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EXECUTIVE SUMMARY

This document details the first version of techniques for assuring data-driven and learning components devel-
oped in Task 6.1 for the SESAME project.

Task 6.1 Machine Learning Testing Task: Assurance of Data-Driven and Learning Components of EDDIs.

This document provides information on the challenges we tackle and the gap in the literature we bridge, the
benefits of the tool to the EDDIs and the SESAME project, the way we infer and analyze Machine Learning
(ML) system properties for the development of quantitative objectives for ML testing, the set of test obligations
and, finally, the performed empirical study to test the validity of the proposed approach. Results and discussion
of the study are also reported in this document. The list of requirements emerging from SESAME partners that
are addressed by our tool-supported technique are also detailed in this document.

The tool-supported technique we develop in this context is a white-box systematic testing technique for ML-
based software, and in particular, Deep Learning (DL) models. We focus on DL since this technology is
increasingly used in robotic systems to support classification and detection tasks. Furthermore, most of the
SESAME use case partners employ DL to support similar activities for their robotic systems. The tool-
supported technique aims to automatically uncover different erroneous behaviours of DL-based systems. The
approach has a good fault-revealing ability, which enables to support the assurance of data-driven and learning
components employed by SESAME partners for different prediction tasks.

We introduce DEEPKNOWLEDGE, a novel test adequacy criterion for testing DL-based systems. The key
insight of DEEPKNOWLEDGE is on analysing the generalisation behaviour of Deep Neural Networks (DNN)
models under domain shift. We measure the generalisation ability of a DNN model as the statistical distance
between knowledge abstracted from In-Domain input sets (i.e., what was learnt during training) and Out-Of-
Domain (i.e., potentially unexpected data not seen during training). This helps identifying a set of neurons
that are key contributors to decision-making and crucial to knowledge generalisation within a DNN. We call
this neurons, transfer knowledge neurons and use them to inform our test adequacy criterion as a means of
assessing the quality and diversity of the test set and the generalisation capabilities of a DNN. A good test
set should exercise extensively those key critical computational units (neurons) within a DNN. This approach
is extensively evaluated through a set of empirical studies using different popular publicly-available datasets,
e.g., MNIST, Cifar and SVHN, and prevalent DNN models such as the LeNet family [38]. We perform this
study to evaluate the effectiveness of DEEPKNOWLEDGE and its correlation with the state-of-art approaches.

On the implementation front, we pay special attention to developing our tool in a simple multi-paradigm
technology, i.e., using a set of Python scripts. This enables quick adaptation and code maintenance by our
partners. The developed prototype tool is also compatible with most systems and architectures used by our
industrial partners.

STRUCTURE OF THE DOCUMENT. In this document:

• We provide a general overview of the software we developed and its connection with the SESAME use
cases in Section 1;

• We give an overview of the used technology, including an overview of existing approaches and their
relation to testing in conventional software systems in Section 2

• We present the architecture and methodology of DEEPKNOWLEDGE in Section 3;
• We detail the research questions we address in our experimental study and the experimental setup in

Section 4.
• We present and discuss the obtained results in Section 5;
• We present how we satisfy the project requirements in Section 7
• We conclude the report in Section 8.
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1 INTRODUCTION

1.1 OVERVIEW

This document summarises the activities concerning the testing of data-driven and learning components aspect
of the project, in particular, our focus on Machine Learning (ML) models and algorithms used in any of the
MRS components. The work has focused on the development of a practical and useful approach, supported by
a prototype tool for testing data-driven and learning components deployed as part of the SESAME project.

This deliverable reports the work carried out within Task 6.1, focusing on the description and integration of the
Deep Neural Networks (DNNs) testing approach developed in Work Package 6. The key idea underpinning the
approach, called DEEPKNOWLEDGE, is on identifying neurons within a DNN that are capable of abstracting
knowledge and assessing how well these neurons have been exercised by the given test test.

In the following sections, we first describe the motivation that guides the development of the proposed approach
alongside the assumptions and hypotheses described in more detail later on in this document.

1.2 TESTING OF LEARNING COMPONENTS IN SESAME: GOALS, MOTI-
VATION AND CHALLENGES

Machine Learning (ML) models and in particular deep neural networks (DNNs) have become prevalent in
robotic applications providing a diverse range of functionalities, including, but not limited to, classification and
detection, that complement traditional data-driven components. Notwithstanding their wide adoption, the DNN
deployed in our industrial use cases, are susceptible to errors and bias in the data [70]. These DNN components
are at the center of MRS operations as they provide critical functionality. For example, the LOCOMOTEC use
case deploys DNNs in the Person Detection module as a computer vision tool to ensure the safety of human
beings during the disinfection task. Similarly, the DKOX use case employs DNNs for the classification of vine
leaves into healthy leaves and those that have a particular disease. Consequently, and despite the wide range of
data-driven and learning components that can be deployed in the operating environment of the MRS, the main
focus of SESAME Task 6.1 is on the assurance of the data-driven components that employ ML.

Given their black-box nature, the software engineering techniques, which are supposed to guarantee function-
ality, safety as well as fairness of traditional data-driven components, are not applicable in DNNs context.

As described in the SESAME deliverable D1.1 (pp92-94), in Task 6.1 we devise techniques for testing ML
tools and more specifically, developing systematic software testing techniques for DNN-based software. On
the other hand, data-driven components that are not ML (as described in WP2) can be tested during simulation
using techniques developed such as those developed in deliverable D6.2 (e.g., simulation-based testing). More
details about our motivations, the SESAME partners’ needs, and the faced challenges will be provided in the
following.

Machine Learning (ML) is a subset of Artificial Intelligence (AI) leveraging algorithms that help discover
patterns and insights from data so that computers can independently perform tasks without being explicitly
programmed to do so. Recently, ML models have become the primary solution to support data-driven decision-
making procedures in the industry. Using ML can speed up any development process while improving success
rates. ML models also offer great tools for predictive analytics, but resistance to them is growing. Indeed,
researchers, as well as civil liberties advocates, express ethical concerns about ML transparency, explainability
and overall mistrust issues [10], exposing its harms and highlighting the urgent need for techniques that provide
evidence for its safe and reliable use.

In fact, ML, and DNNs in particular (cf. Figure 1), are currently being used in a wide spectrum of safety- and
security-critical applications ranging from drug discovery and the analysis of digital pathology data in clinical
trials to flight control systems [32] and autonomous cars [9]. This unprecedented expansion witnessed in the
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adoption of DNNs is partly due to the extra computational power of modern hardware components, substantial
algorithmic improvements in the engineering of DNNs and extensive amounts of available data [39, 82].

According to [11], in Industry 4.0 ML-enabled systems are more versatile and are capable of working in
changing environments and adapting to them. For instance, vision systems and robotics are combined with ML
algorithms to improve processes and increase productivity. This allows the automation of tasks that traditional
robots with fixed algorithms and well-defined processes could not carry out before. Despite these noteworthy
advances, the main challenge is to maintain the reliability-explainability trade-off without significant losses in
predictive performance. In safety- and security-critical applications such as pesticide spraying in viticulture
or security inspection of critical infrastructures, more challenges arise related to the correctness, robustness,
privacy, efficiency and fairness of the deployed ML models. For instance, the autonomous vehicle driving
industry has seen several safety incidents that led to high uncertainty and mistrust in ML technology and AI
in general. For example, Tesla’s fatal Autopilot crash [4], Uber car’s fatal incident [12], and Google’s self-
driving car crash [1] are all safety incidents caused by failures of the DNNs-based autonomous system. These
reliability, safety and security issues in DNN models have led to an urgent need for new approaches to testing
the safety, correctness, reliability and robustness of DNN-based systems.

Besides the possible risks of inconsistency in DNN models’ performance, adversarial attacks represent an
additional threat to their robustness. More specifically, adversarial attacks attempt to mislead DNN models with
deceptive data. The deceptive data can take many formats (i.e., images or videos) and are inputs specifically
designed to look close to genuine data but which cause misclassification issues to DNN models (i.e., forcing
these models to make incorrect predictions).

According to the U.S. National Security Commission on Artificial Intelligence’s report [63], adversarial exam-
ples are maliciously designed data deployed to cause a malfunction of DNN models and ‘turn AI capabilities
against us’. More specifically, adversarial attacks have shown harmful effects on self-driving cars and med-
ical analysis systems, e.g., by classifying a benign mole as malignant [18]. Through imperceptible changes
to images, adversarial techniques were highly effective in deceiving computer vision systems into the wrong
classification, which can endanger human lives and cause significant financial losses. Overall, the increasing
interest in the migration of DNN in industrial applications and safety- and security-critical domains requires
providing testing evidence for their robustness and dependable operation. DNN Testing has imposed itself as a
technique that can automatically provide assurance evidence for the robustness of DNNs, demonstrating their
ability to cope with erroneous inputs.

DNN testing refers to any activity designed to reveal bugs in these models [81]. This emerging field remains an
area with unsolved questions at several levels. In the following section, we discuss in more detail these levels
along with the challenges DNN testing faces in safety- and security-critical applications, challenges related to
algorithmic and computational capabilities, industrial applications and domain-specific challenges in relation
to the SESAME context and use cases.

1.2.1 Algorithmic and Computational Challenges

Unlike traditional software and rule-based ML models, where software developers and ML engineers under-
stand precisely the system requirements and can define them within the system’s logic, DNNs learn their rules
automatically from data (cf. Figure 2). Historical data is used to train models and extract patterns for predict-
ing future events. This makes the DNNs’ behaviour uncontrollable and unexplainable, giving rise to the so
called ‘black box’ issue [27]. In particular, the black box metaphor is shorthand for data-driven models that
use complex and not interpretable mathematical and statistical operations to infer predictions. Unavoidably,
this creates a huge challenge for DNN testing, making the traditional software testing techniques inapplicable.

A related challenge involves test oracles which rely on a component to test (e.g., code where the bug may
exist) and assume that the software’s output can be verified against the expected values designed by the devel-
oper [82]. This is not applicable in the case of DNNs as they are data-driven models for which it is difficult

Page 2 Version 2.0
Confidentiality: Public Distribution

12 April 2023



D6.1 Assurance of Data-Driven and Learning Components of EDDIs

Camera

x1

LiDAR

IR Sensor

x2

x3

h11

h12

h13

h14

h21

h22

h23

h24

Hidden 
layer 1

Hidden 
layer 2

Input
layer

y1

y2

y3

Output
layer

Speed

Steering 
angle

Brake

Figure 1: A four layer fully connected DL system that receives inputs from vehicle sensors (camera,
LiDAR, infrared) and outputs a decision for speed, steering angle and brake [19]

Figure 2: Traditional software Vs ML system development processes [57].

to trace the logic. This challenge prevents the judgement of whether a bug exists and creates the so-called ‘or-
acle problem’ [82]. On the other hand, traditional testing techniques are highly reliant on labelled test sets.
Deriving these labelled test sets is predominantly a manual and engineer-driven activity, which despite its use-
fulness, is tedious and time-consuming. Unavoidably, this challenge results in reduced number of labelled
datasets. The limited amount of manually labelled data makes these techniques insufficient to expose the DNN
system’s erroneous behaviour for rare inputs.

Recently, a new stream of coverage criteria has been proposed to solve data limitations and avoid unreasonable
residual risk of black box DNN systems [82]. Notwithstanding their usefulness, the majority of the existing
approaches focuses on a limited set of criteria that observe how well the testing dataset is able to satisfy certain
proprieties, i.e., the activation level of DNN neurons. Accordingly, the resulting findings show that test inputs
often fail to uncover different erroneous behaviours of a DNN system, due to both:

• data availability issues, i.e., collecting real-world data is challenging and, more often than not, cost-
prohibitive;

• data quality, i.e., limited availability of high-quality data, e.g., 3D object/image, etc [40].

In Section 2, we further present related work and discuss the challenges and limitations of traditional DNN
testing methods.
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1.2.2 Industrial Challenges

Deploying AI-enabled systems (and DNNs, in particular) in production is difficult, due to the ML lifecycle
complexity. The ML lifecycle consists of many complex components such as data acquisition, data wrangling,
model training, and tuning, then, model deployment, and monitoring. Furthermore, the lifecycle includes
steps to assure the quality and reliability of the prediction. This requires collaboration across teams from
Data Engineering, Data Science to ML Engineering [20]. Thus, organisations adopting ML in their industrial
activities face both new opportunities and unique challenges [33]. Key challenges are related to:

1. operational rigour to keep all ML lifecycle’s components synchronised and working in tandem;

2. stringent infrastructure for testing and experimentation that enables systematic and effective safety as-
surance for ML models, alongside the continuous improvement of its lifecycle.

In relation to (2), one of the key challenges in ML testing is the lack of skilled resources well equipped to test
ML models. Unlike other ML lifecycle components, for which organisations can deploy off-the-shelf tools and
libraries (that require minimum knowledge to be used), ML testing suffers from the lack of scalable frameworks
and tools. This important challenge contributes to the need for devising ML testing frameworks and/or libraries
that are easily deployed and maintained and can easily scale. Accordingly, the work undertaken in Task 6.1
and described in this deliverable aims at devising such a technique. Towards addressing this challenge of the
lack of scalable tools, the SESAME ML testing component is a testing technique, supported by a coverage
criterion, that is developed to quantify the semantic adequacy of a test set with respect to the training set used
to train a DNN system.

1.2.3 Domain-Specific Challenges

The most common ML challenge that businesses face is the availability of data. Thus, most organisations
deploy popular publicly-available datasets and prevalent DNN models, including some of our use case partners
in SESAME, including:

• Locomotec’s KELO ARODIS uses pre-trained available convolutional neural networks to detect per-
sons using its Person Detection sub-module. This DNN model is based on the publicly available COCO
dataset [65].

• LuxSense (LXSNS) deploys their DNN model to monitor the environment and detect blocking objects,
such as birds, humans, cars, vegetation [65].

• KIOS and CYPCD deploy real-world datasets, e.g., a vehicle tracking dataset for their Task Manager
module. Thus, their deployed DNN model aims to detect several types of objects with sufficient relia-
bility [65].

The diversity of tasks and industrial activities run by our partners poses further challenges for the DNN testing
component in SESAME. Publicly available datasets mostly suffer from underrepresented and distributionally
skewed data, which can lead to misleading conclusions about the efficiency and performance of the DNN
model. Accordingly, quantifying the semantic adequacy of a test set has to rely on rigorous approaches that
determine the DNN model’s ability to generalise, i.e., to adapt properly to new, previously unseen data, rather
than how well the test set activates parts of the DNN’s model beyond a certain threshold [81]. The developed
SESAME ML testing approach (described later in Section 3) relies on a learning theory[76] that suggests
that the DNN model’s generalisation capability should not be related to the “complexity” of the hypothesis
space, i.e., the dataset, but on specific DNN’s parameters and computational units. This means that identifying
these computational units helps assessing the generalisation capabilities of a DNN’s model and consequently
determining its ability to respond appropriately when unexpected inputs, corner cases or erroneous behaviours
appear in the operational setting.
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1.3 BENEFITS TO THE PROJECT AND DESIRED INDUSTRIAL IMPROVE-
MENTS

The proposed DNN testing approach is designed to address the shortcomings described above. We provide
a self-contained approach that allows our partners to test data-driven and learning components of EDDIs.
The developed tool-supported technique allows us to systematically test real-world DNN-based components.
It provides the capabilities for offline testing along with DNN improvement based on a novel test adequacy
criterion developed by our team. In response to the abovementioned industrial challenges, our tool-supported
technique is developed as a set of Python scripts that can be easily integrated into any system with no required
hands-on experience in DNN development or testing. Concerning the domain-specific challenges, our tool
satisfied our partners’ requirements as described in Section 7.

Overall, our DEEPKNOWLEDGE approach improves the confidence in the DNN model functioning and re-
duces confusion and uncertainty about its behaviour to unique inputs and corner cases. These capabilities
of DEEPKNOWLEDGE allow our industrial partners to gain a better understanding of their system’s results.
Furthermore, the DNN testing component benefits the research community and DNN testing developers by
providing a tool-supported approach supporting quantitative testing of DNNs.
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2 RELATED WORK

This section presents an overview of the state of the art in DNNs, software testing and DNN testing. The main
ideas, approaches, and research in this field related to our work are also presented.

2.1 FOUNDATIONS OF NEURAL NETWORKS AND KEY NOTIONS OF DEEP
LEARNING

Deep Learning (DL) is a sub-field of ML that encompasses a wide range of algorithms called Artificial Neural
Networks. Due to recent advances in computational power and available datasets, multi-layer learning models
termed Deep Neural Networks (DNNs) have taken a dominant position in research, innovation and application
of ML techniques.

Conventionally, all software systems that are empowered by at least one DNN component are referred to
as DL-based systems. These systems have benefited from the great achievements DL have been making in
multiple fields, including achieving human-level performance in many challenging tasks such as machine
translation [68], image classification [28] and sentiment analysis [23], or even surpassing it (e.g., in game
playing [66, 75]).

Unlike traditional ML algorithms, DNNs do not require an intensive feature engineering process [40]. Inspired
by neurobiology, DNNs employ statistical computations and graph technologies simultaneously in order to
build up a multi-layer architecture that allows the network to automatically extract features from raw data with-
out manual intervention or support from domain experts. A DNN uses mathematically complex computations
to automatically extract high level patterns from within the inputs to produce its prediction effectively [22].

DNNs can be classified into three main categories: multi-layer perceptrons (MLP) [37], convolutional neural
networks (CNN) [25], and recurrent neural networks (RNN) [51]. As shown in Figure 1, independently of its
type, a DNN is composed of multiple interconnected neurons organised in hidden, input and output layers.
Neurons are considered computing units that combine multiple inputs and produce a single output by applying
non linear transformations in the form of activation functions such as sigmoid, hyperbolic tangent and rectified
linear unit (ReLU). Despite their similarities, the DNN’s architecture has different characteristics depending
on its type (MLP, CNN, RNN). CNNs are feed-forward networks that have convolutional layers and use filters
and pooling, which makes them suitable for spatial data such as images and computer vision tasks. In contrast,
the architecture of RNNs, such as gated recurrent units (GRUs) and long short-term memory (LSTM), enables
them to feed the results back into the network, making them more suitable for temporal and sequential data
such as text. Irrespective of their architecture type, the engineering of DNNs follows two main phases, i.e.,
training (or learning), where the DNNs abstract knowledge (i.e., high level features) from training data, and
inference (or prediction), where the network applies the extracted knowledge to new and most likely unforeseen
inputs.

Advances in DNN architectures, ranging from GANs [22] to transformers [74], have made DNNs the ‘gold
standard’ in the ML research community and industrial practice. To this end, DNNs revolutionise industrial
markets and contribute significantly to efficiency improvements in various tasks. According to McKinsey1,
DNNs have the potential to create between £1-2 trillion annually in manufacturing. However, the adaptation
of DNNs requires well-established assurance techniques that:

• mitigate business and operational risks of deploying the DNNs technology;
• ensure and improve safety, efficiency and correctness of DNN models.

1https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-
value-of-deep-learning
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2.1.1 Generalization

An open problem in the field of Deep Learning is the provision of guarantees for the correctness of DNNs
in predicting the values of future inputs, given the high risk of possible over-fitting to training data. As a
result many research efforts focus on studying and developing methods to enhance their generalisation, e.g.,
by calibrating the regularisation function during training.

Generalisation refers to the DNN’s ability to extract knowledge gained during training and apply it to a different
but related problem, i.e., data [72]. Some learning theories suggest that the model’s generalisation ability is
closely related to the ‘complexity’ of the hypothesis/data space [53]. More recent studies have empirically
demonstrated that the generalisation ability of a neural network is related to the spectrum of the Hessian [76].
Besides these theories, our focus in this task is on analysing the generalisation ability of DNNs under domain
shift at a neuron level. Our aim is to increase the confidence in the robustness of DNN inference through
the evaluation of its generalisation ability following recent advances [48, 16]. In particular, our focus is on
identifying the computational units of a DNN that are responsible for the generalisation and use the conditions
affecting this ability as a by-product.

2.1.2 ZeroShot Learning

ZeroShot learning is a promising ML technique that leverages supervised learning with no additional training
data. As a methodology, ZeroShot learning allows a DNN model to perform predictive functions on classes
that have not been seen during training, i.e., learn how to classify images without any explicit labeling [43].
ZeroShot is another methodology that has been developed to decrease the model’s reliance on labelled data.
Many approaches have been developed ranging from traditional embeddings [43] and generative-based tech-
niques [35] to more relatively new methods such as CLIP [59].

To achieve its goal, ZeroShot-based methods associate non-observed classes with auxiliary information that
allows encoding observable distinguishing properties of the input. In fact, in the ZeroShot setting, the model
will be used to predict a number of unseen classes using only abstracted knowledge about a small set of classes
and external knowledge about class relations.

Despite the advancements made, these ZeroShot methodologies suffer from important limitations such as the
issue of bias and domain shift, which urge for further advances in this field. In our DEEPKNOWLEDGE ap-
proach, ZeroShot is used to simulate the real-world settings where the DNN model can face new and previously
unseen inputs. We analyse what knowledge subset a DNN model is applying to a new domain without fine-
tuning. To do this, we deployed a trained DNN model for prediction in a ZeroShot setting.

2.1.3 Activation Maximization

As ‘interpretability’ matters in order to build trust in the technologies underpinning DNNs, explaining the
reasoning behind a neural network prediction has become a main research topic within the DNN community.
In response to this, many techniques have been proposed including sensitivity-based analysis [2] that analyses
the model’s prediction gradient and layer-wise relevance propagation [52] which is designed to interpreting
the feed-forward graph structure of the deep neural network.

Alongside the above-mentioned methods, one of the foundational techniques proposed for explaining the
DNN’s prediction is activation maximization. To this end, activation maximization is an optimisation tech-
nique that allows finding representations for features that neurons/filters in neural networks have learned [16].

In practice, activation maximization is a technique that generates an input image that maximizes the filter output
activations. In particular, using gradient ascent [6], the activation maximization method seeks to maximize the
predicted output by iteratively making incremental changes to the input image. For instance, consider the
visualisation of a CNN model. Recall that a CNN model is mainly deployed for tasks related to computer
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Requirements Analysis Test Planning Test Case 
Development Test Case Execution

Test Closure Regression Testing Defect Retesting Test Results Reporting

Figure 3: Software testing lifecycle [54].

vision, e.g., image recognition and classification. A CNN encompasses convolutional layers, where each layer
has several learned patterns matching filters that maximise their output when a similar template pattern is found
in the input image [84, 21]. To visualise and analyse what a filter is learning/abstracting from an input image,
activation maximization can be applied to update the input and highlight specific patterns within it.

Activation maximisation is one of the pillars of DEEPKNOWLEDGE, and it is used to understand what sort of
input patterns activate a particular neuron in the DNN model and how that changes under domain shift.

2.2 SOFTWARE TESTING

The growing complexity of software and its extensive adoption in many security- and safety-critical systems
has created new assurance challenges for establishing the trustworthiness of developed software systems [3].

Software testing is a well-defined methodology, encompassing validation and verification steps, to establish
whether the system under test meets a set of specified requirements [58]. More informally, it is an in-depth
investigation that involves examining the behaviour of a system to find bugs, errors or missing requirements
in the developed software. Software engineers can use insights (e.g., execution traces) from identified bugs or
errors to improve the target system. The overall effectiveness and cost of software testing depends on the type
and number of test cases executed on the software [58].

According to [30], the major classes of testing are black-box testing, white-box testing and grey-box testing.
While white-box testing methods test the internal structure of the software system under test in addition to
its functionality, black-box testing focuses only on the functionality without investigating its implementation-
level details. Grey-box testing sits between black- and white-box testing and uses limited information from the
internal system’s execution.

Another dimension for classifying software testing techniques is based on the part of the system tested. Typical
examples include functional testing, non-functional testing, automation testing, agile testing, and their sub-
types. For example, unit testing [62] is a type of software testing that aims to tackle the smallest testable parts
of an application, called units, and assess their correctness. Many test automation tools have been proposed
such as NUnit [29], Xunit [50], JUnit [47] for the test execution at a unit level, i.e., at method, function,
procedure, or object level.

Another important factor in software testing is the test oracle [5], which helps determining whether the soft-
ware executed correctly for a test case. Conceptually, this mechanism encompasses an oracle procedure that
compares the oracle information with the actual (and expected) system output.

Besides their types, all software testing techniques share the same steps shown in Figure 3. Among these
steps, Test Planning is the key phase where the testing strategy is defined, and high-level objectives of the
test activities are planned following a quality assurance perspective. Planning for traditional software testing
is doable given the clarity of the systems and the knowledge of the developer about all the system units. Yet,
following a purely traditional software testing methodology to test DNNs is not applicable due to the following
reasons:

• Black-box issue: DNNs are data-driven and non-interpretable predictive models for which their
decision-making process is unexplainable.
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• Volume-related issue: DNN models are typically large structures whose parameters (number of layers
and neurons per layer) can reach billion in size.

• Data bias issue: During training, the weights and biases are iteratively tuned to minimize the error, or
loss, of the DNN. This process is based on the dataset with the aim to adapt the model decision to the
data labelled. As one can notice, any bias in the data would be then automatically mirrored into the
DNN decision-making process leading to discriminatory outputs. In fact, data bias is a type of error in
which certain labels/classes in the dataset are more heavily weighted than others. Thus, testing DNN
would require first and foremost to ensure the quality of the training data set [13].

These issues drive the demand for DNN-specific assurance techniques. Testing techniques became vital build-
ing blocks for creating predictive systems that perform efficiently and effectively. Therefore, a substantial
research effort has been made towards DNN testing in order to ensure their safety, correctness and robustness.
The following section will give an overview of these efforts alongside their shortcomings.

2.3 RECENT ADVANCES IN DNN TESTING

The development of safety-critical DNN systems like autonomous cars urge for testing both functional and
non-functional DNN properties, including correctness, robustness and security of DNNs against adversarial
attacks [24, 15]. As described above, DNNs are different in many aspects from conventional software systems,
therefore adapting traditional software testing techniques to DNNs is not doable for many reasons, including
the difficulty of tracing the DNN-based system’s logic. While traditional software behaviour results from the
code/functionalities that are fixed by the requirement and encoded in software, the DNN model’s behaviour is
highly dependable on the training data and learnt parameters (weights and biases).

Another consideration is that testing a DNN-based system is more involved and time-intensive than testing
traditional software systems. In fact, testing DNN requires validating the training data, parameters, and the
code altogether.

According to [81], DNN testing refers to all techniques designed to reveal a DNN bug (Figure 4). A DNN
bug can manifest in the data (e.g., in form of bias, mislabeled training data), in the model, or in the frame-
work. Thus, a DNN testing activity can cover any of these elements through test input generation, test oracle
identification, test adequacy evaluation, and bug triage.

Test adequacy is a technique that has been widely adapted to DNN testing. More specifically, test adequacy
criteria provide a quantitative measurement on the degree of testing of a target software [81], i.e., the percentage
of code/model parts that have been exercised by the test cases. The test adequacy criterion is a predicate that
can be ‘satisfied’ or not by a (program, test suite) pair [58]. Eventually, it helps software testers to select
properties of a program to focus on during test.

In this section, we provide a brief review of testing approaches for DL-based systems. More specifically, we
review testing approaches based on the aggregation of neuron property values as test adequacy criteria, and
their ability to detect erroneous behaviours in DNNs.

Although the current state-of-the-art in DL testing is still at its early stage, some notable achievements have
been made including white-box techniques [57]. For instance, DeepXplore presents a neuron coverage (NC)
measure to identify the parts of DNN logic exercised by a test set. DeepXplore pioneered research by proposing
coverage criteria for DNN. Neuron coverage has become a reference in DNN testing because of the signifi-
cant advances over manual ad-hoc testing of DNN and its effectiveness in detecting the diversity of test inputs.
Simply put, NC measures the ratio of neurons whose activation values are above a predefined threshold. Fur-
thermore, the proposed technique offers the possibility of generating inputs that could augment the training
set and improve the model’s accuracy. The authors demonstrated that a DeepXplore-generated test set covers
34.4% more neurons than the same size of randomly picked test inputs.
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Figure 4: ML testing workflow (adapted from [81])

Subsequently, more fine-grained approaches were introduced, including DeepGauge [45], DeepGini [17],
DeepTest [71] and DeepImportance [19]. DeepGauge [45] has introduced multi-granularity testing criteria
based on a more detailed analysis of neuron activation values. It assumes that the output of a neuron is located
in a defined interval with low and high bounds defined based on the training process, i.e., major and corner-
case neuron regions. The defined interval needs to be divided into k equal sections, and the coverage of the
test set is estimated based on its ability to cover these sections.

DeepImportance [19] is based on a similar assumption where a set of important neurons is identified then their
vector of activation values is used to produce k clusters. DeepImportance measures the diversity of the input
set through the degree to which it covers the clusters of important neurons. In particular, given a test set Y ,
DeepImportance calculates a coverage score IDC that measures the systematic diversity of Y . Higher IDC
means more combinations of important neuron clusters have been exercised by the test set.

DeepTest [71] is another systematic testing tool for automatically detecting erroneous behaviours of DL-based
self-driving cars. The approach treats erroneous corner-case behaviours in DNN models as analogous to logic
bugs in traditional software systems. The approach generates realistic synthetic images by applying image
transformations on seed images, e.g., rotation, blurring, changing brightness, changing contrast, translation,
scaling, fog effect, horizontal shearing, and rain effect. Furthermore, DeepTest leverages neuron coverage as a
mechanism for partitioning the input space, and assumes that an image transformation should increase neuron
coverage, through which the erroneous behaviour can be detected. Overall, DeepTest succeeded using the
Udacity challenge dataset to detect over 1000 erroneous behaviours in the employed CNN model.

Apart from neuron coverage property, a line of research work has focused on adapting concepts from tra-
ditional software testing. DeepCover [67] proposed an adequacy criterion that investigates the changes of
successive pairs of layers adapting the Modified Condition/Decision Coverage (MC/DC) code coverage cri-
terion from traditional software testing. DeepCT [44] proposes a combinatorial testing approach, that simply
detects surprise via increase in coverage. In the same line of thinking, the surprise adequacy criterion for deep
learning (SADL) [36] enables quantifying the amount of surprise the input presents to DNNs with respect to
the training data.

Overall, test adequacy criteria is a growing field in DNN testing and verification. For a more in-depth review,
we refer interested readers to [83] which provides a comprehensive survey on DNN testing approaches. As a
final observation, the above-mentioned approaches could to a certain extent support the detection of erroneous
behaviour in DNN models. Existing DNN testing approaches are limited to neurons coverage criteria which
is not sufficient to explain the software internal states causing erroneous behaviour. Most of the existing
approaches focus only on constrained neuron properties and ignore the overall DNN model behaviour. Thus,
the relationship between the test set and the system decision-making process is not well investigated [36].
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3 DEEPKNOWLEDGE

3.1 INTENTIONS AND MOTIVATION

Most existing test adequacy criteria for DNN testing focus on the ratio of neurons, i.e., computational units,
that have been activated across the entire DNN model. Although this could reflect, to a certain extent, the
diversity of inputs provided during testing, these criteria are limited and not sufficient to explain the DNN
internal states causing erroneous behaviours. By focusing only on constrained neuron properties and ignoring
the overall DNN model behaviour, the relationship between the test set and the final prediction of the system
is uninformative [36] and the quantitative testing results are less objective.

In particular, DNNs typically encompass connections and/or neurons that are ‘unnecessary’ or ‘redundant’, and
have limited or no direct effect on the model’s final decision-making process. Accordingly, an input should be
considered diverse if it covers neurons that have a high impact on the model’s accuracy in real-world scenarios.
These neurons are core contributors in the DNN decision-making [19]. We argue that test adequacy criteria
should account for the DNN knowledge generalisation capabilities, i.e., identify and reason about neurons
that are key components of the DNN functionality and responsible for knowledge transfer to unforeseen input
examples.

3.1.1 Knowledge Generalization

Our approach is inspired by recent research in knowledge generalisation [53]. In particular, we leverage the
concept of out-of-distribution generalisation which is based on the idea that “Generalization is a crucial com-
ponent of learning a language ... so learners must be able to generalize to sentences that they have never
encountered before”. Our assumption is based on the fact that these ‘learners’, i.e., neurons, that are able
to generalise knowledge abstracted during self-supervised training, and apply it to a new domain without re-
training, e.g., in a zeroshot setting, are the core computational units within a DNN. Their ability to generalise
knowledge to new domains indicates that they are core units that highly contribute to the DNN final predic-
tion and accuracy during the deployment of the model. The next section details our definition of knowledge
generalisation-driven test adequacy criterion for DNN systems and its use for the systematic testing approach
we propose.

3.1.2 Addressing the Reality Gap

Another important limitation of applying DNNs in industrial production that we aim to tackle is the ‘reality
gap’. Despite its widespread use, the definition of the reality gap concept differs from one domain to another.
Concerning DNN models and their application in computer vision and robotics, the reality gap is a natural
result to the challenge of obtaining sufficient training data of high enough quality.

Researchers and ML practitioners mitigated this challenge by using simulation to augment the training/testing
datasets [8]. This practice has become more popular in recent years, but the gap between simulation and reality
is still a major issue. Transferring the knowledge learned by a DNN model in a simulated environment to the
real world is a real challenge that leads to erroneous behaviour when the model faces corner case inputs in the
real world.

In our approach, we propose to mitigate this issue by exploiting a ZeroShot dataset during the knowledge
Transfer Analysis phase. The rationale behind its use is that ZeroShot learning [77] enables us to analyse what
part of the knowledge gained during training the DNN can employ in a new domain without re-training or fine-
tuning. To this end, this part enables analysing the knowledge generalisation capabilities of the model in a
new domain. We simulate the real world through ZeroShot samples from datasets and classes which were not
observed during the training phase. The ZeroShot setting exposes the DNN model to unique samples similar
to a real world setting where the model can encounter unique and corner cases.
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Figure 5: High-level worklflow of the DEEPKNOWLEDGE approach.

At neuron level, the ZeroShot setting allows quantifying the neurons’ knowledge distributions - so called pref-
erence distributions later on - over input features. Neurons with certain statistical characteristics are considered
core components of DNN system execution in real-world scenarios, and should be used as a test adequacy cri-
terion.

3.2 THE PROPOSED APPROACH

DEEPKNOWLEDGE is a systematic testing approach for DNN systems. As shown in Figure 5, using a pre-
trained model and two sets of in-domain (ID) and out-of-domain (OOD) data (also referred to as out-of-
distribution data [79]), DEEPKNOWLEDGE analyses how the model builds and transfers knowledge abstrac-
tions under domain shift. Through this analysis, we establish a fundamental understanding of knowledge
generalisation at the level of individual neurons, and quantify the individual contribution of each neuron to this
process. Through additional filtering steps, DEEPKNOWLEDGE identifies a set of neurons, termed ’transfer
knowledge neurons’, that are considered core computational units of the DNN.

The next step in our approach is to apply an established fine-grained method for determining activation value
clusters that reflect the changes in neurons’ behaviour with respect to new inputs. The defined clusters of
the transfer knowledge neurons are then used to assess the coverage adequacy of the test set, similarly to the
method defined in DeepImportance [19].

3.2.1 Knowledge Transfer Analysis

Identifying the Transfer Knowledge (TrKnw) neurons across the DNN trainable layers is a key principle of
DEEPKNOWLEDGE. This analysis aims to identify neurons that are able to generalise knowledge abstracted
during training and apply it to a new domain without re-training/fine-tuning. These are core contributors to the
DNN’s behaviour, and, consequently, affect the accuracy of the prediction.

Knowledge Transfer Quantification The identification of TrKnw neurons, i.e., neurons capable of
transferring knowledge, is loosely inspired by recent research on quantifying knowledge change in DNN under
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Figure 6: Process for executing knowledge transfer analysis

domain shift at the level of individual neurons [60]. This approach is based on the activation maximization
explainability method [16], which allows identifying input instances that produce the highest activation for a
neuron, which are called ‘preferred’ inputs.

As shown in Figure 6, for this analysis we employ two different datasets, i.e., training samples that correspond
to In-Domain data, and ZeroShot samples that correspond to Out-Of-Domain data. These datasets are respec-
tively used to quantify feature preference distributions (yellow lines) over input features (e.g., image pixels for
CNN models) for both the training and ZeroShot stages. This is the knowledge quantification step that allows
identifying how the DNN model computational units, i.e., neurons, abstract/learn knowledge from the input
feature space.

In particular, we employ the Activation maximization method (cf. Section 2) to derive a representation for
features that neurons/filters in the neural network have learned during the training and ZeroShot stages. Then,
we turn these representations into probability distributions to easily measure the change/shift in the abstracted
knowledge by employing a statistical metric on the defined space of probability distributions at an individual
level, i.e., per neuron. Neurons able to achieve a certain threshold (that is empirically defined) of the statistical
measure are selected as transfer knowledge neurons; the remaining neurons are defined as unpreferred neurons.

Now, let’s formally explain this process. Given a trained DNN model D with |L| trainable layers, each layer
Li, 1 ≤ i ≤ L has |Li| neurons and the total number of neurons in D is S =

∑L
i=1 |Li|. Let also nij be the j-

th neuron in the i-th layer. When the context is clear, we use n ∈ D to denote any neuron that is a member of
D irrespective of its layer. Let X denote the input domain of D, representing either the in-domain (ID) or out-
of-domain (OOD) dataset, and xk ∈ X be the k-th concrete input from X (also termed input feature). Finally,
we use the function ϕ(xk, n) ∈ R to signify the output of the activation function of neuron n ∈ D.

Given the input set X , Axk
= D(xk) =

(
ϕ (xk, n11) , . . . , ϕ

(
xk, nLL|LL|

))
enables calculating the activation

trace of an input xk ∈ X . Given this information, we signify with nxk = argmax((D(xk))) the (‘preferred’)
maximally activated neuron and with αxk = max (D(xk)) the corresponding maximum activation value.

Applying these steps, we can construct the matrix M = [(xk, nxk , αxk)]∀xk∈X . We denote the r-th entry of M
using mr =

(
xk,r, n

xk,r , αxk,r
)
.

Adopting the definition of preferred input distribution per neuron [60], we calculate the probability distribu-
tion by aggregating the maximum activation values αxk for each neuron nij over its maximally activated input
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Algorithm 1 Knowledge Transfer Quantification
1: function KNOWLEDGETRANSFERQUANTIFICATION(D, X)
2: M ← ∅
3: for xk ∈ X do ▷ X = ID or OOD
4: Axk

= D(xk) ▷ activation trace
5: nxk = argmax(Axk

)
6: αxk = max(Axk

)
7: v ←

(
xk, nxk , αxk

)
▷ single input’s activation row vector

8: M =M ∪ v ▷ neuron preferred inputs matrix
9: end for

10: P ← ∅
11: for n ∈ D do ▷ using n instead of nij for simplification
12: A(n)← ∅
13: for xk ∈ X do
14: Mxk

= EXTRACTFROMM(xk, n)
15: µxk

= 1

|Mxk |
∑

(x,n,α)∈Mxk
α

16: A(n) = A(n) ∪ (xk, µxk
)

17: end for
18: Pn = {(xk, pk)}xk∈X ▷ using (1) and (2)
19: P = P ∪ Pn

20: end for
21: return P
22: end function

features xk. Accordingly, A(nij) = {(xk, µxk
) | ∀xk ∈ X : Mxk

=
⋃

1≤r≤|M |(xk, nij , α
xk,r) • µxk

=
1

|Mxk |
∑

(x,n,α)∈Mxk
α} gives the discrete input activation distribution per neuron where µxk

is the mean max-

imum activation of input xk.

Using A(nij), we can then calculate each neuron’s nij normalised probability distribution per xk as:

Pnij = {(xk, pk)}xk∈X (1)

with pk being the activation probability of an input feature xk calculated as follows:

pk =
µxk

sµ
(2)

where sµ =
∑

(xl,µxl
)∈A(nij)

µxl
is the sum of its feature activation means.

Finally, P describes the per-neuron activation distributions defined as P = Pnij , · · · , PnLL|LL|
over the whole

input set.

Algorithm 1 shows the high-level process DEEPKNOWLEDGE employs for quantifying knowledge change in
model D. Given X as the input set, each neuron n is expressed as a distribution over preferred inputs. A
matrix M of neurons input max activations is produced, that we aggregate later to express each neuron as a
probability distribution over maximally activated inputs as defined in equations (1) and (2).

3.2.2 Transfer Knowledge Neurons Selection

To identify the transfer knowledge (TrKnw) neurons we quantify the shift/change in the abstracted knowledge
for each neuron nij from the ID dataset to the OOD dataset. We perform this activity using the symmetric
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divergence measure Hellinger Distance (HD) between the discrete activation distribution probabilities over
both datasets p = P ID

nij
and q = POOD

nij

HD(p, q) =
1√
2

√√√√ X∑
j=1

(
√
pj −

√
qj)2 (3)

HD is used to measure the per-neuron knowledge change caused by different model training stages (i.e., pre-
training using ID and ZeroShot learning using OOD datasets). We also quantify for each neuron the total
number of unique preferred inputs l = |X| is the number of distinct xk occurring in X . l enables us to
quantify the knowledge diversity for each neuron, with n being selected if l is greater than a given threshold
(typically 0). This condition enables to eliminate neurons whose Hellinger distance is low but do not have
many preferred inputs.

The use of Hellinger distance allows us to analyse knowledge transfer as a shift between the ID and OOD
distributions. Given this measure of distribution shift, we define two types of neurons based on the knowledge
shifted per neuron:

• Preferred neurons which have a low Hellinger distance entailing that the neuron is able to apply its
knowledge abstracted during pre-training stage to the new domain (OOD data) without being fine-
tuned to do so

• ‘Gained’ neurons which have a high Hellinger distance between p = P ID
n and q = POOD

n . This tell us
that the neuron has abstracted new knowledge from the new domain inputs without being fine-tuned.

An empty distribution over one of the domains, i.e., P ID
n = 0 or POOD

n = 0, results in an invalid HD value.

Algorithm 2 shows the high-level process to express a neuron as a probability distribution over maximally
activated input Pn. Quantifying differences between discrete input preference probability distributions P ID

n

and POOD
n of neuron n is achieved using the Hellinger distance divergence HD.

We begin by performing the Knowledge Transfer Quantification step using Algorithm 1 (lines 3 and 4). This
quantification enables expressing each neuron as a probability distribution over maximally activated features.
Given this information for the ID and OOD datasets, we perform the Hellinger distance calculation according
to equation (3) and if a given threshold (experimentally identified) is exceeded the neuron is added to the list
of candidate neurons capable of transfer knowledge. In the final step, we sort these candidate neurons based
on their distance and return the top z (given as a parameter to the algorithm).

Although we useHD, our approach is generic and can support different divergence metrics, including Wasser-
stein distance [73], Kolmogorov–Smirnov [7] and Jensen–Shannon divergence [49]. We emphasise the impor-
tance of using symmetric measures of distance as they have the advantage of providing a unique interpretation
of the knowledge shift, i.e., distance(P ID

n ||POOD
n ) = distance(POOD

n ||P ID
n ), while also requiring less com-

putation time than asymmetric divergence measures such as Kullback-Leiber [31].

3.2.3 Knowledge Coverage Estimation

To increase our confidence for the robust DNN model D behaviour, we assess how well a test set exercises
the set of Transfer Knowledge neurons identified previously. The main premise we adopt here is that inputs
that are semantically similar, i.e., having similar features, generate activation values with a similar statistical
distribution at the neuron-level [19, 46]. Essentially, these combinations are triggered by the training input set
on the most influential neurons of the DNN system, i.e., TrKnw neurons (cf. Section 3.2.1). Accordingly, each
combination of cluster reflects different knowledge abstracted during the training phase, and we can assess the
knowledge diversity of the test set by assessing if it adequately covers these combinations.

Thus, we adopt the combinatorial neuron coverage method employed in [19] to first iteratively cluster the vector
of activation values of each TrKnw neuron from the training set. Then, given a set of inputs, we measure
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Algorithm 2 Transfer Knowledge Neurons Selection
1: function TRKNWNEURONSSELECTION(D, ID, OOD,HDthr, z)
2: TK ← ∅
3: P ID = KNOWLEDGETRANSFERQUANTIFICATION(D, ID)
4: POOD = KNOWLEDGETRANSFERQUANTIFICATION(D, OOD)
5: for n ∈ D do
6: HDn = CALCULATEHD(P ID

n , POOD
n ) ▷ cf equation 3

7: if HDn < HDthr then
8: TK = TK ∪ {n}
9: end if

10: end for
11: TKz = TOP(TK, z)
12: return TKz

13: end function

the number of combinations this set is able to trigger over the combinations of activation value clusters of
TrKnw neurons. Given that the cluster combinations of activation values generated correspond to semantically
different features of the input set, this combinatorial analysis could be used to assess the knowledge diversity
of the test set.

Formally, we first determine regions within the TrKnw value domain that are central to the DNN system
execution, i.e., clusters of activation values using the k-means clustering algorithm [41]. Clustering enables
the reduction of the dimensionality of neuron activation values. Subsequently, the Silhouette index [61] is used
to reinforce the clustering output.

Silhouette is an internal clustering validation index that computes the goodness of a clustering structure without
external information, so it helps to determine the optimal number of clusters.

The Silhouette score for c ∈ N+ clusters is defined as follows:

Sn
c =

1

|X|

X∑
x=1

B (x)−A (x)

max (B (x) , A (x))
(4)

where A (x) is the intracluster cohesion given by the average distance of activation value ϕ (x, n) to all other
values in the same cluster, and B (x) is the inter-cluster separation calculated as the distance between ϕ (x, n)
and activation values in its nearest neighbour cluster.

Next, we measure the degree to which a test set X covers the clusters of TrKnw neurons, by evaluating the
combinations of activation value clusters triggered by inputs x ∈ X . Thus, having the set of clusters extracted
and optimized, we identify the vector of TrKnw neurons cluster combinations (TCC) as follows:

TCC =
∏

n ∈ TKz

{Centroid (ψn
i | ∀1 ⩽ i ⩽ |ψn|)} (5)

where the Centroid(ψn
i ) measures the centre of mass of the i-th cluster for the n-th TrKnw neuron. For more

details on how the clusters are extracted and ψin is determined please refer to the DeepImportance paper [19].

Finally, given the input set X , the DEEPKNOWLEDGE coverage is computed as the ratio of TCC covered by
all x ∈ X over the size of the TCC set as follows:

ScoreKnw =

∣∣∣{TCC(i)|∃x ∈ X : ∀V j
n ∈ TCC(i) •min d

(
ϕ (x, n) , V j

n

)}∣∣∣
|TCC|

(6)
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TCC(i) is covered if there is an input x for which the Euclidean distance d
(
ϕ (x, n) , V j

n

)
between the

activation values of all TrKnw neurons n ∈ TKz and the i-th neuron’s clusters centroids is minimised.

Overall, the calculated coverage score ScoreKnw quantifies if the combinations of activation value clusters
of TrKnw neurons have been covered adequately by the test set. A higher ScoreKnw entails a knowledge-
diverse input set that exercises different combinations of Trknw neurons clusters. Thus, it helps assessing how
knowledge diverse the test set inputs are.
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4 EXPERIMENTAL STUDY

In this section, we describe the experimental study designed to showcase DEEPKNOWLEDGE’s usefulness for
analysing and quantifying knowledge transfer in DNN, and its effectiveness in using this analysis as a test
adequacy criterion. We experimentally validate DEEPKNOWLEDGE using the following research questions.

4.1 RESEARCH QUESTIONS

1. RQ1 – Knowledge Generalisation: Is DEEPKNOWLEDGE capable of capturing the most influ-
ential neurons of a DNN system? This research question is used to evaluate the selected transfer
knowledge neurons’ ability to generalise the abstracted knowledge to a new domain. Consequently, we
aim to verify whether the selected neurons are core contributors to the decision-making process of DNN
under domain shift, and that DEEPKNOWLEDGE can outperform a strategy that selects such neurons
randomly.

2. RQ2 – Hyper-parameters Sensitivity: Does the selection of hyper-parameters used in DEEP-
KNOWLEDGE have any impact on how accurately DEEPKNOWLEDGE reflects the behaviour of
the DNN systems? As shown in Figure 5, the computation of DEEPKNOWLEDGE coverage relies on
a filtering step that uses a set of hyper-parameters including: (i) the percentage of knowledge transfer
neurons used denoted by Top − N ; (ii) the feature length threshold, i.e., the number of input features
that maximally activated the Trknw neurons; and (iii) the Hellinger distance range.

3. RQ3 – Effectiveness: Can knowledge transfer neurons be effectively used as an adequacy cri-
terion? Based on state-of-the-art studies [83], effective coverage criteria for DL systems should be
capable of identifying misbehaviours (i.e., failing test cases). Hence, this question aims to study how
effective is DEEPKNOWLEDGE in identifying misbehaviours in DNN systems. To this end, we evaluate
whether it is possible to detect adversarial examples based on DEEPKNOWLEDGE’s coverage values.
We expect adversarial examples to cause different behaviours in DNN systems.

4. RQ4 – Correlation: How is DEEPKNOWLEDGE coverage correlated to existing coverage criteria
for DL systems? The DEEPKNOWLEDGE coverage aims mainly to detect input diversity and its ability
to cover the main DNN features. To evaluate this, we need to evaluate the consistency of DEEPKNOWL-
EDGE with existing coverage criteria against different input sets. To this end, we evaluate the correla-
tion between DEEPKNOWLEDGE and state of the art approaches, including DeepImportance (IDC) [19],
Neuron Coverage (NC) [57], k-Multisection Neuron Coverage (KMNC) [45], Neuron Boundary Cov-
erage (NBC) [45], and Strong Neuron Activation Coverage (SNAC) [45].

4.2 IMPLEMENTATION

All experiments in our study were conducted on a high-performance computer running a cluster GPU with
NVIDIA 510.39. We implement the proposed DEEPKNOWLEDGE approach and the knowledge transfer neu-
ron analysis method based on the state-of-the-art framework, open-source machine learning framework Keras
(v2.2.2) [26] with Tensorflow (v2.6) backend. To allow for reproducibility, our full implementation and evalu-
ation subjects are available on Github2. In the following section, we report the full experimental results.

2https://github.com/sesame-project/MLTesting
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Table 1: Datasets and DNN models used in our experiments

Dataset Description DNN model #Layers Out-Of-Domain Data set

SVHN Street View Hous Numbers LeNet 5 7 EMNIST: hand written digits and letters

MNIST Digits 0∼9 LeNet 1 5 Fashion MNIST: Zalando’s article

CIFAR-10 Colored Images with 10 classes ResNet 18 18 CIFAR-100 images with 100 classes

4.3 EXPERIMENTAL SETUP

We extensively evaluate DEEPKNOWLEDGE on four different DNN-based systems using: (i) the original test
sets, and (ii) adversarial examples generated by four attack strategies. This section describes the studied DL
systems and the input generation methods.

4.3.1 Datasets and DNN-based Systems

The proposed method for extracting knowledge transfer neurons is based on analysing the DNN knowledge
generalisation process under domain shift. The method, as explained in Section3, estimates the change in
knowledge abstraction from pre-training to ZeroShot stages [55] using, respectively, in-domain-data ID and
out-of-domain OOD data for each DNN.

For convenience, we did not re-train the used DNN model to calculate the ‘preferred input distribution’ and
estimate the knowledge abstraction per neuron. Instead, we quantify the abstracted knowledge during the
validation phase over a relatively smaller dataset compared to the training set. This step helps reduce the
computational cost of DEEPKNOWLEDGE and allows its application easily in low-resource scenarios. As
listed in Table 1, this methodology leads to the use of six widely adopted datasets.

Overall we extensively evaluate DEEPKNOWLEDGE on: MNIST (28x28 grayscale images of handwritten
digits), SVHN (32x32 coloured images of real-world Street View House Numbers), and CIFAR-10 (32x32
coloured images classified in 10 classes) as in-domain data, and three respective out-of-domain datasets: Fash-
ion MNIST (a dataset of Zalando’s article in format of 28x28 grayscale images ), EMNIST (Extension of
MNIST that contains both handwritten digits and letters in the format of 28x28 pixel images), CIFAR-100
(dataset of 32x32 colour images with 100 different classes). These datasets have been selected as OOD based
on their labelled classes that have to be unseen in the corresponding in-domain datasets.

Then, for performing a comprehensive assessment of the DEEPKNOWLEDGE approach, we adopted DNN-
based systems used in related research [83]. The majority of employed DNN models are convolutional DNNs,
and these models have different architectures and are trained with different datasets, which make them suitable
for the extensive analysis on the effectiveness of TrKnw neurons as an adequacy criterion. Overall, we study
three DNNs from the Le-Net family, i.e., LeNet-1, LeNet-4 and LeNet-5 [38], and the ResNet18 model [69]
trained on the CIFAR-10 dataset3.

4.3.2 Adversarial Inputs

We adopt four different techniques to evaluate DEEPKNOWLEDGE through adversarial examples, i.e., Fast Gra-
dient Sign Method (FGSM) [42], Basic Iterative Method (BIM) [24], Momentum Iterative Method (MIM) [15],
and Projected Gradient Descent (PGD) [14]. Adversarial inputs are crafted carefully using the Cleverhans

3https://www.cs.toronto.edu/ kriz/cifar.html
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Python library [56] to generate perturbed examples based on given original and benign inputs. For each of the
original test sets (SVHN, MNIST and CIFAR-10), we generate an adversarial set with similar size.

4.3.3 DEEPKNOWLEDGE Configurations

Naturally DL models are extremely sensitive to hyper-parameters. Thus, extensive hyper-parameters analysis
was carried out for selecting TrKnw neurons which can provide us with more confidence in deploying these
TrKnw neurons as coverage criteria.

More specifically, the granularity with which DEEPKNOWLEDGE is specified depends on HD values and
the number of selected Trknw neurons n ∈ {5, 6}. Concerning the layers, we always consider the model’s
trainable layers as subject layers from which we extract the transfer knowledge (TrKnw) neurons.

When running the experiments to compare DEEPKNOWLEDGE against state-of-the-art coverage criteria for
DNN systems, we used for each approach the hyper-parameters recommended in its original research paper.
For instance, for NC [57], we set the neuron activation threshold to 0.75. For TKNC approach the hyperparam-
eter k was set as k = 3 and for KMNC approach k = 1000. For NBC and SNAC, we set as the lower bound
the minimum activation value encountered in the training set, and the maximum value for the upper bound.
More details on these parameters will be covered in the following sections. Also to facilitate the replication of
our findings we make available the implementation of all those metrics on the project’s Github repository.
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5 RESULTS AND DISCUSSION

RQ1: KNOWLEDGE GENERALISATION

We employ this question to assess if the neurons identified during Transfer Knowledge analysis have a signifi-
cant role in decision-making, and thus whether they could be used as a test adequacy criterion.

Since identifying the knowledge transfer neurons within the DNN model is a key principle of DEEPKNOWL-
EDGE, we assess if the neurons identified during neuron-knowledge transfer analysis (cf. Algorithm 2) have
indeed a significant role in decision-making.

To answer this research question, we employ the DEEPKNOWLEDGE-based model retraining strategy. This
strategy aims to augment the training set of a DNN using a set of selected inputs generated by the DEEP-
KNOWLEDGE approach. Then, we deploy these inputs to retrain the DNN and evaluate if they help improving
the DNN’s accuracy.

As explained in Algorithm 3, we select Transfer Knowledge neurons for the SVHN, MNIST and CIFAR-10
datasets, respectively. As shown in line (6), we select an equivalent number of neurons using a random-
selection strategy. We deploy these TrKnw neurons (with LowHD, then HighHD) for each dataset to gener-
ate respectively knwLow and knwHigh sets. knwLow and knwHigh are each a sample set of size 6K, 3K and
5K, respectively for MNIST, SVHN and CIFAR-10. The next step is to augment the original training data of
each DNN model (i.e., LeNet1, LeNet5, ResNet18) with the DEEPKNOWLEDGEbased inputs, i.e., knwsetLow
and knwsetHigh for neurons with LowHD and HighHD.

Similarly, we generate an equivalent number of inputs Non-Knw Set using the randomly selected neurons. We
make sure that the random set inputs are not included in the knwLow or knwHigh sets. A fourth set is generated
from adversarial inputs. Finally, we retrain the DNN using the four generated sets separately for 10 epochs. We
measure the resulting accuracy, with the assumption that both sets knwLow and knwHigh are able to improve
the DNN’s accuracy.

Algorithm 3 DEEPKNOWLEDGE based retraining strategy
1: Input:D, X ,W , T /*X: test set*/
2: Generate κ/ κ ⊂ X
3: /* κ: inputs that maximally activate the transfer knowledge neuronsW */
4: Generate γ/ κ ∩ γ = ∅
5: Generate Adversarial inputs ϱ
6: Check |γ| == |κ| == |ϱ|
7: repeat
8: Augment Training set T ′

= T + κ
9: Retrain D with T ′

10: D ← D
′

11: Measure Accuracy
12: A ← Accuracy(D

′
)

13: until γ, κ and ϱ are processed
14: Return A

Our experimental results comparing the three training set augmentation strategies, i.e., DEEPKNOWLEDGE

using low HD values (‘DEEPKNOWLEDGE-Low’), and high HD values (‘DEEPKNOWLEDGE-High’), random
selection (‘Random’), and adversarial inputs (‘Adversarial’) are shown in Table 2 and Figure 7.

Figure 7 reports the detailed training accuracies of the different augmentation strategies throughout 10 epochs.
Clearly, the DEEPKNOWLEDGE-Low strategy helped achieving a better accuracy overall for the LeNet5 model.
For the LeNet1 and ResNet18 models, the results of DEEPKNOWLEDGE-Low, DEEPKNOWLEDGE-High and
Random are very close.
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(a) LeNet1

(b) LeNet5

(c) ResNet18

Figure 7: Improvement in accuracy of LeNet1, LeNet5 and ResNet18 when the training set is aug-
mented with the same number of inputs generated by random selection, adversarial testing, and
DEEPKNOWLEDGE (with Low and High HD).
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Table 2: DEEPKNOWLEDGE-based retraining dataset effect on model accuracy
**values between brackets shows improvement compared to the initial accuracy values

DNN Model Dataset Initial Accuracy Knw_set ‘Low’ #Knw_set ‘High’ Random set Adversarials

LeNet1 MNIST 97,9% 100% (+2.1) 99.77% (+1.8) 97.06% (-0.3) 19.84 %(-79.06)

LeNet5 SVHN 91.09% 92.69% (+1.6) 92.05% (+0.15) 91.97% (+0.88) 19.99 % (-71.1)

ResNet 18 CIFAR-10 93% 100% (+7) 99.80% (+6.2) 99.74% (+6.74) 20.08 % (-72.92)

The accuracy of each of the models after retraining with a separate test set shows that DEEPKNOWLEDGE-
based training set augmentation achieved on average 1.5% more accuracy improvement over random/adversar-
ial augmentation. Although this improvement is not very significant, it shows that both knwLow and knwHigh

helped to fix the erroneous behaviours and therefore improve the accuracy. Notice that the sizes of these data
sets are limited, e.g., only 3K instances have been generated as knwHigh for the CIFAR-10 dataset. Since
these inputs were selected based on the DEEPKNOWLEDGE approach, we have insights that TrKnw neurons
are sensitive to relevant input features. We conclude that DEEPKNOWLEDGE is able to detect neurons that are
core contributors to the decision-making process. This information can be used to adjust the DNN training
phase by augmenting the training dataset.

RQ2: HYPER-PARAMETER SENSITIVITY

Since DEEPKNOWLEDGE relies on measuring the knowledge change under domain shift, we investigated how
DEEPKNOWLEDGE varies for different divergence values, i.e., Hellinger Distance HD range and different
number of selected transfer knowledge neurons (TrKnw). To evaluate the sensitivity of our approach to these
hyper-parameters, we executed a set of experiments, where the granularity with which the DEEPKNOWL-
EDGE’s coverage is specified depends on the percentage of TrKnw neurons and the feature length of each of
them. Experiments are run on different publicly-available datasets and prevalent DNN models as described in
Table 1.

To help us understand the effect ofHD on DEEPKNOWLEDGE values, we measure our coverage with different
sets of neurons where each set belongs to a different HD values range, i.e., High HD values and Low HD
values. Table 3 shows the coverage results for a number of selected TrKnw neurons n ∈ {5, 6} across all
trainable layers for the three DNN systems. To analyse the effectiveness of DEEPKNOWLEDGE with different
hyperparameters, the TrKnw neurons are being ordered by their HD values (i.e., High HD and Low HD). Then,
we have selected n neurons with the lowest HD values (preferred neurons) (i.e., on average HD ∈ [0, 0.5]) to
be considered as neurons with Low HD. We also select the top n neurons with the highest HD values (gained
neurons) (i.e., on average HD ∈ [0.8, 0.9]) and label them as neurons with High HD. Note that these ranges
differ from one dataset to another.

First, as shown in Table 3, we observe that DEEPKNOWLEDGE values decrease when the analysis is performed
on a bigger number of neurons. For instance, in ResNet18 and the CIFAR-10 test set, the DEEPKNOWLEDGE

coverage value decreases from 14.06% to 10.16% for n = 5 and n = 6, respectively. We observe the same
behaviour with LeNet1 and the MNIST test set, as well as with LeNet5 and the SVHN test set. Although the
growth in n size goes by 1 at a time, the shift on the DEEPKNOWLEDGE coverage value is still notable.

This can be explained by the fact that the combinations of TrKnw neurons clusters increases exponentially as
n increases (e.g., for CIFAR-10 we have [64] for n = 5 and [288] for n = 6). This can also explain the Knw
value for the MNIST test set, where the coverage behaviour is not consistent with the rest of the datasets for
HighHD. In fact, the Knw score goes from 12.50%, 17.19% to 13.67% for n = 4, 5, 6, respectively.
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Table 3: Average (std dev) coverage results for DEEPKNOWLEDGE with different hyper-parameters
configurations.
* Low HD (Preferred neurons) and High HD (gained neurons)

SVHN+LeNet5 MNIST + LeNet1 CIFAR-10 + ResNet 18

# neurons 4 5 6 4 5 6 4 5 6

Low HD∗ 100% 26.56% 13.67% 21.88% 14.06% 4.69% 18.75% 14.06% 10.16%

High HD∗ 62.50% 37.50% 18.75% 12.50% 17.19% 13.67% 6.25% 3.65% 1.22%
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ResNet18
Gained neurons

ResNet18
Preferred neurons

LeNet1
Gained neurons

LeNet1
Preferred neurons

LeNet5
Gained neurons

LeNet5
Preferred neurons

Figure 8: Comparing the average Hellinger distance HD values between preferred (Low HD) and
gained (High HD) neurons for different datasets.

Indeed, if we take a closer look at the combinations of TrKnw neurons clusters we can see that they go from
[8, 64] for n = 4, [22, 128] for n = 5 to [35, 256] for n = 6. As we can observe, each of the added neurons has
doubled the combinations of clusters. However, the number of covered combinations is still logarithmic which
explains the shift in DEEPKNOWLEDGE’s coverage for the MNIST test set.

Similarly to the number of neurons n, we observe a big difference in DEEPKNOWLEDGE coverage values
when varying the HD, i.e., select neurons with LowHD, then the same size of neurons with HighHD. For
instance, for ResNet18 and the CIFAR-10 test set, we notice that the Knw score goes from 100% to 62.5%
with n = 4 for LowHD to HighHD, respectively. To investigate further the reasons behind this big shift we
looked closer to the HD values of each of the n selected TrKnw neurons as shown in Figure 8 and we plot the
average HD for each dataset. We can notice that the average HD between the lowest values and highest values
in each dataset is high. For instance, for the CIFAR-10 dataset, the average (std) HD equals 0.52 for n = 10
neurons with the lowest HD, and std = 0.99 for n = 10 neurons with the highest HD.

One important observation is that DEEPKNOWLEDGE coverage values for the MNIST dataset are on average
similar for both LowHD (preferred) neurons andHighHD (gained) neurons, which are opposite to the values
for the SVHN and CIFAR-10 datasets. If we take a closer look to the HD values for both preferred and gained
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neurons sets for MNIST (cf. Figure 8), we can notice that medians for preferred (gray boxplot) and gained
(red boxplot) are very close, i.e., 0.53 and 0.64, respectively. First, this means both sets of neurons are very
similar in terms of HD values and as test adequacy criteria their proprieties are the same. As a consequence,
DEEPKNOWLEDGE values are very close for both neurons sets. This shows that DEEPKNOWLEDGE values
are highly correlated with HD values.

Based on these results, we answer RQ2 that DEEPKNOWLEDGE is sensitive to the selection of HD values and
the number of selected neurons n it is computed from. In the following experiments, we investigate further the
effect of HD on the effectiveness of DEEPKNOWLEDGE’s testing criterion.

RQ3: Effectiveness of Knowledge Transfer Neurons as adequacy criteria

The effectiveness of TrKnw as an adequacy criterion is tested through the test of its sensitivity to adversarial
inputs and how effective it can be in detecting misbehaviours in test sets with inputs semantically different than
the original test inputs.

By implementing state-of-the-art adversarial approaches [15, 24] multiple sets of adversarial inputs are being
crafted. Given that the generated adversarial inputs are semantically different, we expect an increase in the
computed DEEPKNOWLEDGE coverage similarly to state-of-the-art testing criteria [57, 19, 71].

Our results reported in Table 5 (rows Knw 5 and Knw 6) show the average Knw coverage results for n ∈ {5, 6}
across the three augmented test sets MNIST, SVHN and CIFAR-10 with four different adversarial attacks
(FGSM) [42], (BIM) [24], (MIM) [15], and (PGD) [14]. Overall, the results shows the consistency between
the DEEPKNOWLEDGE’s behaviour with the state-of-the-art coverage criteria based on neuron property in
response to perturbed inputs using adversarial attacks. For instance, the DEEPKNOWLEDGE values have a
notable increase in values with LeNet1 and MNIST once adversarial examples are introduced to the test set.
For example, DEEPKNOWLEDGE coverage with original inputs is 13.67 and reaches up to 85.93 when FGSM
examples are introduced. Considering CIFAR-10 and ResNet 18, the DEEPKNOWLEDGE values still increase
when adding adversarial examples but with less margins, e.g., with n = 6, DEEPKNOWLEDGE (denoted Knw
in the Table) equals 1.22 (S0), 1.4 (FGSM), 1.56 (MIM), 1.4 (BIM). It is important to remind the reader that
for each attack, we augmented the data using a set of adversarial examples with similar size to the original
input set S0.

DEEPKNOWLEDGE is also consistent with its own behaviour and decreases with the increase of n even when
adversarial examples are introduced. An important observation is that DEEPKNOWLEDGE with preferred
neurons, i.e., lowHD, is less sensitive to adversarial attacks. For instance, for the MNIST dataset with n = 5
the DEEPKNOWLEDGE value is equal to 14.06 for S0 and 28.12 for all adversarial examples FGSM, BIM,
MIM, and PGD. Similarly, for CIFAR-10 and SVHN the coverage values did not show a big shift in behaviour.

We notice that DEEPKNOWLEDGE saturates quickly when deploying preferred neurons with lowHD value as
a test adequacy criterion. We investigated this behaviour further by looking at HD values for preferred neurons
in the ZeroShot domain (i.e., OOD data) and adversarial testing. Table 4 shows the median of HD calculated
between OOD data and adversarial data following equation (3), i.e., HD= HD(PADV

n , POOD
n ), with ADV

denoting data generated using one of the adversarial techniques (FGSM, BIM, MIM, PGD).

For all three DNN models, the median of HD values between ZeroShot and adversarial datasets is mini-
mal. For instance, for LeNet1, the median of HD between FGSM data and ZeroShot equals 1.80, while for
ZeroShot and MIM data it is equal to 2.34. As previously discussed, the preferred neurons with LowHD
distance are able to transfer the learnt knowledge to a new domain without huge changes in their activation dis-
tributions. Having the same behaviour within the adversarial testing, we can conclude that preferred neurons
are less sensitive to adversarial attacks. Thus, preferred neurons are less adequate to be used as a test adequacy
criterion.
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Table 4: Median values of HD for ‘preferred’ neurons between ZerShot and Adversarial Testing

LeNet1 + MNIST LeNet5 + SVHN ResNet18 + CIFAR-10

preferred neurons gained neurons preferred neurons gained neurons preferred neurons gained neurons

Zeroshot/FGSM 0.2017 0.535 0.208 0.966 0.252 0.995

Zeroshot/BIM 0.191 0.684 0.180 0.882 0.202 0.992

Zeroshot/MIM 0.204 0.6447 0.234 0.768 0.211 0.989

Zeroshot/PGD 0.221 0.6225 0.199 0.815 0.179 0.988

RQ4: Correlation

In these experiments, we assess how much DEEPKNOWLEDGE is correlated to existing coverage criteria for
DNN systems. We evaluate this correlation in response to semantically diverse input sets. We control the input
diversity by cumulatively adding inputs from the test dataset (i.e., 25%, 50%, 75% and 100%). Hence, we
report results on how state-of-the-art coverage criteria behave across the three tests sets SVHN, MNIST and
CIFAR-10 in Table 6 versus DEEPKNOWLEDGE coverage for the different test sets sizes.

We have noticed that DEEPKNOWLEDGE with HighHD values, i.e., average HD ∈ [0.8, 0.9], is consis-
tent with the state-of-the-art coverage criteria based on neuron activation/property values such as NC [57],
KMNC [45] and NBC [45]. Overall the DEEPKNOWLEDGE’s values increase with the increase of test set size,
although for some datasets this shift in value is very minimal. For instance, with n = 6 and S0 is MNIST, the
DEEPKNOWLEDGE moves from 12.89 to 13.28 when cumulatively adding 25% of the test set and reaches its
maximum 13.67 for the MNIST test set as soon as we reach 75% of its size, i.e., |S0| = 10K.

Another interesting observation is that DEEPKNOWLEDGE values with TrKnw adequacy criterion selected
based on lowHD has a consistent behaviour where it reaches its maximum with only 25% of S0. This can be
noticed with three datasets and could be mitigated with using a relatively bigger size of n = 6 (i.e., number of
TrKnw neurons). For instance, DEEPKNOWLEDGE increases with±0.7, i.e., 9.38 to 10.16 when cumulatively
adding 25% of the CIFAR-10 test set inputs when n = 6. A similar behaviour is observed with the SVNH
dataset. We notice an almost similar behaviour with TKNC and NC coverage as well.

By taking a closer look at our results, we noticed that the number of inputs that covers unique combinations
of clusters of TrKnw neurons is very limited. Most of the test set inputs are covering the same combinations
which leads to a low DEEPKNOWLEDGE coverage value that stagnates with only 25% of S0 in the case of
MNIST. This behaviour confirms that the selected TrKnw neurons, based on low Hellinger distance and a
lowHD between In-domain and Out-of-Domain datasets, signify a very fine-grained behaviour for the DNN
and may not be useful a test adequacy criterion.

This adequacy criterion analyses the effect of each test set input and assesses it based on its uniqueness and
ability to activate the specific combinations of TrKnw neurons. In other words, the TrKnw test adequacy
criterion assesses an input based on the unique knowledge (i.e., features) that can be abstracted from it by
the transfer knowledge neurons. Thus, we can conclude that DEEPKNOWLEDGE’s coverage is able to test the
diversity of input, in particular, the diversity of knowledge abstracted from the test set.

At a higher level, DEEPKNOWLEDGE coverage shows similar behaviour to state-of-the-art coverage criteria
for DNN systems. Thus, we can conclude that there is a positive correlation between them.
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Table 5: Effectiveness of DEEPKNOWLEDGE coverage (denoted Knw) versus other metrics. (‘+X’
means adding x-based adversarial inputs to the original test set S0)

ResNet18 LeNet1

S0 FGSM MIM BIM PGD S0 FGSM MIM BIM PGD

Knw (n=5) 2.43 3.12 3.12 4.68 4.687 17.19 89.06 85.93 85.93 84.37

Knw (n=6) 1.22 1.4 1.56 1.4 1.41 13.67 85.93 83.59 84.37 81.25

NC 74.28 77.85 75.71 77.85 79.28 20.05 23.8 23.8 23.8 23.8

KMNC 62.7 81.1 71.6 80.5 64.9 69.2 71.5 79.6 76.1 74.3

NBC 15.1 46.5 45.3 31.3 15.1 22.85 40.7 46.2 21.5 42.4

SNAC 13.8 71.3 83.2 18.92 21.1 18.6 53.4 37.2 23.0 19.0

TKNC 74.741 74.741 92.14 92.14 92.14 88.8 91.8 91.8 91.8 91.8

5.1 THREATS TO VALIDITY

Construct Validity. The primary threat to internal validity of our methodology is the correctness of the
studied DNN models, as well as the used datasets. We mitigate these construct validity threats using widely-
studied datasets, i.e., SVHN [64] MNIST 4, CIFAR-10 and CIFAR-100 5, and Fashion MNIST [78]. Also,
we employed publicly-available architectures and pre-trained models that achieved competitive performance
results including LeNet1 and LeNet5 [80], and ResNet18 [69]. Further, we mitigate threats to the process of
identifying core units responsible for the DNN prediction, i.e., TrKnw neurons (cf. Algorithm 2) by adapting
the state-of-the-art approach on analysing knowledge generalisation under domain shift [34].

Internal Validity. The primary internal threats that could introduce bias to DEEPKNOWLEDGE is the com-
putation of the coverage value. To mitigate this threat, we design a study based on specific set of research
questions to evaluate DEEPKNOWLEDGE. We first, illustrate the effectiveness of the DEEPKNOWLEDGE se-
lection methodology of TrKnw neurons (core contributors to DNN decision) then its effectiveness as a test
adequacy criterion in RQ1 and RQ4, respectively. For RQ4, we illustrate DEEPKNOWLEDGE’s effective-
ness by augmenting the original test sets with numerically diverse inputs. RQ3 was also designed to illustrate
the effectiveness of DEEPKNOWLEDGE to detect adversarial examples and confirmed its positive correlation
with state-of-the-art coverage criteria for HighHD as a hyperparameter. The performance of our approach is
also demonstrated through RQ2 for different values of TrKnw neurons n ∈ {4, 5, 6} and Hellinger Distance

4http://yann.lecun.com/exdb/mnist/
5https://www.cs.toronto.edu/ kriz/cifar.html
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HD ∈ {LowHD,HighHD}. Thus, we illustrate the granularity of DEEPKNOWLEDGE coverage, which
increases exponentially with higher n values.

External Validity. Threats to external validity have been mostly mitigated by developing DEEPKNOWL-
EDGE on top of the open-source frameworks Keras and Tensorflow. Also, we used several trained DNN models
and publicly-available datasets (SVHN, MNIST, Cifar-10 and Fashion MNIST). As a part of our future work,
more experiments are planned to validate the performance of DEEPKNOWLEDGE for TrKnw neurons extrac-
tion using Supervised transfer learning rather than ZeroShot transfer learning. This will enable the assessment
of the ability of neurons to generalise knowledge under domain shift.
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6 Integration in the EDDIs

This section describes how DEEPKNOWLEDGE can be integrated into an EDDI, also explaining how the tech-
nique will allow for more efficient and effective operation while minimizing the overall risks of deploying
DNN components and assuring their safety.

As shown in Figure 9, DEEPKNOWLEDGE is a design time activity, focusing on testing the robustness and
safety of DNNs at design time. To help address the challenge of DNN robustness and correctness, the DEEP-
KNOWLEDGE is developed to support MRS applications, e.g., in computer vision operations such as person
detection, by simulating the runtime configurations. Given that DNNs are generally tested at design time us-
ing testing datasets (in-distribution data – ID) and with configurations that cannot be predicted or analysed
at run time, their evaluation can be faulty. In fact, this evaluation may drift if data encountered at runtime
does not match what was used at design time. This can result in runtime performance that is significantly
less than intended, leading to possible safety implications. DEEPKNOWLEDGEaddresses this anomaly using
out-of-domain generalisation principles to measure the accuracy of DNNs in simulated settings with out-of-
distribution datasets (OOD).

The DEEPKNOWLEDGE is a part of a task manager that generates test adequacy estimation reflecting on the
fault-revealing ability of the testset. We focus on instance-wise errors, which are single inputs that result in
a DNN model’s erroneous outputs, that are found to be related to many real-world errors without malicious
attackers. As detailed in Figure 9, DEEPKNOWLEDGE is designed to determine the test adequacy of the DNN
component using training/testing datasets during design time (steps 1, 2, and 3).

By doing so, DEEPKNOWLEDGE can estimate the confidence in the predicted accuracy of DNN results for
each outcome at runtime (step 5 in Figure), alongside the SafeML estimation. This information can then be
used to make runtime decisions about safety, e.g., to generate warnings for the operator (step 5).
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Figure 9: The process of integrating DEEPKNOWLEDGE quality assurance results into the EDDIs
(steps and process on red are still under development).
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Figure 10 illustrates a concrete example of the usability of DEEPKNOWLEDGEassurance results in collabora-
tion with other WPs to assure the safety of fungicide spraying tasks. In DKOX’s viticulture use case, a robotic
team will spray chemical compounds in vineyard fields. This task needs to be guaranteed that no drone will
get in contact with surfaces outside the area of interest. In this scenario, object detection algorithms will be de-
ployed in a way that a certain level of safety is guaranteed. The safety of trajectory for fungicide spraying is
assured through a collaboration between WP2, WP3, and WP6. When obstacles are detected within the flight
path (using ML components for object detection), the WP2 updates the trajectory and provides robots with an
optimal object bypass. This prediction is evaluated and its correctness us assured using DEEPKNOWLEDGE

testing results.

Obstacles detection and trajectory 
tracking

Generate Spraying Trajectory

Quality Assurance of ML output

WP6.1:

DKOX 

ML components decision

Initial flight path

Updated flight path

WP2:

WP3:

Figure 10: Illustration example of collaboration between SESAME WPs for safety assuring of MRS
trajectory planning and tracking for fungicide spraying in DKOX’s viticulture use case.
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7 SATISFACTION OF SESAME REQUIREMENTS

Table 7: Satisfaction of SESAME Requirements from deliverable D.1.1: Assurance of Machine
Learning

ID Requirement Priority Status

U94 SESAME provides a fail-safe monitor-
ing of program changes with fall-back
option

SHOULD In progress

U95 SESAME provides a tool that monitors
if a person detection system based on a
Convolutional Neural Network works in
similar conditions to the tests cases

SHALL Partial: The tool enables
monitoring of computer vi-
sion models for image recog-
nition and detection. The
next step is to test it on some
SESAME use cases with per-
son detection algorithms

U96 The assurance of Machine Learning
monitor is executable on a Jetson Xavier
platform.

SHOULD Full: The tool is developed in
Python which helps develop-
ers to run its scripts easily on
the platform (cf. deliverable
D6.3 for more information).

U97 SESAME provides facilities to improve
assurance of existing machine learning
models (e.g., object detection and track-
ing, hotspot detection, etc.)

SHALL Full: The tool provides fa-
cilities to improve assurance
of deployed DNN models,
through a novel test adequacy
criterion and a data augmen-
tation technique.

U98 SESAME supports analysis of adversar-
ial machine learning of cyber-physical
vulnerabilities (e.g. security)

SHOULD Full: The tool has been
tested against adversarial at-
tacks and proven to be sensi-
tive to adversarial inputs and
is effective in detecting mis-
behaviours in test sets.
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8 CONCLUSION

This document details the developed assurance technique for data-driven and learning components developed
in Task 6.1. To this end, the report gives a comprehensive presentation of the developed DEEPKNOWLEDGE

approach, which is a systematic testing methodology for DNNs that can quantitatively measure the knowledge
diversity of a test set.

DEEPKNOWLEDGE is built on the principle of knowledge generalisation (cf. Section 2.1.1) in DNNs for ana-
lyzing how neurons transfer knowledge under domain shift. We identify a finite set of neurons responsible of
knowledge generalisation and use this set to instrument a test adequacy criterion. Our experimental evaluation
demonstrates the effectiveness of our approach in establishing the knowledge diversity of a test set and guiding
the improvement of a DNN’s accuracy. In particular, DEEPKNOWLEDGE can be used to guide the selection
of inputs and support effective retraining of DNN systems. DEEPKNOWLEDGE is also sensitive to adversarial
inputs and, thus, effective in detecting misbehaviours in test sets.

The proposed approach will be applied to the SESAME uses cases. The used methodology for DNN testing and
DEEPKNOWLEDGE-based augmentation technique empirically validated in this deliverable will be repurposed
for Locomotec’s case study first with a few adaptations to support object detection. Then DEEPKNOWLEDGE

will be applied to all other suitable SESAME uses cases, once their real-world data is available.
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