely

modular property and it cannot be assumed that a composition of safe components is

automatically safe. To this end, ConSerts support the concept of so-called Runtime

Evidences (RtE) as an additional operand of the conditions. RtEs are a very flexible

concept. In principle, any runtime analysis providing a Boolean result can be used. RtEs

might relate to properties of the composition or to any context information, e.g. a

physical phenomenon such as the temperature of the environment that is safety relevant.

Other RtE require dynamic negotiation between components.

In any case, ConSerts must be available at runtime in a machine-readable representation

and the systems need to possess mechanisms for composing and analyzing runtime

models. Based thereon, a valid safety certificate for the over-all system of systems can

be established. ConSerts are a relatively lightweight runtime safety approach and they

are not far from traditional safety engineering. The main difference being that unknown

context is structured into a series of foreseen variants, which are then specified in a

runtime model to be resolved at runtime.

Figure 47 - ConSert Composition Conceptual Overview

ConSerts capture modular, conditional, and pre-assured safety concepts that enable

dynamic reconfiguration of the underlying system (of systems) based on observed

changes of the operational context (Figure 47). This relates to runtime fault diagnosis

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 95

Confidentiality: Public Distribution

and dynamic risk assessment in the following way: Dynamic risk assessment

dynamically determines MAS or constituent system safety goals along with a dynamic

rating of the safety goal integrity derived from the risk estimate. This represents the set

of top-level safety goals that need to be fulfilled in the current operational situation.

Having these dynamic safety goals, the system has to have a safety concept in place that

is able to address those dynamic safety goals. Since different safety concepts are

conceivable to address different safety goals and variable integrity demands, the need

for specifying variable safety concepts arises. Such a safety concept is operationalized

by so-called safety capabilities that the system uses during operation. Examples of such

capabilities are fault diagnosis mechanisms to establish runtime evidences, fault

tolerance mechanisms to achieve safety guarantees or mechanisms for the transition into

a safe state. As such, ConSerts are formal representations of dynamic safety concepts

expressing the dynamic parts of a safety concept necessary to distinguish between the

availability of different safety capabilities and in consequence different safety

guarantees that a system can give at runtime. Runtime diagnosis techniques as

introduced in Section 4.2.1 are related to ConSerts in that they provide the basis for

observing runtime evidences that represent the leaf nodes in a ConSert tree.

Figure 48 highlights the relationship between a design-time safety concept and its

transformation into a Boolean model representing the dynamic parts of the safety

concept.

Figure 48 - Relation between safety concept and ConSert for an open adaptive system

4.2.3.1 ConSert Operationalization

In order to operationalize ConSerts for an open adaptive system (OAS), an essential

precondition is that the used architectural modeling approach supports the abstraction

from concrete system interfaces in terms of a formal description of both functional and

nonfunctional properties the systems provide to their environment. Service-oriented

architectures support the required concepts in a powerful and efficient way by

establishing provided and required services for systems that represent well-defined

interfaces for provided and required black-box functionalities. Although the application

of ConSerts is in general not limited to service-oriented architectures, the ConSert

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 96 Version 1.0 5 July 2023

Confidentiality: Public Distribution

approach assumes systems to be architecturally decomposed with services due to the

advantages of SOA.

Figure 49 depicts the ConSerts metamodel describing the relations between the

elements used for the architectural composition of OAS by means of services (green

area), the elements used for formalizing the safety properties of these services (red area)

and the elements for the composition of safety contracts for OAS in the shape of

ConSerts (blue area). A more detailed description of the meta-model can be found in

[122].

Figure 49 - ConSerts Metamodel

For the application of ConSerts, it is sufficient to describe the functionality of an open

adaptive system in terms of a set of configurations, which provide certain functional

services to the environment and require other functional services to deliver their

provided functionality. Configurations express predefined functional variants of OAS

that result from their ability to adapt themselves to different runtime contexts mainly

due to dynamic service availability of other collaborating OAS. A provided or required

service as such first and foremost describes a functional purpose. This could be for

example the provision of a speed value or an interface for receiving remote control

commands from other systems. Functional Service Types serve in this respect to capture

the detailed and formalized description of the services‘ functional aspects, which

include properties like data types (e.g. numeric or compositional), units, valid value

ranges, value resolution or provision frequency (continuous or event-based).

In this way, each concretely instantiated service complies with exactly one functional

service type. Note that the explicit separation of functional service types from their

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 97

Confidentiality: Public Distribution

usage in concrete services allows to build domain-specific repositories of reusable

service types. In addition to so-called basic functional service types, which represent the

building blocks for the communication among OAS, there exists also a special service

type referred to as application service. Rather than representing an interface between

OAS, the application service provides the overall collaboration‘s functionality to human

beings and thus generates the desired business value of the collaboration.

The ConSert approach enriches functional service types with safety-related information.

In this way, a concrete service does not only comply with a functional service type

anymore, but has associated safety properties that themselves comply with a safety

property type. Safety property types describe possible failure modes of functional

services or more precisely, they describe deviations from a specified functional

behavior. Figure 49 shows a commonly used classification for safety property types that

distinguishes between value, provision and timing failures. In the same way as

functional service types, safety property types could be organized in a domain-specific

type system and assigned to specific safety properties. So far, a concrete service consists

of its functional behavior and safety properties that define possibly occurring failure

modes for the functional behavior.

With respect to the speed provision service example, one possible safety property type

is ―Value too high‖. However, this information as such is not sufficient for describing a

service failure in its entirety, because whether an excessively high speed value is critical

for a collaboration may differ from scenario to scenario. Thus, when instantiating a

safety property from a safety property type, it needs to be refined with respect to a

specific collaboration scenario. This refinement has to specify quantitatively when a

certain deviation from the functional specification is considered to be a service failure.

In addition, it can contain information on the possible consequences of the failure

within the specific scenario. The knowledge on potential consequences of service

failures is a precondition for assessing the risk of behavioral deviations expressed as

refined safety properties.

In summary, refined safety properties offer the possibility to specify guarantees or

demands that assure with a specific level of confidence that certain safety requirements

will be satisfied for a specific service. Put differently, the safety requirements assure

with a certain confidence that behavior deviations of services do not exceed the

specified boundaries. From a safety point of view, the collaboration partner providing

the application service also has the special responsibility of providing the safety

guarantees associated to the application service. These guarantees are direct translations

of the collaboration‘s safety goals.

Having defined concrete services and their associated safety properties, the final step is

the composition of ConSerts for the existing configurations of the OAS through

mapping functions. These mapping functions relate guaranteed safety properties of

provided services to demanded safety properties of required services or runtime

evidences. By using Boolean functions for the mappings, dependencies between

guarantees and demands can be expressed by common OR and AND relations. For each

provided guarantee of each provided service, there shall be a separate ConSert Tree

(CST), represented by a Boolean function . Inputs of the mapping function

are k Boolean variables, each representing a demanded set of safety properties

belonging to a required service. Such a Boolean variable is true if the demanded safety

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 98 Version 1.0 5 July 2023

Confidentiality: Public Distribution

properties are actually met at runtime. Thus, if all Boolean variables that are logically

related to a specific guarantee render true, the safety properties of that guarantee hold

for the provided service. In a nutshell, ConSerts consist of multiple CSTs, which model

the conditions for the guarantee variants of each provided service.

4.2.3.2 ConSert Engineering

The ConSert case studies have shown that it is useful to split the engineering activities

enabling the composition of ConSerts in domain-level and system-level activities [123].

Domain-level engineering

The observation that collaboration scenarios within specific domains often use similar

basic functional service types which also have similar safety property types, led to the

idea to create a domain-specific repository for these elements, the so-called Safety

Domain Model (SDM), which is shown in Figure 50. Although concrete OAS are not

completely known at design time, basic functional service types together with their

safety property types can be assumed to be required for several collaboration scenarios

within a domain. To that end, the SDM captures this knowledge so that it can be easily

reused in the system-level engineering phase, when the ConSerts for concrete OAS have

to be created.

Figure 50 - Safety Domain Model

Collaboration scenarios can be thought of as typical interaction patterns that occur

within a specific domain. Such interaction patterns include participant roles, structural

information about the role interfaces in the shape of functional service types as well as

interaction schemes. A classification of functional service types is given in [124] and

depicted in Figure 51.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 99

Confidentiality: Public Distribution

Figure 51 - Classification of functional service types of open adaptive systems

Assuming that a comprehensive set of basic service type specifications exists for an

application domain, safety property types can be derived by the application of suitable

safety analysis techniques. [123] recommended deductive hazard operability studies

(HAZOP) for the safety analysis of service types, since the causal model of HAZOP

matches the idea that failures occurring in concrete OAS will eventually manifest

themselves at the service-level and will therefore have consequences on a given

collaboration. In addition to the identification of functional service types and safety

property types, inter-device runtime evidences have to be standardized on the domain-

level as well, since their evaluation involves the interaction between multiple participant

devices/roles. Thus, the interaction protocols for this evaluation need to be specified on

the domain-level. Furthermore, domain-specific communication protocol stacks in

particular have to be considered for the technical realization of ConSert composition

and evaluation and thus ConSert evaluation protocols have to be standardized on the

domain-level as well.

Despite the advantages provided through an existent SDM, there exist some challenges

for its creation, too:

1. The creation of the SDM includes a high amount of preparation work, during

which no direct benefit can be generated.

2. Domain engineering relies on the background knowledge of experts rather than

on real systems and thus the standardized elements might not fit concrete

required usage scenarios.

3. Standardization for an entire domain needs common agreements within a

majority of companies of that domain. Such agreements can be negatively

influenced by communication challenges and competition.

4. A suitable level of abstraction needs to be found for the SDM to leave enough

space for solution flexibility in concrete OAS realizations.

However, having the identified challenges of domain-level engineering in mind, a

diligently maintained SDM can be highly beneficial for the industry in the long run. The

fact that technology research and innovation as well as experience are key enablers for

new collaboration scenarios, also means that the SDM will be subject to a continuous

evolution.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 100 Version 1.0 5 July 2023

Confidentiality: Public Distribution

System-level engineering

Having the safety domain model definition as a basis, it can be used for the creation of

ConSerts for concrete OAS that should later on participate in collaboration scenarios.

Figure 52 shows the relation between domain- and system-level activities through the

SDM.

Figure 52 - Engineering activities and the Safety Domain Model (SDM)

When a new OAS should be developed or extended to support a specific collaboration,

the first step is to explore the safety domain model for available information on the

desired collaboration scenario and its variants. The selection of variants that should be

realized in the OAS under development directly guides the determination of the

functional services that have to be provided by the OAS. Selecting several variants

implies the realization of multiple configurations where each configuration describes

exactly one supported collaboration variant.

Based on configurations describing provided and required services, safety goals and

associated safety guarantees have to be determined, which can be created by means of

traditional safety engineering techniques like hazard and risk assessment (HARA)

techniques. Obviously, the selection of multiple collaboration variants leads to higher

development costs due to the provision of higher safety guarantees. However, the

business benefits that can be leveraged from a better collaboration performance in case

of higher provided guarantees, can make this investment attractive. Thus, the main

engineering goal is to provide sufficient guarantees for the provided services of the

collaboration variants which have been selected according to business decisions.

Once the safety goals and their associated safety guarantees have been derived, a safety

concept has to be developed that provides an argumentation ensuring that the safety

goals are satisfied. The creation of a safety concept starts with a safety analysis of the

OAS under development which explores the causes that can lead to a violation of the

safety goals. The safety property types defined in the SDM can act as a starting point for

the system-level safety analysis. The safety goal violation causes can either be located

internally in the OAS under development or can be caused externally by required

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 101

Confidentiality: Public Distribution

services or runtime evidences. In any case, the safety concept should address the

identified causes with appropriate countermeasures or additional safety demands. The

formalization of the relation between safety guarantees and safety demands (=the

ConSert(s)) of the OAS under development can be carried out based on the contents of

the safety concept.

The final step is the actual certification of the OAS under development: After an

extensive examination of the documentation of the safety goals, the safety concept and

the derived ConSerts, an authorized certification body will issue the required safety

certificate. The required documentation could be for instance organized in a safety case,

while the actual structure of the safety case might be dictated by domain-specific safety

standards.

4.2.3.3 Recent extensions and applications of ConSerts

A case study of ConSerts for truck platooning has been performed in [125]. In addition

to the application of ConSerts for two-vehicle platoons, a simulation-based approach

has been explored to quantify the specification of safety properties that lead to a safe

behavior on the MAS level.

In [126], the systematic derivation of ConSerts from safety concepts has been explored

in more detail for platooning scenarios. In addition, the relation between Digital

Dependability Identities (DDI) as developed in the H2020 DEIS project and ConSerts

has been explicitly described. Figure 53, Figure 54 and Figure 55 show the results of

this case study.

Since ConSerts rely on Boolean logic to express variants and binary variables to express

runtime evidences, uncertainties in the presence of runtime evidences cannot be

expressed and propagated towards the safety guarantees. To address this issue, [127]

examined the relationship between ConSerts and Bayesian networks as a probabilistic

inference method to address uncertainties of runtime evidences and their propagation to

safety guarantee uncertainties.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 102 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 53 - Platooning safety concept

Figure 54 - Left: Platoon variant analysis, Right: Modular Platoon Safety Concept

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 103

Confidentiality: Public Distribution

Figure 55 - Platooning runtime DDIs and ConSerts for leader and follower trucks

4.2.4 Model repair

When a model is being used as the basis of a runtime fault detection, fault diagnosis, or

fault management system, the consequences of that model being incorrect or incomplete

are much more significant than if the model was a purely design-time safety artefact. If

the system is an MRS or other form of multi-agent system, then the issue is made worse

because errors may impact not just the current system but also the others operating

alongside it.

Errors in the runtime safety model may manifest in different ways. For example, limited

or imperfect expert knowledge of the system design may mean that causes of failure

exist that were not anticipated, thus not being present in the model. Alternatively, at the

opposite end of the scale, potential hazards may exist that were unforeseen. Or the error

may not be a causal issue at all, but one related to the monitoring of system parameters

or the actions the system is expected to take in response to diagnosed faults (one can

imagine the outcome of an automatic braking system that causes a vehicle to accelerate

in response to a detected obstacle ahead rather than braking).

It is possible, however, for problems with the model to be identified at runtime without

leading to a disaster first. By using data-driven approaches like ML, it is possible to

perform some manner of corrective action when evidence of an unexpected failure

scenario is encountered at runtime. If the observed behaviour of the system does not

match that predicted by the runtime safety model, the model could be corrected or

extended accordingly so that if a similar situation is encountered in future, it can be

identified appropriately. This broad concept is known as model repair.

One example of model repair is the concept of process mining, in which analysts extract

insights from a log of system data and create a performance model from it. These

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 104 Version 1.0 5 July 2023

Confidentiality: Public Distribution

models can then be updated through further data mining [128]. Process mining can be

made iterative and hierarchical, such that during each iteration, the model is checked to

detect any changes in steady-state behaviour.

A novel approach based on fault trees and machine learning is presented in [129]. The

approach presupposes that safety analysts have already constructed fault trees at design

time — models which may contain errors. Real-time operational data (e.g. during

testing or immediately after deployment) is used to train a One Class Support Vector

Machine to recognise the normal or abnormal behaviour of the system. Then, later

during operation, fresh data provided by system monitors is compared to this normal

behaviour to detect any anomalies. If such anomalies are detected, then the fault trees

created earlier are consulted in an attempt to diagnose the abnormal behaviour. If the

fault trees can provide no explanation, then one of several possible recommendations

are made based on the perceived severity.

This process is illustrated in the figure below:

Figure 56 - Abnormality detection and response (from [129])

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 105

Confidentiality: Public Distribution

The fault detection is not so different from some of the techniques described in Section

4.2.1. The novelty of this approach stems more from the second part of the framework,

the decision-making process.

When an anomaly has been detected, there are two possible outcomes:

 The diagnosis model (a fault tree in this case) can adequately explain the

abnormal scenario, i.e., the observed behaviour matches a node (or nodes) in the

fault tree. For example, if the behaviour is described by the two children of a

specific AND gate, then it would appear that the fault tree correctly adequately

describes the anomalous behaviour and a suitable diagnosis and prediction can

be made accordingly.

 The other case is that the fault tree cannot explain the abnormal scenario. This

could be because there are missing events — e.g. anomalous sensor readings

have been encountered that are not represented by any event in the fault tree —

or it could be because the causal relationships in the fault tree are incorrect. For

example, an intermediate node might be identified as true on the basis of the

current readings, but the fault tree says that situation should only occur if two

events have occurred when in fact only one has occurred. In this case, the logic

of the fault tree would appear to be incorrect: perhaps an OR relationship rather

than an AND relationship. In such cases, a recommendation for potential repair

of the fault tree is made. Depending on the problem identified, this may be a

recommendation to add a new event to include any additional readings detected,

or it may be to change the logic of the tree by e.g. changing the type of a gate. In

any case, the situation and any warnings generated are stored in a repository so

that if it arises once more, the safety monitoring system will recognise it.

The approach has been applied to an aircraft fuel distribution system. A fault tree

containing a deliberate mistake was created. Different sensors monitored key aspects of

the system, e.g. flow rates through valves, temperatures, and fuel levels in the fuel

tanks. Readings from each sensor during normal operation are used to train the support

vector machine. Then different abnormal scenarios are considered, each with anomalous

readings. In one scenario, the abnormal behaviour is not explainable by the fault tree;

fuel flow from the central tank (feeding both left and right engines) is interrupted. This

corresponds to one or more of the events at the bottom left of the fault tree in Figure 57,

each of which represents different problems with valves or pumps connected to the

central tank. However, the AND gate highlighted red remains false, even though we

know the top event has occurred (in this case, meaning that the flow of fuel to the left

engine has been interrupted). This is because the second basic event immediately below

it, representing a leak in the forward fuel tank, is also false.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 106 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 57 - Recommended repair of an erroneous fault tree

This points to a problem with the logical relationship between these events. The result

would be the creation of a warning event and a suggestion to check the logic from the

highlighted gate downwards, in this case to change the gate from an AND to an OR

(thus correcting the deliberate error inserted into it).

Although this is still a very experimental approach, it could be of significant use as an

element of a runtime safety monitoring system because it can work around potential

shortcomings in the diagnostic models used. In the case of an MRS, it could also be

used to issue notifications to other robots/agents operating as part of the wider system

and, if they make use of the same models, even share corrections amongst them.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 107

Confidentiality: Public Distribution

5. THE EDDI CONCEPT

The Executable Digital Dependability Identity — or EDDI — is our solution not just to

the challenge of autonomy, but also to the challenges of intelligence and complexity as

well. The EDDI is the evolution of the DDI concept (see Section 2.2.5), extended to

include a range of new features necessary to operate at runtime and address the sorts of

issues faced by MRS and autonomous systems of systems in general.

Like DDIs, EDDIs are composable model-based artefacts that contain dependability

information about a system. They can even be considered supersets of DDIs: an EDDI

can contain everything a DDI does and can serve as a design-time dependability artefact

in just the same way. Unlike DDIs, however, they are not purely static design-time

artefacts; they are also intended to be executed at runtime onboard or alongside their

target system to perform dynamic dependability management. This requires new

semantics and protocols for distributed, cooperative operation to achieve collaborative

certification and dynamic reasoning. It also means a renewed focus on security and

safety working in tandem, to establish the safety implications of security threats and

ensure a coordinated response. An EDDI can therefore be both an online monitor,

observing and managing its target system‘s safety and security, and an agent as part of a

distributed system, communicating with other agents to help manage dependability of

the wider multi-agent system.

An EDDI‘s features therefore include:

 Event monitoring to monitor dependability-related inputs from the system (such

as readings from sensors);

 Runtime diagnostics to determine probable causes and possible consequences of

detected failure events;

 Dynamic risk prediction, to update design-time risk estimates with new

information based on the current system state;

 Mitigating actions and recovery planning, such as recommending the system

enter a safe failure state or a degraded mode to continue operation.

 Intercommunication with other connected EDDIs to both assure them of the

system dependability status and respond to errors reported by other EDDIs.

5.1 OVERALL EDDI ARCHITECTURE

EDDIs are versatile entities that can have different components depending on the

functionality required. In general, however, the architecture of an EDDI can be seen in

the diagram below. Note, however, that one or more elements of the architecture may be

different or missing altogether, depending on the nature of the EDDI and the purpose to

which it is being used. A design-time only EDDI, for instance, would not need to

communicate with the system or the wider MRS at all.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 108 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 58 - The basic Executable Digital Dependability Identity architecture

5.1.1.1 System Interface

The EDDI requires an interface to its target system (e.g. a robot). This is shown in the

diagram in two places: the observations (top left) coming from the system's sensors, and

the signals and actions communicated directly to the system controller (centre-right).

Together, these form the inputs received from the system and outputs the EDDI sends to

it.

Through the system inputs, the EDDI receives information about the state of the system

and its parameters, e.g. the readings from any onboard sensors that have dependability

implications. Sensors also provide the EDDI with information about its operating

environment and any prevailing conditions that may impact safety or security (e.g. bad

weather). Such information will necessarily be platform-dependent, and most likely in a

format dictated by the platform, though some pre-processing of the information may

exist rather than reading e.g. raw sensor data, depending on the nature of the platform‘s

controller.

In return, the EDDI sends to the system information about the dynamic level of risk as

well as possible corrective measures. It is important to note that the EDDI is not meant

to be a controller in itself, capable of seizing control of the system: it is an advisory

monitor only. However, it can recommend e.g. that the system enter a safe failure state

(such as an immediate landing for a drone, or a safe shut down for a robot arm) or that

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 109

Confidentiality: Public Distribution

the present level of risk is such that the current task be aborted (resulting in a return to

base, for instance).

Depending on the nature of the system, the EDDI may also have an interface to the

human operator, if applicable. If the system is not fully autonomous, then the corrective

actions may additionally (or instead) be communicated to the user, along with current

system dependability status, any alerts about potential problems, and diagnostic

information on any failures detected.

5.1.1.2 MRS Interface

If operating as part of a multi-agent system (such as an MRS), the EDDI may also

require an interface to the rest of the agents to enact collaborative operation. This

interface is denoted by the "Input from rest of MRS" and "Output to rest of MRS" on

the right of the diagram. It is through these channels that the EDDIs work together to

manage dependability for the wider system and help ensure safe operation of other

agents.

As explained earlier, many of the tasks undertaken by an MRS are cooperative,

requiring multiple robots working together in tandem to achieve. This can establish

dependencies between robots, i.e., in order to achieve their own task, they must rely on

another agent completing a different or related task. This dependency then becomes a

dynamic certification problem: can the other agent guarantee that it is capable of

achieving its task safely? And if not, how should the dependent agent respond?

Consider the example of a platoon of autonomous robotic vehicles driving in convoy;

the safe distance between vehicles depends on both the environmental conditions (wet

weather would mean greater braking distances) as well as the speed and braking

capability of the other vehicles in the convoy. If the lead vehicle experiences difficulties

— whether due to environmental influences or onboard failures — it may report that it

is no longer capable of meeting its original guarantees of safe operation and drop to a

degraded state with lower guarantees, e.g. it cannot ensure a short braking distance or a

constant speed within a given threshold, but it can promise a longer braking distance

and a looser speed threshold. In response, the following vehicle may choose to increase

its following distance and/or reduce speed accordingly, which may in turn prompt the

next vehicle in line to do the same and so forth.

It is through this MRS interface, therefore, that an EDDI communicates information

about its current state, the dependability guarantees it offers about its own behaviour,

and receives information about the demands it makes of other agents it may depend on.

5.1.1.3 Real-Time Event Monitors

The event monitor components of the EDDI perform low-level detection of events.

They are responsible for the evaluation of real-time sensory data and determining

whether or not particular events of note have occurred (e.g. a fault), and if so, reporting

this to the rest of the EDDI.

The exact form of an event monitor is heavily platform-specific, depending as it does on

the nature of the data being monitored and the platform itself. However, there are

frequent commonalities that can be generalised and so the event monitors can, to some

degree, be considered instantiations of specific patterns. For example, sensor data is

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 110 Version 1.0 5 July 2023

Confidentiality: Public Distribution

likely to be buffered into a time series store (e.g. via a circular buffer with shifting time

windows), to better identify trends and long-term conditions and help filter out transient

phenomena or spurious readings. Expressions to confirm the occurrence of events can

be complex operations that involve querying both current and historical data points, and

a system of three-value logic — incorporating an ‗unknown‘ value in addition to ‗true‘

and ‗false‘ — may help in processing situations that involve a degree of uncertainty or

otherwise incomplete information.

It is also important to note that EDDIs do not purely monitor for hardware faults. The

system component being monitored may be an AI component, for instance, using

SafeML to provide information about its current status and dependability of its

performance. As described in Section 3, AI components such as DNNs introduce a more

probabilistic type of uncertainty as they always have a chance to misclassify an input.

Thus a camera connected to a person detection algorithm, for example, has a chance of

not recognising a person in the vicinity of the robot, leading to a hazardous scenario.

While we cannot detect this situation with 100% confidence, we may know that the ML

component has a low confidence (e.g. due to environmental conditions like darkness or

bad weather) and adjust behaviour accordingly.

Alternatively, an event monitor may be monitoring for security threats of some

description, such as a network intrusion of some kind or a security authentication

failure. As will be described later, both security and AI problems as well as more

traditional hardware-related faults are subordinate to the higher-level reasoning of the

EDDI so that it can respond to any dependability-related event, whether that be a

hardware fault, security threat, or AI performance degradation.

5.1.1.4 Fault Diagnosis

Even if an event is detected, it may not necessarily represent a specific failure. More

likely, it represents the symptoms of an undetermined failure. In order to determine the

appropriate response, it would be helpful to know the probable cause of the event and

any potential consequences for the system dependability. This is where the diagnostic

engine comes into play. Using causal models such as fault trees derived from design-

time analyses (and stored in a DDI-based repository, green in the diagram), the EDDI‘s

diagnostic engine attempts to determine the root causes of the event(s) — such as a

component failure — and can be used to dynamically update the risk if such a cause is

detected. For example, a primary-standby system with a main component and a backup

may still be able to operate if one or the other fails, but its reliability will be reduced and

its risk will increase accordingly. Similarly, a hexacopter drone may still be able to fly

with one or two rotors disabled, but its performance and safety margin will be reduced.

In addition to Boolean models like fault trees, where detected events may indicate that

certain nodes are true and allow both deductive (to determine causes) and inductive (to

determine consequences) analysis, probabilistic models like Bayesian networks or

Markov models may be used to provide probabilistic estimates of likely causes where

detectability coverage is limited. For example, a sensor that covers multiple components

may report a problem without providing enough evidence to determine which

component was at fault. But based on predicted failure rates and other information, the

model may at least be able to indicate the probability that the problem is caused by each

possible component.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 111

Confidentiality: Public Distribution

5.1.1.5 High-level Reasoning & Management Application

The event monitors may detect events and the diagnostic engine may be able to

determine causes and consequences of those events, but in order to make any sort of

decision about possible responses — and to coordinate with the rest of the MRS, as well

as any human operators — a higher-level ‗brain‘ is required. Thus at the core of the

EDDI is a model-based, high-level reasoning application capable of dynamically

responding to input and acting accordingly. Such apps are therefore executable and

deliver certification functionality (e.g. issuing and querying guarantees) as well as

dependability management functions (e.g. alerting users and recommending mitigating

actions in response to failures).

Candidates for the high-level app include ConSerts realizing dynamic safety capability

assessment, Bayesian nets realizing dynamic risk assessment, and variations on State

Machines (e.g. Markov models or state-sensitive fault trees). These will have

knowledge of possible nominal, degraded, and failed modes, as well as the causal

transitions between them, and any necessary actions to take for each mode.

Development of appropriate models also requires working knowledge of the normal

operation of the system, since the current system state may affect both possible events

and appropriate reactions (e.g. a drone that has landed may have different responses to

an engine failure than an airborne drone).

It may also be possible to use more than one model in conjunction to form the overall

app, to take better advantage of the capabilities of each type of model. For example,

ConSerts could be used to determine whether safety goals are being met across the

overall MRS by issuing and querying safety guarantees. They are capable of verifying

whether the demanded safety self-certification is capable of being satisfied, and if not,

react accordingly. However, they are primarily Boolean models, so Bayesian networks

may also be used to enrich ConSerts with probabilistic reasoning mechanisms. Dynamic

safety goals to be satisfied dynamically via ConSert safety guarantees can come from a

dynamic probabilistic risk estimation. Finally, some form of state machine could also be

used to track the current state and tasks of the system and to manage the transition into

safe states and other mitigating actions in response to specific triggers.

5.1.1.6 Model validation and repair recommendations

EDDIs are model-based artefacts. If the EDDI model itself contains errors, then its own

behaviour may be unreliable. To address this, EDDIs may contain an experimental

model validation & repair component that monitors the EDDI at runtime (or during a

simulation at design time) for correctness and completeness. If it detects a divergence

between the detected system state and that predicted by the model, then it can report the

discrepancy to the operator. It may even be possible to perform some degree of self-

correction, e.g. by augmenting the model with new causal relationships or states,

perhaps via deep learning techniques (see Section 4.2.4).

5.1.2 EDDI Creation and Deployment

No two EDDIs are exactly alike. They can grow and change and evolve across the

system lifecycle. Preliminary EDDIs could be constructed even as soon as the early

stages of functional design, developing alongside the system design with additional

detail and new failure behaviour.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 112 Version 1.0 5 July 2023

Confidentiality: Public Distribution

These design time EDDIs could be considered to be "Extended DDIs" rather than

"Executable DDIs". Generated by dependability analysis tools such as HiP-HOPS or

safeTbox, they would be ODE-based repositories of knowledge about the system

architecture, failure behaviour (e.g. fault trees), and safety assurance argumentation (via

SACM). Different systems and different tools may produce different forms of model; a

dynamic system may make use of Markov models and/or Bayesian networks, for

instance, while a more static system might only require fault trees.

These EDDIs still have many roles to play even at design time. They can be used to

inform testing or simulation (e.g. with fault injection), and the ability to encapsulate and

hide proprietary information while still exposing an interface to the safety

argumentation means they can be used as part of a distributed supply chain, with

suppliers receiving or providing EDDIs as evidence that safety requirements for

individual components are being met.

However, as already discussed, design time measures can only do so much. In making

the move from design time to runtime, EDDIs transition to an executable form. During

this process, manual intervention is required, new information is added to the EDDI,

and unnecessary information (e.g. some of the safety argumentation) is removed. For

example:

 In order to function, an EDDI requires data from runtime evidence monitoring.

This requires platform-specific event monitors to read sensors and communicate

with the EDDI. While some generic information about the event monitor can be

prepared (e.g., the nature of the event to be detected), creating the monitor itself

is a separate activity.

 Diagnostic models like fault trees can, for the most part, be generated from the

design-time causal failure models. However, the higher-level reasoning models

are likely to be more complex and require more intervention. Though they could

be based on e.g. a state machine or Bayesian network, effort is needed to

connect them to the relevant diagnostic models and event monitors.

 Similarly, any distributed safety assurance — the issuing, checking, updating,

and receiving of safety guarantees — is also likely to require intervention. It

may be based on existing design time argumentation already present in the

EDDI, but extra work will be needed to tailor this to the runtime environment

the system is likely to face.

Once suitably prepared, there are two possible approaches for deploying an EDDI. The

first is to generate code from it. A ConSert, for example, can be synthesised into code

that runs natively on the target platform (e.g. as a ROS node). Again, most likely some

degree of manual tweaking is required to adapt to the platform itself.

The other approach is more difficult but more generic and employs a virtual machine-

style approach: a target-specific native program is created that takes an arbitrary EDDI

model and executes it. This imposes a higher overhead, since creating the executing

program is more difficult, but the advantage is that it can then execute any EDDI

without needing to modify the program. Even here, however, there will be work needed

to e.g. connect the executor to the event monitors so that the EDDI can function.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 113

Confidentiality: Public Distribution

More work in this area is being undertaken as part of WP7.

5.2 THE OPEN DEPENDABILITY EXCHANGE METAMODEL

Like the preceding DDI concept, specification and standardisation of EDDIs is achieved

via the Open Dependability Exchange (ODE) metamodel
39

. In this way, the ODE can

serve both in a transitory form as a mechanism for inter-tool cooperation (i.e., exporting

models from one tool and importing into another) and also in permanent form as a

canonical storage for an EDDI itself (e.g., an XML file conforming to the ODE).

Further information on the ODE and the updates made during SESAME to support

EDDIs can be found in D4.2/D5.2 ODE and EDDI Specification, but for the sake of

coherency, a brief summary is provided here also.

The ODE is a superset of SACM (see Section 2.2.4.3). SACM serves as the assurance

case metamodel, while an additional package — the product metamodel — provides a

home for information regarding the system architecture and its failure models. The

major packages of the ODE are as follows:

 The Base package is the base for everything else and includes fundamental

information like names, descriptions, and identifiers.

 The Design package is used to model the system architecture. It defines entities

to describe systems, functions, components, interface ports, and connections

between them all.

 The Dependability package relates to dependability requirements, standards, and

risk analyses — in particular, measures enacted to support or ensure

dependability. It also has sub-packages that relate to safety standards etc.

 The Requirements package is a sub-package of Dependability and focuses on

dependability requirements (both safety and security). A requirement links to the

related failures and hazards as well as mechanisms to address them.

 The HARA or Hazard Analysis & Risk Assessment package supports the

modelling of hazards, malfunctions, and associated risks.

 The Failure Logic package contains all the elements required to support failure

modelling and safety analysis. It contains sub-packages for the various

supported analysis methods: Fault Tree Analysis (FTA), Failure modes and

Effects Analysis (FMEA), and Markov analysis.

 The TARA or Threat Analysis and Risk Assessment package supports

description and modelling of security threats and analyses such as attack trees.

As part of SESAME, the ODE has been updated to support those concepts necessary to

adequately model EDDIs. This includes:

 Generic concepts to support runtime execution and communication with the host

system in the form of the ODE::Event and ODE::Action packages.

39

 https://github.com/Digital-Dependability-Identities/ODE

https://github.com/Digital-Dependability-Identities/ODE

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 114 Version 1.0 5 July 2023

Confidentiality: Public Distribution

 Support for dynamic assessment and provision of dependability demands and

guarantees in the form of ConSerts.

 New and/or extended safety analysis models targeted at dynamic behaviour,

specifically State Machines and Bayesian networks.

 Additional concepts to support security modelling and threat analysis,

particularly data derived from the various databases of known security threats.

 Modelling support for dynamic risk analysis & evaluation, including further

behaviour and environment modelling (SINADRA), and some initial aspects to

support dependability of machine learning.

When taken together, these additions provide the ODE — and the EDDIs specified

using it — to encapsulate both design-time information about the system and its

dependability behaviour and runtime-specific information necessary to define how the

EDDI can be executed dynamically.

Note again that the ODE is a superset: not every EDDI needs to represent all aspects of

the ODE, and or indeed most of the runtime aspects at all if design-time analysis is all

that is required.

5.2.1 Events and Actions

The Events and Actions are perhaps the most fundamental additions. Events model the

way in which an EDDI is able to respond to data from the host system or other agents in

the wider MRS. An Event is therefore essentially a notification that something has

occurred, whether that is a condition being fulfilled, a failure being detected, or a

message received.

Event Monitors provide more concrete implementation-specific detail for detecting and

triggering Events. To help define dynamic conditions that can serve as event triggers, a

grammar has been developed to specify trigger conditions. Such conditions can monitor

values over time and perform operations over series of data (e.g. averages, sums etc). It

additionally makes use of 3-value logic (true, false, unknown) to account for the fact

that knowledge of a system at runtime is imperfect and event conditions may need to

take into account uncertainty.

Actions on the other hand serve as the mechanism for the EDDI to provide feedback to

or to initiate changes in the system or other agents. They are intended to be an

abstracted form of communication or response that the EDDI recommends on the basis

of fault diagnosis or decision making, as informed by the internal and external

conditions observed across the MRS.

In this way, Events and Actions can be thought of as the inputs and outputs of the EDDI

entity:

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 115

Confidentiality: Public Distribution

Figure 59 - The Event/Action cycle

5.2.2 ConSerts

ConSerts provide the primary EDDI mechanism for managing dependability at runtime

as part of an MRS. As described in section 4.2.3, ConSerts enable the constituent parts

of an MRS to negotiate their dependability-related properties at runtime. Using

ConSerts, the agents of an MRS can assess their own dependability status on the basis

of runtime evidence (e.g. from Events), interpret the demands they require of the agents

they depend on, and in turn calculate what safety guarantees they can offer about their

own behaviour to the rest of the MRS.

In the ODE, ConSerts build upon the ODE's pre-existing dependability requirements

support by adding three new packages. The ODE::ConSerts package defines the

ConSerts themselves: their structure (including the Boolean logic that connects them),

their demands, their guarantees, and the runtime evidence that supports them. It also

defines the dependability properties being assessed by the ConSerts.

The ODE::Service and ODE::Dimension packages support the main ConSert package

by defining concepts for service-based system design (specifically, required/provided

services) and specification of runtime attributes. The latter is what adds semantics to the

definition of a given dependability property; for example, "safe distance" might be a

numeric dimension measured in metres in the range (0-50).

5.2.3 Dynamic safety analysis

The original ODE already supported common design-time analysis methods like FTA

and FME(D)A. However, its only support for dynamic models — necessary to model

runtime failure behaviour — was limited support for Markov models. As part of

SESAME, additional modelling concepts have been added to support dynamic fault

trees (with sequences as well as combinations of failures) as well as generic State

Machines (compatible with the Markov models) and Bayesian Networks.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 116 Version 1.0 5 July 2023

Confidentiality: Public Distribution

In addition, the failure models can be interlinked in various ways. Thus for example

failures from a fault tree can be linked to specific states or can trigger state transitions.

Actions and Events are also integrated throughout in a similar fashion, connecting

Bayesian Networks, State Machines, Fault Trees, and Attack Trees together and

enabling runtime execution support.

5.2.4 Security Analysis

The original TARA package has been expanded significantly to support the type of data

found in common databases (e.g. CAPEC, CVE, CWE) as well as robotic-specific

databases like the Robot Vulnerability Database (RVD). This enables interoperability

and traceability with established security analysis tools and helps support runtime

security threat detection on the basis of the information stored.

To support combined safety & security analysis, the TARA and Failure Modelling

packages are connected. Thus for example an attack tree can serve as one possible cause

of a system failure modelled by a fault tree — e.g. a failure of the communications

system could be due to a hardware failure (radio, processor etc) or due to a security

attack (e.g. denial of service attack). As with the various safety analysis models,

security analysis models are also integrated with Events and Actions as well as state

machines. This enables holistic dependability models and analyses to be created that

encapsulate the contributions of both safety and security to the system failure behaviour.

5.2.5 Dynamic Risk Assessment

Finally, the ODE was also extended with a range of concepts to support dynamic risk

assessment (SINADRA) and a limited form of ML dependability (e.g. via SafeML).

These concepts focus on modelling of the situation, environment, capability, and

behaviour of the system, and encapsulate to a degree some of the task definition

attributes from Executable Scenarios.

5.3 SAFETY & SECURITY

When assessing and reacting to the dependability of a system or MRS, both safety and

security must be considered in concert. Many security threats may have safety

implications — e.g. by disabling some key component of the system or by introducing

uncontrolled behaviour that may dramatically increase the risk posed by the system to

its surroundings. More directly, security attacks may be indirect or event direct causes

of system failures, stressing the system such that its redundancies and contingencies are

insufficient to maintain safe operation.

As such, it is important that security be considered as part of the overall dependability

assessment process to ensure that these vulnerabilities are identified, their effects on

safety evaluated, and mitigations or countermeasures put in place accordingly. This is

why the EDDI concept is designed to incorporate both safety and security from the

ground up.

This is particularly important when it comes to physical security attacks. Such attacks

involving deliberate physical damage to a robot or a drone may cause hardware failures

that may in turn propagate throughout the rest of the system, just as ordinary random

hardware faults can. The EDDI's higher-level reasoning app must assess risk and

consequences of such faults, regardless of whether they originated from wear and tear

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 117

Confidentiality: Public Distribution

or a physical attack. It is also possible for the attacker themselves to be at risk; some

components of a robot (e.g. a LIDAR sensor on a drone or a lithium ion battery) may be

inherently hazardous, and by deliberately damaging them, the attacker may breach the

protective casing that would otherwise keep users safe and thus expose themselves to

the hazards within.

Although systematic security analysis processes exist, like those discussed in D5.1:

Security Analysis Concept, these are generally based on different models than those

used in safety and are often not integrated into wider dependability processes. They also

tend to be either design-time or run-time only, rather than spanning the full lifecycle of

the system from design to operation.

To address these issues, the EDDI concept drives a combined model-based approach to

safety & security, one that enables a holistic analysis of multiple dependability

properties (e.g. safety, security, reliability) over the entire system life cycle, from design

time to runtime. The basis for this process is a set of executable models — the EDDIs

themselves — and the common metamodel that underlies them, the ODE.

As long as suitable models can be created and the required processes followed, the

resulting EDDIs are both safety- and security-aware and can detect security threats and

assess their impact on the dependability of the system or wider MRS.

5.4 EDDIS AT DESIGN TIME

To better illustrate the EDDI concept at different points in its lifecycle, we will use a

simplified example. Echoing the lifecycle of the system itself, the example EDDI

originates during the system design process.

The subject of our example is a hypothetical robot based on the robots used in the

Locomotec use case. These robots are intended to patrol the corridors of a hospital or

other public building and disinfect surfaces with ultraviolet (UV) light to help prevent

spread of contagious diseases and other harmful bacteria.

The robots are coordinated by a central control station, which handles task allocation

and overall command, but the robots can communicate directly to warn of people in the

vicinity or of obstacles to navigation.

5.4.1 Initial HARA

As part of the design process, an initial hazard analysis and risk assessment (HARA)

takes place to identify potential risks posed by the system. In this case, we have two key

hazards:

 H1: Failing to adequately disinfect surfaces, leading to people becoming ill.

 H2: Inadvertent exposure of a person to high-intensity UV light, causing skin

irritation or damage to eyes.

On the basis of these hazards, we would establish corresponding safety requirements for

the system (i.e., that aim to prevent the hazards from materialising). These would be

linked to the relevant subsystems or components of the system, e.g. the lamp and person

detection subsystems for H2.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 118 Version 1.0 5 July 2023

Confidentiality: Public Distribution

The next step is to analyse the system design to determine whether the requirements are

being met. Ideally this would be an iterative process that takes place alongside each

evolution of the design, but for the purposes of the example we will look at a single

(simplified) model.

5.4.2 Model-based Dependability Analysis

In order to make use of the EDDI concept, such a model should be created according to

the principles of model-based safety analysis, i.e., integration of system architecture

elements with annotations describing the corresponding local failure behaviour. For

example, the model may be created with Matlab Simulink for later analysis in

HiP-HOPS, or in Enterprise Architect for subsequent analysis via safeTbox.

Alternatively, it could be created using multiple tools, e.g. one for the overall functional

architecture, and another that provides refined detail of specific subsystems.

To keep things simple, we will consider six main components/subsystems:

Figure 60 - Example system model for design time EDDI

Data connections are shown in blue. The computer takes input from the camera (to

detect nearby people) and the wifi (to receive instructions from the control station and

human users), processes this input, and sends instructions to the motors (for movement)

and the UV lamp (to turn on/off to disinfect surfaces). The computer also sends updates

via wifi to report on its current status etc. The battery provides power to the rest of the

system (orange lines).

These components and their interconnections can all be represented by ODE system

architecture elements: namely, Systems (which can be either a subsystem or a single

component), Ports (interfaces to/from Systems), and Signals (the connections between

them). As the ODE serves as a superset of the various compatible tools, this architecture

can be readily converted from e.g. a HiP-HOPS model (with Components, Ports, and

Lines) or a safeTbox model.

We can then perform a local FMEA of sorts for each component, determining what

internal failure modes it has and what the effects of those failures might be in the

component outputs. This is presented in the table below (but note that this is simplified

for the purposes of the example; a full analysis would hopefully be more in-depth).

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 119

Confidentiality: Public Distribution

Component Output Failure Causal logic Causes

Motors No propulsion No power OR no control
signal OR motor failure

Omission of power from
battery

Omission of control
signal from computer

Motor hardware failure

Battery No power Gradual loss of capacity
OR recharger failure

Gradual loss of capacity

Recharger failure

UV Lamp No UV light when
intended (omission)

No power OR no control
signal OR lamp failure

Omission of power from
battery

Omission of control
signal from computer

Lamp hardware failure

 UV lamp incorrectly on
(commission)

Control signal error Control signal error from
computer

Camera Cannot see Camera failed OR
camera obscured OR no
power

Camera hardware failure

Camera obscured
(potential physical
attack)

No power from battery

Wifi Communication failure No power OR Wifi
hardware failure

No power from battery

Wifi hardware failure

Computer

No motor signal

("No power" omitted to
save space)

Motor software error OR
hardware failure

Motor software

Computer hardware
failure

No UV lamp signal

("No power" omitted to
save space)

Lamp software omission
failure OR hardware
failure

Lamp software omission
failure

Computer hardware
failure

Incorrect UV lamp signal No video from camera
OR person detection
algorithm failure

Omission of camera
video data

Person detection
algorithm failure

Security attack via wifi
network vulnerability

Table 5 - Component failure behaviour for design-time EDDI example

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 120 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Again, all of these aspects can be captured both by the tools and the conceptual superset

specified in the ODE. We can see how each component can fail (e.g. person detection

algorithm failure), what the effects of those failures are (incorrect UV lamp signal), and

infer how they connect (UV lamps on incorrectly, leading to UV overexposure).

Simple security attacks can also be incorporated even if hardware details are not yet

available, such as a potential physical attack to the camera (deliberately obscuring it) or

a network attack over the Wifi. When more data becomes available, these failures may

be further explored via security analysis and become the heads of their own security

attack trees. The ODE allows both fault trees and attack trees to be directly joined, so

that one may be a cause of the other.

Depending on the stage of the design process, qualitative failure information may also

be augmented with quantitative information specifying failure rates etc, but this level of

detail is unnecessary for the purposes of the example. What is more useful here is that

we now have all the ingredients for a compositional safety analysis, as performed by

HiP-HOPS or safeTbox.

5.4.3 Generation and analysis of failure models

These tools take the system model, its connections, and the component failure data, and

combine it all to perform an overall analysis of the system. The result is one or more

fault trees (one per hazard) and an FMEA. The fault tree for H2, the overexposure

hazard, would look something like Figure 61. At the top is the hazard itself (UV

exposure). OR gates are shown in blue (with curves at the top and bottom), while basic

events — root failures such as component hardware failures — are red circles. Causal

propagation flows from bottom-up, i.e., nodes higher up are caused by those nodes

connected below them.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 121

Confidentiality: Public Distribution

Figure 61 - Fault tree for H2: UV overexposure

In this case, we also consider not just safety-related causes of the hazard, but also

security causes. At this stage we do not have detailed information about the software or

hardware configuration of the system, so the basic event (robot hijacked) is simply a

placeholder, but later we can use this as an attachment point for one or more attack

trees.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 122 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Again, all of this information — the fault tree structures, minimal cut sets, FMEAs,

even security attacks — is all captured within the ODE. This effectively provides us

with a simple design-time EDDI, encapsulating information about the system, its

architecture, its hazards, and the failures that can cause of those hazards.

On the basis of this information, we can decide whether or not the current design meets

the safety requirements, and if not, refine the design further before re-analysing and re-

assessing it. If requirements are met, then the EDDI — incorporating information about

the architecture, failure models, and analysis results — serves as evidence to form part

of the safety argumentation for the system (e.g. the safety case arguing that the final

robot is safe to use).

5.4.4 Moving towards dynamic models

If all we want is a design-time analysis, then this might be sufficient. However, we can

go further. For example, we can attempt to model the dynamic behaviour of the system

with a state machine:

Figure 62 - State machine for the example (failure states are in red, nominal states in green)

We may also attempt to consider the wider MRS, by modelling the base control station

and its communication with the robot, or even model two robots and the base control

station. While this would be imperfect — there is a limit to what can be correctly

captured a priori — it would give us more information to work with.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 123

Confidentiality: Public Distribution

Normal MBSA tools are ill-equipped to model systems at the level of tasks and

coordination, but we could say e.g. that another cause of H1 would be the base station

failing to transmit correct instructions to the robot successfully (because of software

error, user error, or wifi failure, for instance), and we could hypothesise that another

cause of H2 would be the failure of one robot to inform a second robot around a blind

corner that there is a person in the vicinity, meaning that the second robot fails to turn

off its lamps in time.

5.4.5 Fault Diagnosis

If we want the EDDI to inform runtime diagnosis, we may instead refine our models

further to distinguish between failures and symptoms. At runtime, onboard fault

diagnosis is constrained by perception: the EDDI (or any other form of diagnosis) can

only act on the information it is are aware of. In many cases, failures cannot be detected

directly and must instead be inferred from their effects.

This would ordinarily require a greater level of detail in the model, but for the purposes

of the example we can make certain assumptions, e.g.:

 We can have sensors to measure the current running from the battery to each

component. This would let us determine whether a component has failed

internally or is suffering from a power failure, e.g. due to a loose wire.

 On a higher level, we can infer battery failure (or degraded battery performance)

based on whether it affects multiple components or just one. A battery failure

would likely be a common cause across the entire robot; a loose wire or

component short circuit etc would most likely affect only one or two

components.

 Navigation instruments like an internal compass and/or GPS system would help

establish whether the robot is moving in response to commands or not, thus

inferring whether there is a motor failure.

 An obscured camera could be inferred by assessing the video feed. If the feed is

dark and unchanging over time, but data is actually being sent from the camera,

then we can infer that it is obscured rather than failed. Note that we most likely

cannot distinguish between a deliberate attack (someone covering the camera)

and a more innocuous cause, e.g. something falling on the camera or the lens

becoming dirty.

 From an MRS perspective, we can assume that the PD algorithm is failing or

that there is some previously unanticipated camera issue when one robot detects

a person while another nearby robot does not. In this case, we may want both

robots to shut off their lamps.

Based on these sensor capabilities, we can extend the fault tree to enable diagnostics.

Instead of the basic events representing individual failure modes, they become the head

of small sub-fault trees of their own, the basic events of which instead represent

symptoms. For example, we might extend the previous fault tree in Figure 61 like so:

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 124 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 63 - Modified fault tree for diagnosis

Here we have symptoms (basic events, in red) connected to failure modes (in orange). If

we detect that the video feed is present but all dark/unchanging, then we can infer that

the camera is obscured (which in turn propagates up the fault tree to potentially cause

the UV lamp not to be switched off when in the presence of a person, thus leading to

UV overexposure).

If on the other hand we have no video feed at all, then our diagnosis may depend on the

electrical sensor connected to the camera. If low current is detected (left branch), then

we can infer that there is a problem with the power supply to the camera. Alternatively,

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 125

Confidentiality: Public Distribution

if there is not a low current detected (middle branch with NOT gate), then we can

assume the cause is a hardware error in the camera itself.

Ultimately, however, there is a limit to what we can achieve purely at design time. For

the EDDI to show its full worth, we must look towards runtime instead.

5.5 EDDIS AT RUNTIME

There are two key aspects of system dependability that a design-time only EDDI cannot

fully assess: dynamic behaviour (particularly behaviour influenced by the operational

environment) and MRS operation. While we can build approximate models and make

careful estimates at design time, in the end it would be largely speculative and

necessarily pessimistic.

For example, as mentioned in the above, we could build a static, design-time model that

incorporates both a robot and the base station, or two robots and the base station, but we

cannot make a design-time model that readily scales to an arbitrary number of robots.

Nor can we accurately capture actual dynamic behaviour using purely static models, or

even a mixture of static models and dynamic models (like fault trees and state

machines). Moreover, the more we attempt to try, the more complex, unwieldy, and

error-prone our design-time models become.

The core issue — and one of the driving problems the SESAME project hopes to

address — is that runtime circumstances cannot be fully predicted a priori at design

time. This is particularly the case for MRS consisting of multiple, potentially

heterogeneous robots, the configuration of which may change and adapt during

operation.

A runtime EDDI will most often start off as a design-time EDDI. Much of the

information required for runtime operation is captured at design time as part of the

MBSA process — identification of hazards, assessment of risk, determination of chains

of possible causes, establishing failure behaviour and diagnostic information etc.

However, for the EDDI to function, this information needs to be processed at runtime

— in other words, it needs to be executable.

This requires extending the design-time EDDI with additional information and perhaps

even new models entirely, such as ConSerts.

To illustrate, we will stick with the same disinfection robot example and briefly explore

two possible runtime implementations.

5.5.1 Events, Actions, and State-Sensitive Fault Trees

The first version will be the simplest: we can build on the existing fault trees and state

machines with Events and Actions to allow the EDDI to interact with its host system.

To do this, we would connect the fault trees and the state machine — such that certain

nodes of a fault tree trigger state transitions, for instance. We have already done this

informally, but e.g. the "Person detection failure" transition would need to be logically

connected to the appropriate places in the fault tree (in this case, probably the top event

or the UV lamp on incorrectly node).

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 126 Version 1.0 5 July 2023

Confidentiality: Public Distribution

This gives us both a higher-level model for reasoning (the state machine) and more

detailed models that can be used for diagnosis and logical processing (the fault trees).

However, we need some way to obtain input and provide output.

For this, we define Events as part of the model. Each Event is associated with one or

more Event Monitors, which specifies the platform-dependent source of the condition

that triggers the Event.

Using the fault tree from Figure 63, we would likely have an Event for each basic event

(red circle). For example, we could have an Event for the Low Current node along

with a corresponding Event Monitor. The monitoring condition would be monitoring

the variable 'current' and the condition might be something like:

current < 0.1mA

There would also need to be executable code to periodically check this condition and

update the Event status, but this would depend on the implementation of the host

platform.

When the Event Monitor, running at a predetermined interval, determines that the

condition has been met, the Event becomes true (or, if the condition cannot be checked,

e.g. because the sensor has failed, the status of the Event may become 'unknown'

instead). The Event is logically connected to the Low Current node of the fault tree,

which similarly gets set to true.

The fault tree is then updated according to its logical structure: any single parent nodes

get set to true as well, as do any OR gates (AND gates would only be set to true if all

children were true). In this case, the connected node is a symptom node, and the

propagation of the truth value through the fault tree passes through a failure mode node.

This could trigger a Message Action informing the system of a new fault diagnosis

(loose wire or battery failure, though in the latter case, the entire platform would

presumably be inoperable). If quantitative failure data has been added to the tree, it

could also update the probability of the top event and thus give an updated probabilistic

estimate of how likely the hazard is.

Additionally, if one of the fault tree nodes is the trigger for a state transition, then this

would also trigger a state change in the state machine. That too may have Actions

attached; a State can have both OnEntry actions (triggered when first entering the state)

and OnExit actions (triggered when leaving a state). These Actions may simply be

status updates to the system or the rest of the MRS or they may be recommendations for

general actions to be taken by the system itself.

For example, if the low current event for the camera fires, then the EDDI will diagnose

a problem with the power supply to the camera and determine that this can lead to a UV

overexposure incident. The Action attached to this may be a recommendation to shut off

all UV lamps immediately and return to the robot's base station for shut down and

repair. This would trigger a change in operational state (from "fully functional" to a

"degraded return-to-base" state) that may in turn trigger an Action that warns the rest of

the MRS that this robot is out of commission. In response, the base station may task

another robot to continue the malfunctioning robot's planned route.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 127

Confidentiality: Public Distribution

Figure 64 - More complex state machine with runtime actions

Sample Events (linked to nodes in the fault trees in Figure 61 & Figure 63) could

include:

 Event: LOW CURRENT [Camera]

o camera_current < 0.1mA

o causes LowCurrentToCamera

 Event: NO VIDEO FEED [Camera]

o camera_data_transfer == 0 kbps

o causes NoVideo

 Event: CAMERA FEED DARK [Computer]

o Software component checks camera feed to determine average darkness

o causes CameraObscured

 Event: LOW PERSON DETECTION CONFIDENCE [Computer]

o SafeML-based assessment of confidence < 50%

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 128 Version 1.0 5 July 2023

Confidentiality: Public Distribution

o causes PD_algorithm_failure

 Event: UV Lamp On Incorrectly

o Triggered by the top node of the H2 fault tree

o causes state transition to UV lamp On Incorrectly state

Actions could vary a lot, but may include:

 Action: UV Lamp Commission Error

o Trigger: entering the "UV Lamp On Incorrectly" state

o Sub-action: Transmit warning to MRS

 Warning: POTENTIAL UV OVEREXPOSURE

o Sub-action: Recommend action to host robot

 Message: Recommend host robot switch off power to lamps and

remain stationary to avoid further overexposure

 Action: UV Lamp Omission Error

o Trigger: entering the "UV Lamp Off Incorrectly" state

o Sub-action: Transmit warning to MRS

 Warning: UV LAMP FAILURE

o Sub-action: Recommend action to host robot

 Message: Recommend host robot to return to base

 Action: Motor Failure

o Trigger: entering the "Robot stuck" state

o Sub-action: Transmit warning to MRS

 Warning: ROBOT STUCK DUE TO MOTOR FAILURE

o Sub-action: Recommend action to host robot

 Message: Switch off lamps and await rescue

We can also define Events to listen to messages received from the rest of the MRS; for

example, if the base station experiences an error of some kind with its task allocation

algorithm, it could issue a Warning Action across the network that triggers an Event in

each robot telling them to complete their current routes then return home. This could

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 129

Confidentiality: Public Distribution

update the state of the EDDI to a hypothetical "autonomous operation" state, rather than

one guided by the base station.

5.5.2 ConSert-based EDDI

For more sophisticated functionality, however, the EDDI may instead be built on an

ConSert rather than a state-sensitive fault tree. ConSerts are specifically designed for

multi-agent systems and allow dynamic evaluation of dependability certification in the

form of demands and guarantees. In this example, for instance, the robots depend on the

base station for task allocation and may also optionally depend on other robots for

advance warning of nearby detected people.

The latter is interesting both because it is a 'dynamic' demand, one established as a

result of the current (runtime) configuration of the MRS, and because it is not a critical

demand. A robot may therefore have multiple guarantees available; if it is in full

working order, then it can offer a higher level of dependability guarantee, i.e., that it is

capable of collaborating with nearby robots to offer warnings of people detected in the

vicinity.

If however it is in some form of degraded state — perhaps its battery is running low and

it wants to preserve power by not making unnecessary wifi broadcasts — then it could

offer a lower dependability guarantee that extends only to its own safety (i.e., it

guarantees its own safe operation, but does not guarantee that it can assist other robots).

Finally, if there is a critical failure (e.g. camera obscured or failed), then it cannot meet

either of these guarantees. In the case of motor failure, it may be even worse in that it

now forms an involuntary obstacle for other robots.

An example ConSert describing this scenario is shown below:

Figure 65 - Example ConSert for the runtime EDDI example

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 130 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Here, there are four guarantees provided by the robot:

1. Collaborative person detection — the robot is fully functioning and can assist

other nearby robots by providing warning of person detections;

2. Local operation only — the robot is in low power mode and guarantees only its

own safe operation, not transmitting warnings of detected people;

3. Return to base — the robot is in a failed state and is attempting to return to base;

4. Robot stuck — the default state, where the robot cannot move.

Note that these guarantees can overlap, but lower numbers take priority. For example, in

most cases a robot capable of offering guarantee #1 will also be capable of offering

guarantee #2, but guarantee #1 takes precedence. The exception in this case is when a

robot has plenty of battery but its motors have failed; in that case, it could

hypothetically continue to act as a stationary person detector, but cannot complete its

primary goal of disinfecting surfaces because it is immobile.

The bottom right node in the ConSert, "PD confidence > 70%", could be provided by a

SafeML component (or other ML-based dependability component) that estimates the

confidence of the person detection algorithm on the basis of the current data (e.g.,

confidence may be lower in dimmer conditions). A lower confidence could be accepted

if nearby robots are present and offering guarantee #1, i.e., they are available to help

detect nearby people. If this guarantee is not offered, then a higher threshold for

acceptable person detection confidence may apply, and if this is not met either, then the

robot could shut off its lamps rather than risk accidental UV overexposure.

The evidence that drives the ConSert – i.e., that determines which demands are met and

which guarantees can be offered — is derived from Events, which may in turn be part of

traditional failure models like fault trees, attack trees, or Bayesian networks (which

allow more sophisticated probabilistic reasoning). As with the earlier state machine

version, these other models may also define separate Actions to be triggered when

particular conditions are met.

As before, all of this information can be encapsulated within an ODE-based model and

used to generate platform-dependent code or other executable form to allow the EDDI

to run directly on the host platform. However, the information needed for this is based

largely on the design-time models (hazards, failures, causal logic, possible states) and

then augmented with additional data (events, actions, ConSerts etc) to facilitate more

sophisticated runtime behaviour.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 131

Confidentiality: Public Distribution

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 132 Version 1.0 5 July 2023

Confidentiality: Public Distribution

6. THE EDDI METHODOLOGY

The previous sections have defined three key challenges to safety assurance of Multi-

Robot Systems: Complexity, Intelligence, and Autonomy & Openness. The state of the

art in each area was reviewed and key techniques were identified that can be used to

address those challenges. These culminate in the EDDI concept, which uses a model-

based approach building on the ODE to leverage the capabilities of these techniques to

perform dependability management at design time and, more importantly, runtime. For

most effective use, however, all of this needs to be combined into a cohesive whole so

that the EDDI concept can be successfully applied throughout the lifecycle of the

system, from design to runtime.

6.1 OVERALL METHODOLOGY

Much effort has gone into the definition of safety methodologies and lifecycles across

safety standards. While there are some differences, e.g. to address domain-specific

concerns, in general the processes established by major standards like ISO 26262 and

ARP4754-A follow the same general outline:

 An initial hazard analysis is undertaken to identify hazards and assess risk. For

example, in ISO 26262 a Hazard Analysis & Risk Assessment takes place as

part of the concept phase, while in ARP4754-A, a Functional Hazard

Assessment is carried out to identify the circumstances and classify severity of

failure conditions.

 The risk of each hazard is generally categorised according to a safety integrity

level (e.g. ASIL, DAL etc.) which provides a qualitative measure of risk.

 Safety requirements/safety goals are generated to prevent or mitigate each

hazard, inheriting their integrity level.

 Analysis is undertaken to understand how different parts of the system

architecture may be responsible for different hazards (e.g. via an FTA or

FMEA). In ARP4754-A this is known as PSSA or Preliminary System Safety

Assessment.

 On the basis of this analysis, derived safety requirements are allocated on a top-

down basis to lower-level system components according to their contribution to

the hazards. This is typically an iterative process that accompanies the

development of the system through conceptual, functional, and technical design

phases.

 During the testing and integration phases, bottom-up verification & validation

activities take place to ensure that the requirements are being met. Testing

makes sure that the system design has been correctly implemented, and further

safety analyses (e.g. System Safety Analysis in ARP4754-A, Functional Safety

Assessment in ISO 26262) provides evidence to verify whether the system

complies with the safety requirements.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 133

Confidentiality: Public Distribution

 Although not explicitly part of most standards, the requirements and evidence

gathered throughout these phases forms part of the safety case/assurance case of

the system, which can be important for safety certification etc.

In SESAME, we have chosen to take advantage of this established practice by adopting

a similar process, illustrated in Figure 66 below:

Figure 66 - V model for the design-time safety lifecycle

However, there are a few differences as a result of the need to include the transition

from the design-time process to runtime safety monitoring and management. Firstly,

additional information is collected to better capture the variability of risk. Whereas in a

traditional analysis only the worst case is assumed, here more varied data is acquired to

enable the eventual runtime EDDI to better perform dynamic risk assessment on the

basis of current operational conditions, not merely worst-case predictions. This

particularly affects the initial HARA, where a wider assessment of environmental

variability is considered.

Consideration is also given to the potential dependencies between different agents of the

multi-robot system; even if the specifics of the final operating environment are not

known, the guarantees offered and demands issued by the system under development

can be established.

Importantly, an additional step is added to the end of the process which is responsible

for preparing executable runtime safety models (i.e., the EDDIs). While much of the

information gathered throughout the rest of the process is still relevant here, additional

technical work is needed to adapt the model to the target platform — e.g. by developing

appropriate event monitors and linking them to hardware sensors — and also to create

the high-level reasoning application with the necessary logic to perform dynamic risk

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 134 Version 1.0 5 July 2023

Confidentiality: Public Distribution

assessment and respond to any failures detected. As part of this, the distributed safety

certification functionality (e.g. in the form of a ConSert) is also developed.

This also means that extra information may need to be captured in earlier steps. For

example, it may not be enough to simply record that a given failure of a given

component causes a particular hazard, but also which sensors can detect evidence of

that component failure.

Finally, it is important to consider not just safety but also security as part of a holistic

dependability process. To that end, a joint safety-security co-engineering methodology

has been defined (see D4.3: Safety-Security Co-Engineering Framework). This

defines parallel activities across both safety (left) and security (right) domains, as well

as the runtime process dependability itself (centre), as shown in the diagram below:

Figure 67 - Joint Safety & Security framework

Note that this framework may apply differently at different stages of the design process;

typically, a full security analysis requires more detailed information about the

implementation of the system — the hardware configuration, the installed software, the

network environment etc — which is typically not available during earlier stages of the

design. The same is true of quantitative failure data such as failure rates and repair rates.

However, it is not uncommon for such analyses to be applied iteratively as the design

evolves (indeed, it is recommended to do so), and there is no requirement that both sides

of the framework always be applied at each iteration. A more abstract qualitative safety

process can be applied during earlier evolutions, followed by more detailed quantitative

safety analyses and detailed security analyses later in the design lifecycle, once the

requisite information becomes available.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 135

Confidentiality: Public Distribution

6.1.1 Hazard Analysis and Risk Assessment

Once the system boundary and its context have been defined, which establishes what

the system is intended to do and what functionality it encapsulates (and what it does not

encapsulate), the first step in the dependability process is the identification of hazards

and assessment of risk.

Section 2 has already identified techniques like HAZOP or FME(C)A that can be

applied for the purpose of HARA, but the unique difficulties posed by MRS may

require a more extensive approach. In particular, some consideration must also be given

to the environment and likely collaborative aspects of the wider MRS, rather than

limiting the analysis solely to the system itself.

Domain-specific standards should be followed where appropriate. For example, ISO

26262 mandates that a hazard requires both an item malfunction and a particular

scenario, since the risk of a given malfunction depends on the circumstances in which it

occurs (a brake failure while driving on a wet road at night is more critical than while

on a dry road in daytime, for example).

The need to explore potential operating scenarios is not exclusive to ISO 26262 — a

robot operating in a claustrophobic, heavily populated environment will have a very

difference risk envelope compared to one operating out in the ocean far from any

people. As part of the environmental hazard analysis, relevant information about the

expected operating environment should be extracted to identify safety-critical situations

or scenarios. Some of the information about the environmental variability (e.g. different

operating conditions etc.) could be derived from any relevant Executable Scenario

specifications or as part of a separate environmental variability analysis.

Once suitably identified, risk assessment can take place for each hazard. Again,

different standards may impose different procedures, but in general risk is assessed on

the basis of:

 Likelihood: how likely is the hazard to occur? May be termed probability or

exposure etc. in different standards.

 Severity: how severe are the consequences of the hazard?

 In some cases, a third attribute is considered, most commonly either detectability

(how easy is it to detect or diagnose the malfunction before it can cause the

hazard) or controllability (how easy is it to mitigate or prevent the hazardous

event).

It may also be useful to investigate the potential causes of hazards as part of this

process, since it can be hard to establish the likelihood or detectability of a hazard

without knowing what can cause it. This can be conducted via an abstract FTA or

FMEA to establish the general causal relationships between hazards and system failures

or environmental circumstances.

The security-specific equivalent of this step is the identification of existing

vulnerabilities and possible attacks that exploit them, though typically this will take

place later in the design process, when further information about the system and its

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 136 Version 1.0 5 July 2023

Confidentiality: Public Distribution

potential security vulnerabilities is present. However, placeholder security attacks can

still be defined (e.g. a potential network intrusion, without knowing the details), which

may be analysed further via attack trees later on, and physical security attacks —

deliberate damage to the robot — should also be considered. In some cases, the effects

of such attacks will be the same as an ordinary random hardware failure (e.g. whether a

motor wears out or gets sabotaged, it is non-functional either way), but in other cases,

there may be further considerations, such as new hazards arising as the result of an

attack disabling or damaging physical protections such as protective covers of

inherently hazardous components (e.g. lasers, pesticide canisters etc).

In summary, therefore, this first stage consists of:

1. Defining the boundary and context of the system; in security terms, this is the

identification of assets.

2. Exploration of potential scenarios that affect system operation.

3. Identification of possible hazards or security vulnerabilities that can arise in each

scenario, along with an evaluation of their consequences.

4. Optionally, investigation of potential causes of those hazards (or attacks

exploiting the vulnerabilities) to better estimate the risk parameters (likelihood,

severity, detectability etc).

All of this information can be captured within the ODE. The ODE::HARA packages

explicitly supports the HARA process, while more detailed information about failures

and failure behaviour (and associated analyses like FTA/FMEA) is captured in the

ODE::FailureLogic package. ODE::TARA is the equivalent security package.

6.1.2 Safety Requirements

Once hazards/attacks have been identified and their risks assessed, this information can

be used to inform the definition and allocation of high-level dependability requirements.

Typically this entails assigning a particular safety integrity level to each requirement (or

its equivalent in whichever relevant standard is being applied). In many cases, a

dependability requirement may also require the definition of a corresponding safe state

or safety mechanism to mitigate the hazard.

These top-level safety requirements can then be allocated to the system design

architecture. Components responsible for causing particular hazards are allocated the

requirements those hazards inspired, receiving the corresponding integrity level in the

process.

The ODE models dependability requirements both as part of the

ODE::Dependability::Requirement subpackage and its SACM elements. The

ODE::Dependability::Domain subpackage, which allows explicit definition of the

applicable standard(s) and corresponding AssuranceLevels, is also relevant.

6.1.3 Qualitative safety/security analysis

As the design evolves, it is important to keep track of the causal relationships between

hazards and malfunctions of elements of the system (as well as any environmental

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 137

Confidentiality: Public Distribution

factors). This is the purpose of hazard causal analysis, a form of safety analysis.

Different techniques can be employed for this purpose, e.g. a qualitative FTA, and the

resulting models record the failure propagation behaviour of the system. For security,

the equivalent would be Attack Tree Analysis. However, compositional FTA techniques

like HiP-HOPS or CFTs as implemented by safeTbox are particularly useful because

they allow future decomposition to subcomponents as the design architecture becomes

more detailed.

However, static Boolean analyses of system architectures are not the only possibilities

here. Behavioural models can be produced to support dynamic analyses such as Markov

analysis, Bayesian networks, or Dynamic FTA. These may provide more insight into the

dynamic failure behaviour of the system, complementing the propagational models

(such as static fault trees or FMEAs).

This casual failure information can all be stored as part of the ODE::FailureLogic

package (and relevant subpackages). Supported analyses include FMEA, FTA, Markov

models, state machines, Bayesian networks, and (for security), Attack Trees.

Meanwhile, the information about the system architecture is stored as part of the

ODE::Design package, ensuring that the EDDI maintains a complete picture of how

failures propagate through the system to cause hazards.

6.1.4 Requirements Decomposition

As the design evolves and the architecture becomes more detailed, moving from

abstract functional architectures to more detailed views over technical implementation,

the safety requirements may be decomposed to the new subcomponents. This can be

performed with the aid of tools with optimisation-based decomposition functionality,

such as HiP-HOPS (see Section 2.2.3).

Decomposition takes place on the basis of the causal models established earlier to

ensure that those components that contribute to a potential hazard fall under the

auspices of the relevant safety requirements (and integrity level allocations). These

logical models also establish cases where multiple components are jointly responsible

for meeting the requirement, in which case the integrity levels may be divided amongst

them, according to the policies set out in whichever standard applies.

The EDDI tracks this information through various traceability elements of the ODE as

well as updated design architecture models and causal failure analyses as needed.

6.1.5 Quantitative safety analysis

Once more concrete information about the system implementation is available —

particularly quantitative failure data — further safety analysis becomes possible. At this

stage of the design process, the analysis is less about establishing links between causes

and effects and more about verifying whether the decomposed safety requirements are

being met.

Many of the same analysis tools used earlier (HiP-HOPS, safeTbox etc.) can also be

applied here, in most cases using the same models that have since been annotated with

the additional probabilistic failure data required.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 138 Version 1.0 5 July 2023

Confidentiality: Public Distribution

It is useful to remember that this process can occur at many stages, as long as the

necessary data is available; it need not wait until after the system implementation.

Indeed, it can help guide component selection by indicating whether or not a given

component is reliable enough to meet the safety requirements; in some cases, this could

even lead to an architectural optimisation process.

As always, the results of these analyses are stored in the ever-evolving EDDI, e.g. as

part of the relevant ODE::FailureLogic analysis packages or the Design package

elements.

6.1.6 Testing & Verification

Further verification of the safety requirements requires testing. While this area is of

particular focus to SESAME's WP6, it is also relevant with regard to any ML

components. The various ML assurance techniques outlined in Section 4 (e.g. SafeML,

SMILE) may be employed here to help establish the robustness and reliability of any

ML components that are undergoing training and testing.

While ML models are unlikely to be stored as part of the EDDI directly, some

information on the nature of the model and the outcomes of the safety techniques

applied is expected to be stored to support further application of those techniques at

runtime. Such components should already be part of the architectural and behavioural

system models, particularly where they may be causes of hazards.

6.1.7 Certification & Assurance Cases

Although certification is often regarded as a process that takes place near the end of the

system design lifecycle, in reality the assurance case will have been slowly building up

throughout development (as indicated by the box within the V in the earlier diagram).

SACM is the backbone of the ODE, which underpins EDDIs, and much of the evidence

should already have been collected during previous analyses. At this stage, this may be

augmented with any further evidence, while remaining argumentation is generated to

complete the assurance case and link the requirements, the architecture, and the

evidence together.

6.1.8 Preparation for Runtime

For the EDDI to be suitable for deployment and execution at runtime, it must undergo a

transition from a purely design-time artefact to a runtime one. As described earlier, this

involves several aspects, from the definition of Events and Event Monitors to collect

runtime evidence, specification Actions that take place in response to Events, the

implementation of the high-level reasoning application (itself likely to be based on one

or more of the design-time failure behavioural models), and any work necessary to

ensure the EDDI can operate as part of the wider MRS, e.g. in terms of offering or

receiving safety guarantees.

This latter functionality is likely to be provided by ConSerts, as described in Section 4.

Safety guarantees and safety demands are defined along with a safety concept that

argues why the relevant system (or its components) can fulfil its guarantees as long as

its demands are also met. Once defined, code generators can convert ConSert models

into code that can be executed directly on the target platform.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 139

Confidentiality: Public Distribution

More work on this particular aspect can be found in the WP7 deliverables.

From a security perspective, it is important to identify which assets/components must be

monitored (and how), as well as connecting potential attacks with methods for detecting

said attacks (e.g. in an intrusion detection system). More on this topic can be found in

the WP5 deliverables.

In summary, this stage includes:

1. Identification of which assets/components must be monitored;

2. Specification of which events may arise from those components and how they

may be detected (via Event Monitors);

3. Relating these detected symptoms to probable underlying causes (whether they

be failures or security violations);

4. Specification of Actions to take in response to any detected/diagnosed hazardous

events;

5. Modification or addition of a higher-level reasoning model capable of dynamic

execution (e.g. a ConSert, Bayesian Network, or state-sensitive fault tree) to

govern execution of the overall EDDI.

6.2 HIGH-LEVEL EXAMPLE

To illustrate how the EDDI methodology works, this section describes a high-level

example based on the KIOS/Cyprus Civil Defence power station inspection use case.

More detail about the practical application of tools to the example can be found in D4.6

Design-time EDDI Safety Tools. Parts of this process have already taken place, while

others will be conducted during the final evaluation phase of the project.

6.2.1 System Definition

As described earlier, the first step in the process is to define the system and its context:

what it does, what it does not do, and where the boundary of the system lies. In this

case, more detailed information about the use case can be found in D8.7 (Power

Station Interim Use Case Evaluation). A very brief summary is provided here for

context.

In July of 2011, an explosion at a nearby naval base caused heavy damage to the

Vasilikos Power Station, the biggest power plant in Cyprus. To ensure the safety of first

responders, an exclusion zone was set up around the power station to prevent further

injury. Instead, Cyprus Civil Defence (CCD) made use of drones to inspect the power

station for damage. Realising the potential of such drones for emergency response, CCD

established a collaboration with KIOS to engage in relevant research projects with the

goal of developing drone-based inspection systems for emergency search & rescue and

damage inspection purposes.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 140 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 68 - Vasilikos Power Station incident

The goal of the overall MRS is therefore to:

 Gather information about the disaster (damage, safe locations, casualties &

trapped survivors, possible threats to human safety etc);

 Operate under a control centre in a safe location outside the zone to coordinate

operations and keep open communications with involved parties;

 Provide aerial visual assistance and assessment.

The system itself therefore consists of a central base station at the safe control centre

and one or more UAVs — quadcopter drones in this case — to perform information

gathering tasks and aerial support tasks.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 141

Confidentiality: Public Distribution

6.2.2 Hazard Analysis & Risk Assessment

Due to the nature of the system goals — namely, disaster response — the conditions in

which the system is expected to operate are varied and difficult, which the risks

involved are high due to the critical nature of the search and rescue tasks.

Environmental conditions and operating scenarios may include:

 High temperature, both as a result of the Cyprus climate and potential fires.

 Salt and water corrosion, due to the coastal location.

 Strong winds.

 Electromagnetic interference, from surrounding electrical equipment (which

may be damaged).

 Importance of efficient power consumption, since battery life is limited and

the availability of the drones needs to be high.

 Poor visibility may also be a factor, e.g. due to smoke from fires, gas leaks, or

dust from earthquakes/explosions. This may force the drones to reduce altitude,

which in turn puts them at greater risk of other factors (e.g. temperature, debris).

Security threats are a real possibility if the incident was a deliberate attack rather than

an accident or natural disaster. As such, security vulnerabilities and attacks also need to

be taken into account, though in the case of the drone, effects of most physical attacks

will be similar to those of ordinary hardware faults (e.g. motor failure, camera failure).

The major hazards revolve either around failure to complete the mission objectives (i.e.,

failure to identify survivors or outstanding threats in a timely fashion), or around the

system itself acting in a hazardous manner (i.e., drones crashing into things).

For the purposes of this example, we will limit the hazards to the following:

 H1: Failure to locate survivors

 H2: Collision between drone and the environment

To help estimate the risk parameters for each hazard, it is useful to explore the potential

causes. In this case, it is also helpful to refine the hazards to a single platform for now,

rather than try to establish details about hazards of the MRS as a whole (e.g. H1 would

require all drones or the base station to be inoperative).

 H1: Failure of the drone to locate survivors

o Failure of the drone's onboard sensors (camera, LIDAR etc), whether due

to hardware failure or environmental factors

o Failure of the person detection algorithms designed to automatically

identify survivors (ML-driven)

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 142 Version 1.0 5 July 2023

Confidentiality: Public Distribution

o Failure of the drone's propulsion (inability to fly), including battery

failure

o Inability to navigate (navigation system failure, including potential GPS

jamming, potentially also obscured/inoperative onboard sensors)

o Inability to communicate (hardware failures, radio jamming etc)

 H2: Collision between drone and the environment

o Navigation error (navigation system failure, GPS jamming)

o Propulsion failure (e.g. failure of one or more motors leading to the

drone crashing), including battery failure

We can compile this information into a matrix, assign 1-5 qualitative values for

likelihood and severity (based on the worst case scenario of bad weather, poor visibility,

and many casualties as part of a deliberate attack), and calculate an estimate of risk (=

likelihood * severity).

Hazard Severity Cause Likelihood Risk

H1

Failure to

locate

survivors

4 Onboard sensor

failure

2 8

Onboard sensors

obscured

4 16

Person detection

failure

3 12

Propulsion

failure

1 4

Navigation

failure

2 8

Communications

failure

3 12

H2

Drone crashes

5 Navigation error 2 10

Propulsion

failure

1 5

Table 6 - Example HARA for the KIOS use case

Here we can see the results of this (simplified) HARA. The greatest risk is the failure of

the drone to detect survivors because its sensors are obscured (16). Person detection

failure (= cannot automatically spot survivors) and communications failure (= cannot

notify users of detected survivors) are also high risk (12). Note that even though H2, the

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 143

Confidentiality: Public Distribution

drone crashing, has greater severity, its overall risk is lower than H1 because it is less

likely overall.

6.2.3 Safety Requirements

On the basis of the initial HARA, suitable dependability requirements and safety goals

can be established. These in turn inform the system design. For example, the fact that

the onboard sensors being obscured contributes the highest risk means that equipping

multiple redundant sensors is a priority (and indeed, both RGB and thermal cameras

plus LIDAR are provided). Communications are also critical, so multiple channels of

communication (Wifi, cellular 3G, onboard radio) are provided.

Safety goals to prevent or mitigate the various failures would also be defined. For

example, maximum thresholds on the probability of component failures (rotors, 3G,

radio, RGB camera etc) could be specified.

Dependability requirements also typically imply independence. For example, there

would be an impetus to minimise the common dependencies between the various

sensors (cameras, LIDAR) and communications channels. All would be inevitably

dependent on the same power source and onboard computer, but they may be fed via

different power buses or have different bus connections etc.

Safety Integrity Levels (or equivalent) would also be attached to each requirement,

which in turn apply to different components. Given the importance of the detection

sensors and the communications system, we might expect both to be given the

maximum integrity level (4), while other less critical subsystems may receive lower

integrity levels (e.g. other sensors like thermometers or air quality sensors might be

assigned SIL 1 or SIL 2).

SILs can be decomposed across the components that collectively must meet the

requirement, as will be discussed shortly.

6.2.4 Qualitative Safety Analysis

As the design progresses, more information about the system, its architecture, and its

failure behaviour becomes available. To assess whether each version of the design

continues to meet the dependability requirements, a qualitative safety analysis using

MBSA can be conducted.

The first step is to create a hierarchical system model:

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 144 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 69 - KIOS drone system model (GCS and drone at top, then drone subsystems below)

This system architecture model represents the various components that comprise the

drone and the ground control station, as well as how they interconnect. Early on, the

model may be restricted only to high-level subsystems (as above), but as the design

matures and becomes more detailed, the model may expand these subsystems to

investigate their individual subcomponents. For example, the positioning unit may be

decomposed into a compass, barometer/altimeter, an inertial measurement unit, and the

GPS subsystem.

The next step is to annotate the model with local failure data that describes how each

component can fail. This can be done in the form of an FMEA, starting by enumerating

the possible internal failure modes and any input deviations that may be received from

other components, and then assessing their effects. Alternatively, a local FTA can be

performed, starting with each output deviation and working back to determine the

causes in terms of combinations of internals failure modes and/or input deviations.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 145

Confidentiality: Public Distribution

As an example, we can take one of the drone's cameras. For each potential output

deviation, we establish the logical combination causes and can optionally assign further

FMEA values (likelihood, severity) to perform a more detailed risk assessment.

Comp-

onent

Output

Deviation

Sev-

erity

Cause Failure

mode/Input

Deviation

Likel-

ihood

Risk

RGB

Camera

Omission of

video data

5 Camera

occluded OR

Power cable

disconnected

OR Camera

hardware

failure

OR Driver error

OR Very low

visibility

F.MODE:

Camera occluded

4 20

I.DEVIATION:

Power cable

disconnected /

severed

2 10

FAILURE MODE:

Camera hardware

failure

1 5

FAILURE MODE:

Driver software

error

1 5

C.CAUSE:

Very low visibility

(environmental

common cause)

2 10

Low quality

video data

4 Camera

partially

occluded OR

Low visibility

FAILURE MODE:

Camera partially

occluded

5 20

C.CAUSE:

Low visibility

(environmental

common cause)

3 12

Table 7 - Local component FMEA for the RGB camera

Preliminary security violations could also be defined at this stage as component failure

modes, even if the causes of those violations (vulnerabilities and associated attacks)

cannot yet be investigated in full. Additionally, some of the failure modes above could

have deliberate causes, e.g. a deliberate attempt to obscure a camera.

Using a compositional FTA tool such as HiP-HOPS, safeTbox, or Dymodia, we can

then synthesise fault trees from the augmented model and perform an FTA and FMEA

for the system as a whole. This should reveal the root causes of each hazard in terms of

the failure modes or environmental common causes defined in the model. The fault tree

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 146 Version 1.0 5 July 2023

Confidentiality: Public Distribution

itself also provides a useful overview of the overall failure behaviour. An example fault

tree for a KIOS-like drone is shown below.

Figure 70 - Example fault tree for a drone

Although quantitative data is not present at this stage, and so it cannot be used to

determine whether probabilistic dependability requirements are met, the FTA produces

minimal cut sets and the qualitative values in the FMEA can still be used as a guide. For

example, the minimal cut sets will reveal whether or not a failure mode is a single point

of failure or whether it only causes a hazard in conjunction with other failures; the

former is much more severe and may indicate that the independence aspects of the

dependability requirements are not being met (e.g. due to there being a common

dependency).

6.2.5 Requirements Decomposition

Initially, dependability requirements are defined at a high level. As the system design

matures, those requirements can be decomposed as the subsystems responsible for

meeting them are similarly refined into subcomponents and subassemblies.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 147

Confidentiality: Public Distribution

For example, earlier we suggested the communication system is critical and would

receive the highest SIL value, 4. However, as long as they are relatively independent,

not every subcomponent of that system has to reach SIL 4 individually; instead they can

meet the requirement collectively. Typically this decomposition can be performed using

simple arithmetic, e.g. 1 + 1 + 2 = 4, though it depends on the standard. In this case, we

could say that the 3G cellular connection should reach SIL 2, while the radio and Wifi

should be SIL 1. This imposes a much more achievable burden of reliability on those

components without compromising overall subsystem integrity.

Figure 71 - SIL Decomposition in a nutshell

In practice, there are likely to be common dependencies that cannot easily be separated

out, e.g. the battery and the central computer. In which case, those components would

inherit the full SIL of the overall requirement (SIL 4 in this case).

Because the arithmetic of the SIL decomposition can result in many possibilities,

especially when multiplied across the entire system or when several requirements

overlap, it can be beneficial to automate the process of decomposition using

optimisation algorithms, as in HiP-HOPS (see sections 2.2.1.5 and 2.2.3). However, the

results of this still need to be checked manually to ensure they comply with the

requirements.

6.2.6 Quantitative Safety Analysis & Security Analysis

At later stages of the design, quantitative failure data and more detailed security

vulnerability information become available. Once the actual component

implementations and software configurations have been decided, failure rates and

known vulnerabilities for those components can be looked up.

MBSA means that the model and its failure annotations are kept together; as the model

evolves, so does the failure information. Therefore it is not (usually) necessary to build

an entirely new model to perform quantitative analysis; instead, failure rates can simply

be added to the existing model. Attack trees can also be modelled as fault trees,

meaning everything can be kept together.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 148 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Tools like HiP-HOPS and safeTbox can then be used to perform the analysis once more,

this time producing probabilistic results as well as the minimal cut sets and FMEAs.

These probabilistic values give us the probability for each hazard or the unavailability

for each component (i.e., the probability of it being failed at any given time). These

values can be compared against the dependability requirements to ensure that the

system design is still in compliance.

Alternatively, more sophisticated quantitative models like Markov models or Bayesian

networks can be applied. Below is an example Markov model for a hexacopter

propulsion system with identical rotors and PNPNPN configuration (P stands for

clockwise rotation and N stands for anticlockwise rotation). For more information

regarding the model construction, please check [130].

Figure 72 - A simplified Markov model of a hexacopter with identical rotors and PNPNPN configura-
tion.

6.2.7 Testing & Verification

Once the design reaches the prototyping stage, whether in simulation form or via

practical prototype, testing and verification can take place. Model checkers and fault

injection techniques such as Altarica and xSAP (see sections 2.2.2.1 and 2.2.2.3) can be

utilised to this end; these tools allow faults to be injected so that the effects upon the rest

of the system can be simulated. This can verify the earlier compositional safety analyses

while also providing more detailed and concrete failure data. Testing can also extend to

the hardware and software of the system itself, to help uncover previously unknown

errors and to verify earlier assumptions and analyses.

For example, we can inject a GPS fault into our drone simulation (e.g. due to high EM

interference, thick smoke, or a malicious jamming attack) and observe the effects on the

drone. If the design (and the simulation) is correct, the drone should switch to other

forms of navigation — e.g. inertial measurement, collaborative localisation via

communication with other drones, or even visual triangulation. If the drone does not

switch as intended, it may highlight an unanticipated error in the design (or at least a

problem with the simulation).

ML design and testing may also take place here, e.g. with respect to the person

detection system. Object identification models like YOLO can be used to detect people

and other objects, but they need training with appropriate data. Techniques like

DeepKnowledge, SafeML, or SMILE could then be applied. For example, SafeML

could be used in this case to verify that the test data is within scope compliance of the

training data, i.e., that it is not out of distribution yielding low confidence results.

Similarly, SMILE can be used to help explain the results and ensure that the model is

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 149

Confidentiality: Public Distribution

correctly interpreting the input data to make the right classification for the right reason,

and not just coincidentally giving the right answer for spurious reasons.

6.2.8 Certification & Assurance Cases

Ideally, if the methodology has been followed throughout the design process, then the

act of creating an assurance case should be relatively straightforward: the hazards and

corresponding dependability requirements have long since been identified, and evidence

supporting the argument that the system design is safe should have been produced at

multiple stages — during the qualitative FTA and FMEA, during later quantitative

analysis (e.g. Markov models, BNs), and again during testing and verification.

Using EDDIs makes this particularly easy, since the ODE supports both the system

architecture models, the failure models, and the safety case/argumentation via the

SACM. As such, all of the necessary information about the system can be combined

and stored as part of a single ODE-compliant EDDI model (or, for an MRS, distributed

across multiple sub-models representing each robot).

6.2.9 Preparation for Runtime

As discussed earlier, once the design phase is over and the system moves to deployment

and operation, the EDDI can also be updated and extended to allow for runtime

operation and execution. As part of that, the key requirements are:

 The definition of Events, Event Monitors, and Actions;

 Fault diagnosis capabilities, e.g. using a fault tree extended to account for

symptoms;

 The creation (or extension) of a dynamic high-level reasoning app;

 Facilities for MRS communication and cooperation.

Events are defined for each failure mode (if it can be directly detected) or symptom (if

the failure modes cannot be detected directly). Further events may be defined as

required to serve as evidence for the ConSerts/BNs and to trigger Actions etc when

specific nodes of the fault tree are reached.

For each Event not triggered by a failure model, an Event Monitor should be defined.

This captures the information needed to generate code that will execute on the target

platform and trigger the corresponding Event when the condition is met.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 150 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 73 - An overview of the FT framework with symptoms and ML-related functions added

Note that the symptoms can be represented by other failure models themselves while

still forming part of a fault tree for diagnostic purposes. For instance, failure symptoms

can be modelled individually as Markov models ("complex basic events"), which trigger

the symptom nodes in the fault tree when they become true (see Figure 74 below).

Figure 74 - Basic Events in a fault tree and their connection to failure symptoms

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 151

Confidentiality: Public Distribution

For the high-level reasoning app, the best choice in this case is a ConSert. We can

define an overall task-level ConSert that links in to the wider MRS, allowing e.g. task

reallocation for when missions can be partially completed:

Figure 75 - High-level strategic ConSert

as well as lower-level ConSerts that handle the rest of the functionality. For example,

the figure below illustrates part of a ConSert covering the person detection subsystem

and the navigation subsystem:

Figure 76 - Lower-level operational ConSert

Here, we have four outcomes:

1. All survivors are correctly detected.

2. All survivors are detected but some are over-counted (i.e., there are false

positives but no false negatives).

3. Some survivors are not detected (e.g., there are false negatives).

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 152 Version 1.0 5 July 2023

Confidentiality: Public Distribution

4. Nobody is detected because of some critical failure or problem.

Guarantee 1 (everything works properly) depends on the person detection being 100%

reliable and the drone navigation covering 100% of the search area. If the drone

navigation coverage is 100% but the person detection yields false positives, we get

outcome #2. Similarly, we get under-detection if the drone navigation is less than 100%

or if the person detection component yields false negatives. Finally, the default

guarantee is provided if none of the above are applicable.

The drone navigation guarantees are further refined based on the GPS and collaborative

localisation (i.e., triangulating or localisation based on cooperation with other drones in

the vicinity). 100% navigation is possible if either the GPS is reliable (which can then

be relied on solely) or if the GPS is unreliable but collaborative localisation is possible.

Otherwise, the drone navigation will not cover 100% of the area.

A more detailed exploration of the ConSerts as applied to the KIOS use case can be

found in D7.3 Runtime Safety and Security Concept — EDDI-based MAS and

Communication.

6.2.10 Runtime Execution

The final step would be to deploy the EDDI, e.g. by generating code for the target

platform, and executing it. Best practice would be to deploy and execute on a simulator

first, for testing purposes, and then deploy to the real drones if testing proves successful.

The resulting EDDIs can then serve as dependability monitors, diagnostic assistants,

and intelligent response & recommendation agents in their own right, making use of the

system information that has been gathered, compiled, analysed, and tested throughout

the design process.

Further information on the runtime aspects of the EDDI concept can be found in the

WP7 deliverables.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 153

Confidentiality: Public Distribution

7. CONCLUSIONS

Three major challenges to safety of MRS have been identified: complexity, intelligence,

and autonomy & openness. For each challenge, we have reviewed a range of state-of-

the-art techniques that may help address those challenges and described how the

technologies we develop can be combined in SESAME to form an overall safety

concept for MRS, the EDDI.

The challenge of complexity is ameliorated by means of compositional model-based

safety analysis techniques that can break down the complexity into more manageable

parts. This applies both to scale — modelling systems hierarchically and embedding

local failure logic at the component-level — and to tasks, where different safety-related

tasks (including not just analysis but also requirements allocation and assurance case

generation) can be handled by the same set of models. All of this can be combined with

safety argumentation to create models — EDDIs — that store all of the necessary

information to support a gamut of design-time safety processes.

Against the challenge of intelligence we propose a set of techniques: SafeML and

DeepKnowledge for estimating the confidence of a given classification, which can be

used as a form of reliability measure, and SMILE for explainability purposes. By

enabling us to measure and explain the reliability of ML decision making, we can

integrate ML behaviour as part of a wider system safety model, e.g. as one input into a

fault tree or Bayesian network. In addition to providing valuable feedback during

training, testing, and verification, this allows the EDDI to perform a degree of runtime

safety monitoring of ML components.

The EDDI itself is therefore our primary solution to the twin challenges of autonomy

and openness. Using the ConSert approach as a foundation, EDDIs can be made to

operate cooperatively as part of a distributed system, issuing and receiving guarantees

on the basis of their internal executable safety models to collectively achieve tasks in a

safe and secure manner. In addition, dynamic risk assessment approaches such as

SINADRA will provide the basis to dynamically determine the safety goals to be

fulfilled by the MAS in the current operational situation.

Further information on related tools and concepts can be found in the deliverables listed

in the table below.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 154 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Table 8 - Related SESAME deliverables

Deliverable Description Due

Date

D4.1 EDDI Safety Concept &

Methodology (interim version)

The interim version of this deliverable, describing the

safety analysis context, overall EDDI architecture, and

initial methodology.

M12

D4.2/5.2 ODE specification Extension of the existing ODE to incorporate new

features to support EDDI functionality.

M18

D4.3 Combined Safety &

Security EDDI framework

The combined safety and security EDDI concept and

methodology.

M18

D4.4 Design-time EDDI Safety

Tools (interim version)

Interim versions of design-time safety analysis tools

with support for EDDIs (HiP-HOPS & safeTbox +

model converters etc).

M18

D4.6 Design-time EDDI Safety

Tools (final version)

Updated version of the safety analysis tools to account

for new developments. Also includes application of

HiP-HOPS to the KIOS example in section 6 of this

report.

M30

D5.1 EDDI Security Concept &

methodology

The EDDI security-specific concept and associated

methodology.

M18

D5.3 Tools for automated

security analysis of MRS and

EDDIs (initial version)

Security analysis tools with support for EDDIs and

MRS.

M18

D5.4 Tailorability of EDDIs Tools and concepts to support the configurability and

reusability of EDDIs.

M18

D5.5 Security Analysis of EDDIs Describes the process for performing security analysis

in EDDIs, including the EDDI infrastructure itself.

M30

D5.6 Tools for automated

security analysis of MRS and

EDDIs (final version)

Security analysis tools with support for EDDIs and

MRS.

M30

D7.1 Runtime Safety & Security

Concept – EDDI specification

Definition of the runtime EDDI concept and associated

algorithms for safety & security assurance.

M18

D7.2 Tools for generating

runtime EDDIs

Tools for generating runtime EDDIs from design-time

EDDIs.

M18

D7.3 Runtime Safety & Security

Concept – EDDI-based MAS and

communication

Updated version of the runtime EDDI concept (D7.1)

to support MRS/MAS features and inter-

communication.

M30

D7.4 Open Source Components

for Explainable EDDIs

Software components for digital twins and

explainability of ML (e.g. SMILE).

M30

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 155

Confidentiality: Public Distribution

REFERENCES

[1] A. Joshi, M. Heimdahl, S. Miller and M. Whalen, ―Model-based Safety Analysis,‖ 2006. [Online]. Available:

https://shemesh.larc.nasa.gov/fm/papers/Joshi-CR-2006-213953-Model-Based-SA.pdf. [Accessed 1 11 2021].

[2] H. Government, ―Health and Safety at Work etc Act 1974,‖ UK Government, London, UK, 1974.

[3] British Standards Institution, ―BS EN 61882:2016 - Hazard and operability studies (HAZOP studies) Application

Guide,‖ British Standards Institution, 2016.

[4] US Department of Defense, ―MIL-P-1629: Procedure for Performing a Failure Mode, Effects and Criticality

Analysis,‖ US Department of Defense, Washington DC, USA, 1949.

[5] US Department of Defense, ―MIL-STD-1629A: Procedure for Performing a Failure Mode, Effects and Criticality

Analysis,‖ US Department of Defense, Washington DC, USA, 1980.

[6] W. E. Vesely, M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick and J. Railsback, ―Fault Tree Handbook with

Aerospace Applications,‖ NASA Office of Safety and Mission Assurance, USA, 2002.

[7] J. B. Dugan, B. Venjataraman and R. Gulati, ―DIFtree: a software package for the analysis of dynamic fault tree

models,‖ in Annual Reliability and Maintainability Symposium, Philadelphia, USA, 1997.

[8] M. D. Walker, L. Bottaci and Y. I. Papadopoulos, ―Compositional Temporal Fault Tree Analysis,‖ Computer

Safety, Reliability, and Security. SAFECOMP 2007. Lecture Notes in Computer Science, vol. 4680, pp. 106-119,

2007.

[9] G. K. Palshikar, ―Temporal Fault Trees,‖ Information and Software Technology, vol. 44, no. 3, pp. 137-150,

2002.

[10] S. Kabir and Y. Papadopoulos, ―Applications of Bayesian networks and Petri nets in safety, reliability, and risk

assessments: a review,‖ Safety Science, vol. 115, pp. 154-175, 2019.

[11] P. H. Feiler and A. Rugina, ―Dependability Modeling with the Architecture Analysis & Design Language

(AADL),‖ 2007. [Online]. Available: https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8277.

[Accessed 111 11 2021].

[12] S. Sharvia, Y. I. Papadopoulos, D. Chen, M. D. Walker, Y. Wenjing and H. Lönn, ―Enhancing the EAST-ADL

error model with HiP-HOPS semantics,‖ Athens Journal of Technology & Engineering (ATINER), vol. 1, no. 2,

pp. 119-136, 2014.

[13] M. Biehl, D. Chen and M. Törngren, ―Integrating safety analysis into the model-based development toolchain of

automotive embedded systems,‖ ACM SIGPLAN Notices, vol. 45, no. 4, pp. 125-132, 2010.

[14] S. Sharvia, S. Kabir, M. Walker and Y. I. Papadopoulos, ―Model-based dependability analysis: State-of-the-art,

challenges, and future outlook,‖ in Software Quality Assurance, Morgan Kaufmann, ISBN: 978-0-12-802301-3,

2016, pp. 251-278.

[15] M. Wallace, ―Modular architectural representation and analysis of fault propagation and transformation,‖

Electronic Notes in Theoretical Computer Science, vol. 141, no. 3, pp. 53-71, 2005.

[16] B. Kaiser, P. Liggesmeyer and O. Mäckel, ―A New Component Concept for Fault Trees.,‖ in Safety Critical

Systems and Software 2003, Eighth Australian Workshop on Safety-Related Programmable Systems, (SCS2003),

Canberra, Australia, 2003.

[17] B. Kaiser, D. Schneider, R. Adler, D. Domis, F. Mohrle, A. Berres, M. Zeller, K. Hofig and M. Rothfelder,

―Advances in component fault trees,‖ in Safety and Reliability - Safe Societies in a Changing World, London,

UK, CRC Press, Taylor Francis, 2018, p. 9.

[18] M. Zeller and F. Montrone, ―Combination of Component Fault Trees and Markov Chains to Analyze Complex,

Software-controlled Systems,‖ in 3rd International Conference on System Reliability and Safety (ICSRS),

Barcelona, Spain, 2018.

[19] L. Grunske, B. Kaiser and Y. I. Papadopoulos, ―Model-driven safety evaluation with State-Event-based

Component Failure Annotations,‖ in Proceedings of the 8th International Symposium on Component-based

Software Engineering (CBSE'05), 2005.

[20] B. Kaiser, C. Gramlich and M. Forster, ―State/event fault trees—A safety analysis model for software-controlled

systems,‖ Reliability Engineering and System Safety, vol. 92, pp. 1521-1537, 2007.

[21] G. Ciardo and C. Lindemann, ―Analysis of deterministic and stochastic Petri nets,‖ in Proceedings of the 5th

International Workshop on Petri Nets and Performance Models, Toulouse, France, 1993.

[22] R. German and J. Mitzlaff, ―Transient analysis of deterministic and stochastic Petri nets with TimeNET.,‖ in

Proceedings of the 8th international conference on computer performance evaluation, modelling techniques and

tools and MMB (Lecture Notes in Computer Science, vol. 977), Heidelberg, Germany, 1995.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 156 Version 1.0 5 July 2023

Confidentiality: Public Distribution

[23] Y. I. Papadopoulos and J. A. McDermid, ―Hierarchically performed hazard origin and propagation studies,‖ in

Proceedings of the 18th International Conference in Computer Safety, Reliability, and Security; collected in

LNCS by Springer, vol 1698 (p139-152), Toulouse, France, 1999.

[24] Y. I. Papadopoulos, M. D. Walker, D. J. Parker, E. Rude, R. Hamann, A. Uhlig, U. Gratz and R. Lien,

―Engineering Failure Analysis & Design Optimisation with HiP-HOPS,‖ Journal of Engineering Failure

Analysis, vol. 18, no. 2, pp. 590-608, 2011.

[25] Y. I. Papadopoulos, ―A Synthesis of Logic and Biology in the Design of Dependable Systems,‖ IFAC-

PapersOnLine, vol. 48, no. 7, pp. 1-8, 2015.

[26] Z. Mian, L. Bottaci, Y. I. Papadopoulos and N. Mahmud, ―Model Transformation for analyzing Dependability of

AADL model by using HiP-HOPS,‖ Journal of Systems and Software, vol. 151, no. 11, pp. 258-282, 2019.

[27] D. J. Parker, M. D. Walker, L. S. Azevedo, Y. I. Papadopoulos and R. E. Araujo, ―Automatic Decomposition and

Allocation of Safety Integrity Levels Using a Penalty-Based Genetic Algorithm,‖ in International Conference on

Industrial, Engineering and Other Applications of Applied Intelligent Systems, Amsterdam, Netherlands, 2013.

[28] I. Sorokos, Y. I. Papadopoulos, L. S. Azevedo, D. Parker and M. D. Walker, ―Automating Allocation of

Development Assurance Levels: an extension to HiP- HOPS,‖ in 5th International Conference on Dependable

Control of Discrete Systems, Cancun, Mexico, 2015.

[29] S. Sharvia and Y. I. Papadopoulos, ―Integrating model checking with HiP-HOPS in model-based safety analysis,‖

Reliability Engineering & System Safety, vol. 135, pp. 64-80, 2015.

[30] S. Kabir, M. D. Walker and Y. I. Papadopoulos, ―Dynamic system safety analysis in HiP-HOPS with Petri Nets

and Bayesian Networks,‖ Safety Science, vol. 105, pp. 55-70, 2018.

[31] D. Whiting, I. Sorokos, Y. I. Papadopoulos, G. Regan and E. O'Carroll, ―Automated Model-Based Attack Tree

Analysis Using HiP-HOPS,‖ in 6th International Symposium on Model-based safety and assessment (IMBSA

2019), Thessaloniki, Greece, 2019.

[32] P. O. Antonino, D. S. V. Moncada, D. Schneider, M. Trapp and J. Reich, ―I-SafE: An integrated Safety

Engineering Tool,‖ IFAC-PapersOnLine, vol. 48, no. 7, pp. 23-28, 2015.

[33] A. Arnold, A. Griffault, G. Point and A. Rauzy, ―The AltaRica formalism for describing concurrent systems.,‖

Fundamental Informatica, vol. 40, no. 2-3, pp. 109-124, 2000.

[34] M. Bozzano and A. Villafiorita, ―The FSAP/NuSMV-SA Safety Analysis Platform,‖ International Journal on

Software Tools for Technology Transfers (STTT), vol. 9, no. 1, pp. 5-24, 2006.

[35] B. Bittner, M. Bozzano and A. Cimatti, ―Timed Failure Propagation Analysis for Spacecraft Engineering: The

ESA Solar Orbiter Case Study,‖ in International Symposium on Model-based Safety Assessment, Trento, Italy,

2017.

[36] M. Bozzano, A. Cimatti, J. P. Katoen, P. Katsaros, K. Mokos, V. Nguyen, T. Noll, B. Postma and M. Roveri,

―Spacecraft Early Design Validation using Formal Methods,‖ Reliability Engineering and System Safety, vol.

132, pp. 20-35, 2014.

[37] E. Alana, H. Naranjo, Y. Yushtein, M. Bozzano, A. Cimatti, M. Gario, R. de Ferluc and G. Garcia, ―Automated

generation of FDIR for the compass integrated toolset (AUTOGEF),‖ in Data Systems in Aerospace (DASIA

2012), Dubrovnik, Croatia, 2012.

[38] X. Ge, R. F. Paige and J. A. McDermid, ―Probabilistic Failure Propagation and Transformation Analysis,‖ in 28th

International Conference on Computer Safety, Reliability, and Security, Hamburg, Germany, 2009.

[39] X. Ge, R. F. Paige and J. A. McDermid, ―Analysing System Failure Behaviours with PRISM,‖ in 4th IEEE

International Conference on Secure Software Integration and Reliability Improvement Companion, Los Alamitos,

Singapore, 2010.

[40] M. Güdemann and F. Ortmeier, ―Towards model-driven safety analysis,‖ in 3rd International Workshop on

Dependable Control of Discrete Systems, Saabrucken, Germany, 2011.

[41] M. Lipaczewski, S. Struck and F. Ortmeier, ―SAML goes eclipse — Combining model-based safety analysis and

high-level editor support,‖ in Second International Workshop on Developing Tools as Plug-Ins (TOPI), Zurich,

Switzerland, 2012.

[42] F. Ortmeier, W. Reif and G. Schellhorn, ―Deductive Cause-Consequence Analysis (DCCA),‖ in Proceedings of

the 16th IFAC World Congress, Jun 2006, 2005.

[43] M. Lipaczewski, F. Ortmeier, T. Prosvirnova, A. Rauzy and S. Struck, ―Comparison of modeling formalisms for

Safety Analyses: SAML and AltaRica,‖ Reliability Engineering and System Safety, vol. 140, pp. 191-199, 2015.

[44] L. S. Azevedo, D. J. Parker, M. D. Walker, Y. I. Papadopoulos and R. E. Araújo, ―Assisted Assignment of

Automotive Safety Requirements,‖ IEEE Software, vol. 31, no. 1, pp. 62-68, 2014.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 157

Confidentiality: Public Distribution

[45] T. Kelly, ―"Are 'Safety Cases' working?" Published in Vol 17 Issue 2 of the Safety Critical Systems Club

Newsletter,‖ 2008. [Online]. Available: https://www-users.cs.york.ac.uk/~tpk/2008scscarticlekelly.pdf. [Accessed

12 11 2021].

[46] U. M. o. Defence, ―JSP 430: Ship Safety Management System Handbook,‖ HM Government, London, UK, 1996.

[47] A. C. W. Group, ―Goal Structuring Notation Community Standard (Version 2),‖ January 2018. [Online].

Available: https://scsc.uk/scsc-141B. [Accessed 12 11 2021].

[48] R. Wei, T. Kelly, X. Dai, S. Zhao and R. Hawkins, ―Model Based System Assurance Using the Structured

Assurance Case Metamodel,‖ Journal of Systems and Software, vol. 154, pp. 211-233, 2019.

[49] S. Joba, ―Are You Modelling: Visualizing Safety Cases - Tim Kelly on GSN (Goal Structuring Notation).,‖ 23 2

2015. [Online]. Available: http://areyoumodeling.com/2015/02/23/gsn/. [Accessed 11 11 2021].

[50] R. Wei, T. Kelly, X. Dai, S. Zhao and R. Hawkins, ―Model based system assurance using the structured assurance

case metamodel,‖ Journal of Systems and Software, vol. 154, pp. 211-233, 2019.

[51] I. Sljivo, B. Gallina, J. Carlson, H. Hansson and S. Puri, ―A Method to Generate Reusable Safety Case Fragments

from Compositional Safety Analysis,‖ in International Conference on Software Reuse 2015. In: Schaefer I.,

Stamelos I. (eds) Software Reuse for Dynamic Systems in the Cloud and Beyond. ICSR 2015. Lecture Notes in

Computer Science, vol 8919. Springer, Cham, Miami, USA, 2015.

[52] S. Mazzini, J. Favaro, S. Puri and L. Baracchi, ―CHESS: an open source methodology and toolset for

development of critical systems,‖ in 3rd International Workshop on Open Source Software for Model Driven

Engineering (OSS4MDE 2016), Saint Malo, France, 2016.

[53] B. Gallina, K. Lundqvist and K. Forsberg, ―THRUST: a method for speeding up the creation of process-related

deliverables,‖ in IEEE Digital Avionics Systems Conference (DASC'14), Colorado Springs, USA, 2014.

[54] N. Basir, E. Denney and B. Fischer, ―Deriving safety cases for hierarchical structure in model-based

development,‖ in International Conference on Computer Safety, Reliability, and Security (SAFECOMP), Vienna,

Austria, 2010.

[55] E. Denney and G. Pai, ―Automating the Assembly of Aviation Safety Cases,‖ IEEE Transactions on Reliability,

vol. 63, no. 4, pp. 830-849, 2014.

[56] A. L. Oliveira, R. T. Braga, P. C. Masiero, Y. I. Papadopoulos, I. Habli and T. Kelly, ―Supporting the automated

generation of modular product line safety cases,‖ in Theory and Engineering of Complex Systems and

Dependability: Proceedings of the Tenth International Conference on Dependability and Complex Systems,

Brunow, Poland, 2015.

[57] A. Retouniotis, Y. Papadopoulos, I. Sorokos, D. Parker, N. Matragkas and S. Sharvia, ―Model-Connected Safety

Cases,‖ in IMBSA'17: International Symposium on Model-Based Safety and Assessment. In: Bozzano M.,

Papadopoulos Y. (eds) Model-Based Safety and Assessment. IMBSA 2017. Lecture Notes in Computer Science,

vol 10437. Springer, Cham., Trento, Italy, 2017.

[58] I. Sorokos, Generation of model-based safety arguments from automatically allocated safety integrity levels, Hull,

UK: University of Hull, 2017.

[59] D. Schneider, M. Trapp, Y. Papadopoulos, E. Armengaud, M. Zeller and K. Höfig, ―WAP: Digital dependability

identities,‖ in 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE),

Gaithersbury, USA, 2015.

[60] J. Reich, D. Schneider, I. Sorokos, Y. Papadopoulos, T. Kelly, R. Wei, E. Armengaud and C. Kaypmaz,

―Engineering of Runtime Safety Monitors for Cyber-Physical Systems with Digital Dependability Identities,‖ in

International Conference on Computer Safety, Reliability, and Security. In: Casimiro A., Ortmeier F., Bitsch F.,

Ferreira P. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2020. Lecture Notes in Computer

Science, vol 12234. Springer, Cham, Lisbon, Portugal, 2020.

[61] J. Novet, ―Everyone keeps talking about A.I.—here‘s what it really is and why it‘s so hot now,‖ 17 6 2017.

[Online]. Available: https://www.cnbc.com/2017/06/17/what-is-artificial-intelligence.html. [Accessed 2 12 2021].

[62] A. L. Samuel, ―Some Studies in Machine Learning Using the Game of Checkers,‖ IBM Journal of Research and

Development, vol. 3, no. 3, pp. 210-229, 1959.

[63] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu, A. Zeljić, D. L.

Dill, M. J. Kochenderfer and C. Barrett, ―The Marabou Framework for Verification and Analysis of Deep Neural

Networks,‖ in In: Dillig I., Tasiran S. (eds) Computer Aided Verification. CAV 2019. Lecture Notes in Computer

Science, vol 11561. Springer, Cham., New York, USA, 2019.

[64] S. Gerasimou, H. F. Eniser, A. Sen and A. Cakan, ―Importance-driven deep learning system testing,‖ in 2020

IEEE/ACM 42nd International Conference on Software Engineering (ICSE), Seoul, South Korea, 2020.

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 158 Version 1.0 5 July 2023

Confidentiality: Public Distribution

[65] J. Cameron, Artist, The Terminator. [Art]. Hemdale; Orion Pictures, 1984.

[66] X. Zhao, W. Huang, S. Schewe, Y. Dong and X. Huang, ―Detecting Operational Adversarial Examples for

Reliable Deep Learning,‖ 13 4 2021. [Online]. Available: https://arxiv.org/abs/2104.06015. [Accessed 2 12

2021].

[67] A. Kurakin, I. Goodfellow and S. Bengio, ―Adversarial examples in the physical world,‖ 8 7 2016. [Online].

Available: https://arxiv.org/abs/1607.02533. [Accessed 2 12 2021].

[68] K. Lee, H. Lee, K. Lee and J. Shin, ―Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution

Samples,‖ 26 11 2017. [Online]. Available: https://arxiv.org/abs/1711.09325. [Accessed 1 12 2021].

[69] R. Salay, R. Queiroz and K. Czarnecki, ―An analysis of ISO 26262: Using machine learning safely in autonomous

systems,‖ 7 9 2017. [Online]. Available: https://arxiv.org/abs/1709.02435. [Accessed 11 12 2021].

[70] X. Zhao, W. Huang, A. Banks, V. Cox, D. Flynn, S. Schewe and X. Huang, ―Assessing the Reliability of Deep

Learning Classifiers Through Robustness Evaluation and Operational Profiles,‖ 2 6 2021. [Online]. Available:

https://arxiv.org/abs/2106.01258. [Accessed 2 12 2021].

[71] C. Paterson, H. Wu, J. Grese, R. Calinescu, C. S. Păsăreanu and C. Barrett, ―DeepCert: Verification of

Contextually Relevant Robustness for Neural Network Image Classifiers,‖ 2 3 2021. [Online]. Available:

https://arxiv.org/abs/2103.01629v1. [Accessed 1 12 2021].

[72] C. H. Cheng, C. H. Huang and G. Nührenberg, ―nn-dependability-kit: Engineering Neural Networks for Safety-

Critical Autonomous Driving Systems,‖ in 2019 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), Westminster, CO, USA, 2019.

[73] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri and M. Vechev, ―AI2: Safety and robustness

certification of neural networks with abstract interpretation,‖ in 2018 IEEE Symposium on Security and Privacy

(SP), 2018.

[74] M. Fischer, M. Balunovic, D. Drachsler-Cohen, T. Gehr, C. Zhang and M. Vechev, ―DI2: Training and querying

neural networks with logic,‖ in International Conference on Machine Learning, PMLR, 2019, 2019.

[75] M. Mirman, T. Gehr and M. Vechev, ―Differentiable Abstract Interpretation for Provably Robust Neural

Networks,‖ in Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden,

2018.

[76] M. Muller, G. Makarchuk, G. Singh, M. Puschel and M. Vechev, ―Precise Multi-Neuron Abstractions for Neural

Network Certification,‖ 5 3 2021. [Online]. Available: https://arxiv.org/abs/2103.03638v1. [Accessed 1 12 2021].

[77] X. She, P. Saha, D. Kim, Y. Long and S. Mukhopadhyay, ―SAFE-DNN: A Deep Neural Network With Spike

Assisted Feature Extraction For Noise Robust Inference,‖ in 2020 International Joint Conference on Neural

Networks (IJCNN), Glasgow, UK, 2020.

[78] K. Aslansefat, I. Sorokos, D. Whiting, R. T. Kolagari and Y. I. Papadopoulos, ―SafeML: Safety monitoring of

Machine Learning classifiers through statistical difference measures,‖ in 7th International Symposium on Model-

Based Safety and Assessment (IMBSA 2020); Proceedings in Springer Nature, Vol 12297, 2020, p197, Lisbon,

Portugal, 2020.

[79] M. Kläs and L. Jöckel, ―A framework for building uncertainty wrappers for AI/ML based data driven

components,‖ in International Conference on Computer Safety, Reliability, and Security; Springer, 2020, pp 315-

327, 2020.

[80] M. Kläs and L. Sembach, ―Uncertainty Wrappers for data-driven models,‖ in International Conference on

Computer Safety, Reliability, and Security; Springer, p 358-364, 2019.

[81] N. Carlini, G. Katz, C. Barrett and D. L. Dill, ―Provably Minimally-Distorted Adversarial Examples,‖ 29 9 2017.

[Online]. Available: https://arxiv.org/abs/1709.10207. [Accessed 3 12 2021].

[82] K. Aslansefat, S. Kabir, A. Abdullatif, V. Vasudevan and Y. Papadopoulos, ―Toward Improving Confidence in

Autonomous Vehicle Software: A Study on Traffic Sign Recognition Systems,‖ Computer, vol. 54, no. 8, pp. 66-

76, 2021.

[83] M. T. Ribeiro, S. Singh and C. Guestrin, ―"Why should I trust you?" Explaining the predictions of any classifier,‖

in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

San Francisco, USA, 2016.

[84] D. Slack, S. Hilgard, E. Jia, S. Singh and H. Lakkaraju, ―Fooling LIME and SHAP: Adversarial attacks on post-

hoc explanation methods,‖ in Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2020.

[85] Y. Shimada, Y. Hirata, T. Ikeguchi and K. Aihara, ―Graph distance for complex networks,‖ Scientific Reports,

vol. 6, p. 34944, 2016.

[86] A. Abid, M. T. Khan and J. Iqbal, ―A review on fault detection and diagnosis techniques: basics and beyond,‖

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 159

Confidentiality: Public Distribution

Artificial Intelligence Review, vol. 54, pp. 3639-3664, 2020.

[87] B. G. Buchanan and E. H. Shortliffe, Rule-based Expert Systems: the Mycin Experiments of the Stanford

Heuristic Programming Project, New York, USA: Addison-Wesley, 1984.

[88] W. R. Nelson, ―REACTOR: An expert system for diagnosis and treatment of nuclear reactors,‖ in Proceedings of

the National Conference on Artificial Intelligence, Pittsburgh, USA, 1982.

[89] A. Nairac, N. Townsend, R. Carr, S. King, P. Cowley and L. Tarassenko, ―A system for the analysis of jet engine

vibration data,‖ Integrated Computer-Aided Engineering, vol. 6, no. 1, pp. 53-66, 1999.

[90] L. Felkel, R. Grumbach and E. Saedtler, ―Treatment, Analysis, and Presentation of Information about Component

Faults and Plant Disturbances,‖ in Symposium on Nuclear Power Plant Control and Instrumentation (IAEA-SM-

266/40), p340-347, UK, 1978.

[91] C. Lee, R. L. Alena and P. Robinson, ―Migrating fault trees to decision trees for real time fault detection on the

International Space Station,‖ in IEEE Aerospace Conference, Big Sky, USA, 2005.

[92] J. B. Dugan and T. Assaf, ―Diagnosis based on reliability analysis using monitors and sensors,‖ Reliability

Engineering & System Safety, vol. 93, pp. 509-521, 2008.

[93] M. Kramer and F. E. Finch, ―Fault Diagnosis of Chemical Processes,‖ in Knowledge-based system diagnosis

supervision and control, New York, USA, Plenum Press, 1989, pp. 249-263.

[94] N. H. Ulerich and G. Powers, ―Online Hazard Aversion and Fault Diagnosis in Chemical Processes,‖ IEEE

Transactions on Reliability, vol. 37, no. 2, pp. 171-177, 1988.

[95] S. Guarro and D. Okrent, ―The logic flowgraph: a new approach to process failure modelling and diagnosis for

disturbance analysis applications,‖ Nuclear Technology, vol. 67, pp. 348-359, 1984.

[96] M. Yau, S. Guarro and G. Apostolakis, ―Demonstration of the Dynamic Flowgraph methodology using the Titan

II space launch vehicle digital flight control system,‖ Reliability Engineering & System Safety, vol. 49, no. 3, pp.

335-353, 1995.

[97] L. W. Chen and M. Modarres, ―Hierarchical Decision Process for Fault Administration,‖ Computers and

Chemical Engineering, vol. 16, pp. 425-448, 1992.

[98] J. deKleer and B. Williams, ―Diagnosis of Multiple Faults,‖ Artificial Intelligence, vol. 32, no. 1, pp. 97-130,

1987.

[99] B. J. Kuipers, ―Qualitative Simulation,‖ Artificial Intelligence, vol. 29, pp. 289-338, 1986.

[100] P. Bunus and K. Lunde, ―Supporting model-based diagnostics with equation-based object oriented languages,‖ in

2nd International Workshop on Equation-based Object Oriented Languages & Tools (EOOLT), Paphos, Cyprus,

2008.

[101] K. Lunde, R. Lunde and B. Munker, ―Model-based failure analysis with RODON,‖ in Proceedings of ECAI 2006

- 17th European Conference on AI, Riva del Garda, Italy, 2006.

[102] Y. Zhou, J. Hahn and M. S. Mannan, ―Process monitoring based on classification tree and discriminant analysis,‖

Reliability Engineering & System Safety, vol. 91, pp. 546-555, 2006.

[103] J. Eggert, ―Risk estimation for driving support and behavior planning in intelligent vehicles,‖ at -

Automatisierungstechnik, vol. 66, no. 2, p. 119–131, 2018.

[104] M. Machin, J. Guiochet, H. Waeselynck, J.-P. Blanquart, M. Roy and L. Masson, ―SMOF: A Safety Monitoring

Framework for Autonomous Systems,‖ IEEE Trans. Syst. Man Cybern, Syst. (IEEE Transactions on Systems,

Man, and Cybernetics: Systems), vol. 48, no. 5, p. 702–715, 2018.

[105] C. Pek, S. Manzinger, M. Koschi and M. Althoff, ―Using online verification to prevent autonomous vehicles from

causing accidents,‖ Nat Mach Intell (Nature Machine Intelligence), vol. 2, no. 9, pp. 518-528, 2020.

[106] S. Shalev-Shwartz, S. Shammah and A. Shashua, ―On a Formal Model of Safe and Scalable Self-driving Cars,‖

Intel/Mobileye, http://arxiv.org/pdf/1708.06374v5, 2017.

[107] M. Trapp, D. Schneider and G. Weiss, ―Towards Safety-Awareness and Dynamic Safety Management,‖ in 14th

European Dependable Computing Conference (EDCC), 2018.

[108] C. Hartsell, S. Ramakrishna, A. Dubey, D. Stojcsics, N. Mahadevan and G. Karsai, ―ReSonAte: A Runtime Risk

Assessment Framework for Autonomous Systems,‖ in 16th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems, 2021.

[109] S. Khastgir, H. Sivencrona, G. Dhadyalla, P. Billing, S. Birrell and P. Jennings, ―Introducing ASIL inspired

dynamic tactical safety decision framework for automated vehicles,‖ in IEEE Intelligent Transportation Systems

Conference (ITSC), 2017.

[110] R. Johansson and J. Nilsson, ―The need for an environment perception block to address all ASIL levels

D4.5 Safety Analysis Concept & Methodology for EDDI Development

Page 160 Version 1.0 5 July 2023

Confidentiality: Public Distribution

simultaneously,‖ in IEEE Intelligent Vehicles Symposium, Gotenburg, Sweden, 2016.

[111] P. Feth, ―Dynamic Behavior Risk Assessment for Autonomous Systems,‖ Germany, 2020.

[112] M. Schreier, V. Willert and J. Adamy, ―An Integrated Approach to Maneuver-Based Trajectory Prediction and

Criticality Assessment in Arbitrary Road Environments,‖ IEEE Trans. Intell. Transport. Syst. (IEEE Transactions

on Intelligent Transportation Systems), vol. 17, no. 10, pp. 2751-2766, 2016.

[113] S. Lefevre, C. Laugier and J. Ibanez-Guzman, ―Intention-Aware Risk Estimation for General Traffic Situations

and Application To Intersection Safety,‖ [Research Report] RR-8379, INRIA, 2013.

[114] J. Dahl, G. R. d. Campos, C. Olsson and J. Fredriksson, ―Collision Avoidance: A Literature Review on Threat-

Assessment Techniques,‖ IEEE Trans. Intell. Veh. (IEEE Transactions on Intelligent Vehicles), vol. 4, no. 1, pp.

101-113, 2019.

[115] S. Lefévre, D. Vasquez and C. Laugier, ―A survey on motion prediction and risk assessment for intelligent

vehicles,‖ ROBOMECH Journal 1, pp. 1-14, 2014.

[116] L. Westhofen, C. Neurohr, T. Koopmann, M. Butz, B. Schütt, F. Utesch, B. Kramer, C. Gutenkunst and E. Böde,

―Criticality Metrics for Automated Driving: A Review and Suitability Analysis of the State of the Art,‖

https://arxiv.org/abs/2108.02403, 2021.

[117] J. Reich and M. Trapp, ―SINADRA: Towards a Framework for Assurable Situation-Aware Dynamic Risk

Assessment of Autonomous Vehicles,‖ in 16th European Dependable Computing Conference (EDCC), Munich,

Germany, 2020.

[118] J. Reich, M. Wellstein, I. Sorokos, F. Oboril and K.-U. Scholl, ―Towards a Software Component to Perform

Situation-Aware Dynamic Risk Assessment for Autonomous Vehicles,‖ in Dependable computing - EDCC 2021

Workshops. DREAMS, DSOGRI, SERENE 2021, 2021.

[119] M. Wellstein, ―Development of a Bayesian Network for Situation-Aware Lane Change Prediction based on the

highD Dataset,‖ Technical University Kaiserslautern, 2021.

[120] D. Schneider and M. Trapp, ―Conditional Safety Certification of Open Adaptive Systems,‖ ACM Trans. Auton.

Adapt. Syst. (ACM Transactions on Autonomous and Adaptive Systems), vol. 8, no. 2, pp. 1-20, 2013.

[121] D. Schneider, ―Conditional Safety Certification for Open Adaptive Systems,‖ Technical University

Kaiserslautern, 2014.

[122] D. Schneider and M. Trapp, ―A Safety Engineering Framework for Open Adaptive Systems,‖ in 5th IEEE

International Conference on Self-Adaptive and Self-Organizing Systems (SASO), 2011.

[123] D. Schneider and M. Trapp, ―Engineering Conditional Safety Certificates for Open Adaptive Systems,‖ in IFAC

Proceedings, 2013.

[124] P. Feth and R. Adler, ―Service-based Modeling of Cyber-Physical Automotive Systems: A Classification of

Services,‖ in Matthieu Roy (Ed.): CARS 2016 - Critical Automotive applications : Robustness & Safety, 2016.

[125] J. Reich, ―Systematic engineering of safe open adaptive systems shown for truck platooning,‖ Technical

University Kaiserslautern, 2016.

[126] J. Reich, D. Schneider, I. Sorokos, Y. Papadopoulos, T. Kelly, R. Wei, E. Armengaud and C. Kaypmaz,

―Engineering of Runtime Safety Monitors for Cyber-Physical Systems with Digital Dependability Identities,‖ in

39th International Conference, SAFECOMP 2020, Lisbon, Portugal, September 16-18, 2020, 2020.

[127] S. Kabir, I. Sorokos, K. Aslansefat, Y. Papadopoulos, Y. Gheraibia, J. Reich, M. Saimler and R. Wei, ―A

Runtime Safety Analysis Concept for Open Adaptive Systems,‖ in Model-Based Safety and Assessment. 6th

International Symposium, IMBSA, 2019.

[128] W. Van der Aalst, ―Data science in action,‖ in Process Mining, Berlin, Germany, Springer, 2016, pp. 3-23.

[129] Y. Gheraibia, S. Kabir, K. Aslansefat, I. Sorokos and Y. Papadopoulos, ―Safety + AI: A Novel Approach to

Update Safety Models Using Artificial Intelligence,‖ IEEE Access, vol. 7, pp. 135855-135869, 2019.

[130] K. Aslansefat, F. Marques, R. Mendonca and J. Barata, ―A Markov Process-based approach for Reliability

Evaluation of the Propulsion System in Multi-rotor Drones,‖ in Doctoral Conference on Computing, Electrical,

and Industrial Systems, 2019.

[131] D. M. Powers, ―Evaluation: From Precision, Recall, and F-Measure to ROC, Informedness, Markedness, and

Correlation,‖ Journal of Machine Learning Technologie, vol. 2, no. 1, pp. 37-63, 2011.

[132] M. Kläs, R. Adler, I. Sorokos, L. Joeckel and J. Reich, ―Handling Uncertaintties of Data-Driven Models in

Compliance with Safety Constraints for Autonomous Behaviour,‖ 17th European Dependable Computing

Conference (EDCC), pp. 95-102, 2021.

[133] S. M. Lundberg and S. I. Lee, ―A unified approach to interpreting model predictions,‖ in Proceedings of the 31st

International Conference on Neural Information Processing Systems, Long Beach, USA, 2017.

 D4.5 Safety Analysis Concept & Methodology for EDDI Development

5 July 2023 Version 1.0 Page 161

Confidentiality: Public Distribution

[134] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. Prutkin, B. Nair and S. I. Lee, ―From local explanations to

global understanding with explainable AI for trees,‖ Nature Machine Intelligence, vol. 2, no. 1, pp. 56-67, 2020.

[135] S. Kabir, K. Aslansefat, I. Sorokos, Y. Papadopoulos and Y. Gheraibia, ―A conceptual framework to incorporate

complex basic events in HiP-HOPS,‖ in International Symposium on Model-based Safety and Assessment, 2019.

[136] K. Aslansefat and G. Latif-Shabgahi, ―A hierarchical approach for dynamic fault trees solution through semi-

Markov process,‖ IEEE Transactions on Reliability, vol. 69, no. 3, pp. 986-1003, 2019.

	1. Introduction
	1.1 Overview
	1.2 SESAME Context & Key Challenges
	1.3 Updates since D4.1
	1.3.1 Response to reviewers
	1.3.2 Summary of updates

	2. The Challenge of Complexity
	2.1 Defining the Problem
	2.1.1 Definitions and general safety engineering approaches
	2.1.2 Classical safety analysis techniques
	2.1.2.1 HAZOP
	2.1.2.2 FMEA
	2.1.2.3 Fault Tree Analysis
	2.1.2.4 Dynamic state-based analysis

	2.2 State of the Art: Model-based Safety Analysis
	2.2.1 Compositional safety analysis approaches
	2.2.1.1 Failure Propagation & Transformation Calculus
	2.2.1.2 Component Fault Trees
	2.2.1.3 Generalized Hybrid Component Fault Trees
	2.2.1.4 State/Event Fault Trees
	2.2.1.5 HiP-HOPS
	2.2.1.6 safeTbox
	2.2.1.7 Dymodia

	2.2.2 Behavioural simulation safety analysis approaches
	2.2.2.1 AltaRica
	2.2.2.2 FSAP/NuSMV-SA
	2.2.2.3 xSAP
	2.2.2.4 FPTA
	2.2.2.5 SAML

	2.2.3 Allocation of safety requirements
	2.2.4 Safety argumentation
	2.2.4.1 Goal Structuring Notation
	2.2.4.2 CAE – Claims, Arguments, Evidence framework
	2.2.4.3 SACM
	2.2.4.4 Automatic generation of Safety Cases

	2.2.5 Digital Dependability Identities: a comprehensive approach to model-based safety

	2.3 Safety Analysis in SESAME
	2.3.1 Application of MBSA at design time
	2.3.2 Generation of runtime artefacts

	3. The Challenge of Intelligence
	3.1 Defining the Problem
	3.2 State of the Art: Safety of Machine Learning
	3.2.1 Maribou
	3.2.2 ReAsDL
	3.2.3 SafeML
	3.2.4 Explainability of ML
	3.2.4.1 LIME: Local Interpretable Model-agnostic Explanations
	3.2.4.2 SMILE: Statistical Model-agnostic Interpretability with Local Explanations
	SMILE for tabular/numeric datasets
	SMILE for image datasets
	SMILE for Text Datasets
	SMILE for Graph Datasets

	3.3 Safety of Machine Learning in SESAME

	4. The Challenge of Autonomy and Openness
	4.1 Defining the Problem
	4.2 State of the Art: Safety of Multi-Agent Systems at Runtime
	4.2.1 Runtime Fault Diagnosis
	4.2.1.1 Rule-based diagnosis
	4.2.1.2 Model-based diagnosis
	4.2.1.3 Data-driven diagnosis

	4.2.2 Dynamic Risk Assessment
	4.2.3 Dynamic Safety Concepts: Conditional Safety Certificates
	4.2.3.1 ConSert Operationalization
	4.2.3.2 ConSert Engineering
	4.2.3.3 Recent extensions and applications of ConSerts

	4.2.4 Model repair

	5. The EDDI Concept
	5.1 Overall EDDI Architecture
	5.1.1.1 System Interface
	5.1.1.2 MRS Interface
	5.1.1.3 Real-Time Event Monitors
	5.1.1.4 Fault Diagnosis
	5.1.1.5 High-level Reasoning & Management Application
	5.1.1.6 Model validation and repair recommendations
	5.1.2 EDDI Creation and Deployment

	5.2 The Open Dependability Exchange metamodel
	5.2.1 Events and Actions
	5.2.2 ConSerts
	5.2.3 Dynamic safety analysis
	5.2.4 Security Analysis
	5.2.5 Dynamic Risk Assessment

	5.3 Safety & Security
	5.4 EDDIs at Design Time
	5.4.1 Initial HARA
	5.4.2 Model-based Dependability Analysis
	5.4.3 Generation and analysis of failure models
	5.4.4 Moving towards dynamic models
	5.4.5 Fault Diagnosis

	5.5 EDDIs at Runtime
	5.5.1 Events, Actions, and State-Sensitive Fault Trees
	5.5.2 ConSert-based EDDI

	6. The EDDI Methodology
	6.1 Overall Methodology
	6.1.1 Hazard Analysis and Risk Assessment
	6.1.2 Safety Requirements
	6.1.3 Qualitative safety/security analysis
	6.1.4 Requirements Decomposition
	6.1.5 Quantitative safety analysis
	6.1.6 Testing & Verification
	6.1.7 Certification & Assurance Cases
	6.1.8 Preparation for Runtime

	6.2 High-Level Example
	6.2.1 System Definition
	6.2.2 Hazard Analysis & Risk Assessment
	6.2.3 Safety Requirements
	6.2.4 Qualitative Safety Analysis
	6.2.5 Requirements Decomposition
	6.2.6 Quantitative Safety Analysis & Security Analysis
	6.2.7 Testing & Verification
	6.2.8 Certification & Assurance Cases
	6.2.9 Preparation for Runtime
	6.2.10 Runtime Execution

	7. Conclusions
	References

