

Project Partners: Aero41, ATB, AVL, Bonn-Rhein-Sieg University, Cyprus Civil Defence, Domaine
Kox, FORTH, Fraunhofer IESE, KIOS, KUKA Assembly & Test, Locomotec,
Luxsense, The Open Group, Technology Transfer Systems, University of Hull,
University of Luxembourg, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SESAME Project Partners accept no liability for any error or omission in the same.

© 2023 Copyright in this document remains vested in the SESAME Project Partners.

Project Number 101017258

D5.6 Tools for Automated Security Analysis of MRS and
for Production of EDDIs (Final Version)

Version 1.0
5 July 2023

Final

Public Distribution

FORTH

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page ii Version 1.0 5 July 2023

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Aero41

Frédéric Hemmeler

Chemin de Mornex 3

1003 Lausanne

Switzerland

E-mail: frederic.hemmeler@aero41.ch

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

E-mail: scholze@atb-bremen.de

AVL

Martin Weinzerl

Hans-List-Platz 1

8020 Graz

Austria

E-mail: martin.weinzerl@avl.com

Bonn-Rhein-Sieg University

Nico Hochgeschwender

Grantham-Allee 20

53757 Sankt Augustin

Germany

E-mail: nico.hochgeschwender@h-brs.de

Cyprus Civil Defence

Eftychia Stokkou

Cyprus Ministry of Interior

1453 Lefkosia

Cyprus

E-mail: estokkou@cd.moi.gov.cy

Domaine Kox

Corinne Kox

6 Rue des Prés

5561 Remich

Luxembourg

E-mail: corinne@domainekox.lu

FORTH

Sotiris Ioannidis

N Plastira Str 100

70013 Heraklion

Greece

E-mail: sotiris@ics.forth.gr

Fraunhofer IESE

Daniel Schneider

Fraunhofer-Platz 1

67663 Kaiserslautern

Germany

E-mail: daniel.schneider@iese.fraunhofer.de

KIOS

Maria Michael

1 Panepistimiou Avenue

2109 Aglatzia, Nicosia

Cyprus

E-mail: mmichael@ucy.ac.cy

KUKA Assembly & Test

Michael Laackmann

Uhthoffstrasse 1

28757 Bremen

Germany

E-mail: michael.laackmann@kuka.com

Locomotec

Sebastian Blumenthal

Bergiusstrasse 15

86199 Augsburg

Germany

E-mail: blumenthal@locomotec.com

Luxsense

Gilles Rock

85-87 Parc d'Activités

8303 Luxembourg

Luxembourg

E-mail: gilles.rock@luxsense.lu

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

E-mail: s.hansen@opengroup.org

Technology Transfer Systems

Paolo Pedrazzoli

Via Francesco d'Ovidio, 3

20131 Milano

Italy

E-mail: pedrazzoli@ttsnetwork.com

University of Hull

Yiannis Papadopoulos

Cottingham Road

Hull HU6 7TQ

United Kingdom

E-mail: y.i.papadopoulos@hull.ac.uk

University of Luxembourg

Miguel Olivares Mendez

2 Avenue de l'Universite

4365 Esch-sur-Alzette

Luxembourg

E-mail: miguel.olivaresmendez@uni.lu

University of York

Simos Gerasimou & Nicholas Matragkas

Deramore Lane

York YO10 5GH

United Kingdom

E-mail: simos.gerasimou@york.ac.uk

 nicholas.matragkas@york.ac.uk

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Initial draft with outline and first content 12 May 2023

0.2 First draft 7 June 2023

0.3 Ready for internal review 21 June 2023

0.9 Updated version from internal reviews 4 July 2023

1.0 Final QA version 5 July 2023

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page iv Version 1.0 5 July 2023

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Overview .. 1

1.2 Security challenge ... 1

2. The challenge of Security assessment .. 2

2.1 Defining the problem ... 2

2.2 State of the art in security assessment ... 3
2.2.1 Threat modelling and security assessment .. 3
2.2.2 Security assessment in robotic systems ... 3
2.2.3 Security knowledge repositories ... 4

3. The SESAME Security Methodology .. 5

3.1 Processes of the SESAME security methodology .. 5
3.1.1 System description .. 5
3.1.2 Identification of vulnerabilities ... 11
3.1.3 Identification of potential attacks .. 7
3.1.4 Identification of mitigations .. 12
3.1.5 Template Attack Trees .. 13
3.1.6 Generation of attack trees ... 19
3.1.7 Generation of security EDDIs ... 21

3.2 Safety and security ... 23

4. Tools for Applying Security Assessment and EDDI Production ... 25

4.1.1 System description .. 25
4.1.2 Identification of vulnerabilities ... 28
4.1.3 Identification of potential attacks .. 34
4.1.4 Generation of attack trees ... 39
4.1.5 Generation of security EDDIs ... 44
4.1.6 Runtime security- Intrusion Detection System ... 48

5. Applying SESAME methodology ... 50

6. Conclusions .. 59

7. References .. 61

TABLE OF FIGURES

Figure 1: SESAME security methodology ... 6
Figure 2: Discovering potential attacks from known vulnerabilities – from [50] ... 12
Figure 3: False situational assessment Template Attack Tree .. 15
Figure 4: Publish tampered messages Template Attack Tree ... 16
Figure 5: Template Attack Tree with Lidar physical vulnerabilities .. 17
Figure 6: Template Attack Tree with Compass physical vulnerabilities .. 19
Figure 7: Example graph that can be produced utilizing the CanFollow relationship of CAPEC 20
Figure 8: Proposed additions for the TARA package along with their relationships with classes of the FailureLogic and

FTA packages ... 23
Figure 9: Step -1 of system description – SESAME security methodology ... 26
Figure 10: Step -2 of system description – SESAME security methodology ... 27
Figure 11: OpenVAS web interface .. 28
Figure 12: RVD Java classes of the custom RVD parser.. 32
Figure 13: CAPEC classes of the custom CAPEC identifier .. 38
Figure 14: Template Attack Tree with cyber and physical vulnerabilities ... 43

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page v

Confidentiality: Public Distribution

Figure 15: Snort - example rule .. 49
Figure 16: Snort example output .. 49
Figure 17: Combined attack patterns based on the CanFollow and CanPrecede relationships ... 54
Figure 18: Updated version of the "publish tempered messages‖ Template Attack Tree ... 55

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page vi Version 1.0 5 July 2023

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This deliverable outlines the final version of the proposed concept and methodology for

security assessment within the SESAME project. Addressing the security flaws of

multi-robot systems proves to be a complex task due to factors such as increased

connectivity, close proximity to humans, and a lack of awareness regarding the risks

that robotic systems face.

The document presents how the state-of-the-art techniques, tools, and repositories in

conducting security assessments can contribute to the definition of the SESAME

security assessment concept and methodology. Furthermore, it reviews existing

methodologies employed in security assessment for robotic systems, aiming to identify

common patterns.

Moreover, this deliverable describes the techniques and tools that are adopted towards

the successful application of the SESAME security assessment methodology. The

utilized tools are designed to construct system models capable of integrating security-

related information specific to a target system. These models are transformed into ODE-

compliant models to facilitate the generation of runtime EDDIs.

The deliverable concludes by presenting the sequential steps of the SESAME security

assessment and the corresponding tools and technologies adopted or developed for each

step. Finally, an application of the proposed methodology, based on common cyber

threats for the three use cases that SESAME security assessment will be integrated, is

presented.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page vii

Confidentiality: Public Distribution

LIST OF ABBREVIATIONS

AiTB Adversary in the Browser

AiTM Adversary in the Middle

CAPEC Common Attack Pattern Enumeration and Classification

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

XSS Cross-Site Scripting

CPS Cyber Physical Systems

DoS Denial-of-Service

EDDI Executable Digital Dependability Identity

IPS Intrusion Prevention System

MX Mail Exchange

NVD National Vulnerability Database

ODE Open Dependability Exchange

PUF Physically Unclonable Function

ROS Robot Operating System

RVD Robot Vulnerability Database

SSI Server Side Include

SACM Structured Assurance Case Meta-Model

URL Uniform Resource Locator

UAV Unmanned Aerial Vehicle

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OVERVIEW

The existence of software and hardware vulnerabilities in robotic systems poses a

significant risk with potentially severe consequences. Exploiting these vulnerabilities

can lead to various harmful outcomes, including financial losses, exposure of sensitive

data, erosion of customer trust, damage to critical assets, and even human injuries or

fatalities. Given that robotic systems play an active role in numerous industry sectors

such as automotive, energy (both traditional and alternative), food, pharmaceuticals,

aerospace, and more, all sectors become potential targets for adversaries.

It is therefore crucial to prioritize the security of robotic systems. However, this

responsibility should not fall solely on the shoulders of robot designers and operators.

Standards creators, software developers, robot vendors, and security experts also play a

vital role. The objective of all these roles is to make the process of exploiting robot

vulnerabilities challenging and resource-intensive, ensuring that the overall security of

robotic systems is strengthened.

1.2 SECURITY CHALLENGE

Modern robotic systems face a unique set of threats due to their evolving characteristics.

These systems have become integral parts of our daily lives, integrated into various

applications such as cars, appliances, surveillance platforms, medical equipment, and

more, often operating in close proximity to humans. However, many of these systems

lack built-in security mechanisms against malicious threats. Moreover, they require

connectivity to the external world for monitoring and maintenance purposes, thereby

introducing new attack surfaces through APIs. In addition, administrators of such

systems often lack awareness of the emerging risks, as the traditional industrial robot

environment was previously closed and considered trustworthy. As a result, conducting

security assessments for robotic systems has become an essential yet challenging task.

The rest of the deliverable is structured as follows. In the Challenge of Security

Assessment section, the definition of the problem of security threats in robotic systems

is described, listing the main reasons why such systems become attack targets.

Moreover, the state-of-the-art an abstract of techniques of conducting security

assessment are presented. Different kinds of attacks, protection mechanisms and the

most common robot specific attacks are mentioned. The threat modelling process and

different threat modelling models are described. Works found in the literature that

present security assessment approaches on robotic systems are referenced. The last part

of this section includes security knowledge repositories that are used in the proposed

methodology.

Section 3 presents the rationale for each of the steps of the SESAME security

methodology. Section 4 incorporates the tools and technologies that were adopted or

developed towards the individual goal of each of the steps of the SESAME security

methodology. Furthermore, in section 5 an application of the proposed methodology is

presented to show case its applicability. Finally, we present our concluding remarks in

section 6.

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 2 Version 1.0 5 July 2023

Confidentiality: Public Distribution

2. THE CHALLENGE OF SECURITY ASSESSMENT

2.1 DEFINING THE PROBLEM

As robotic systems become more integrated into our daily lives, there is a growing

concern about cybersecurity. Robots used in areas such as autonomous driving,

surveillance, surgery, home assistance, and industrial automation can be vulnerable to

cyber-attacks, which could have serious real-world consequences [1].

The problem encompasses another dimension related to the Robot Operating System

(ROS), which serves as a standardized middle-ware for robotics. It enables the

formation of diverse clusters of robots by facilitating communication among the robots

within the cluster [2]. While the widespread acceptance of ROS can be attributed to its

notable advantages, including an engaged community and the ability to reuse code, it

also brings to light certain drawbacks such as concerns regarding network security,

authorization, and resource permissions. The work in [3] presents several

vulnerabilities, including communications in plain-text and unprotected TCP ports.

Successor to ROS, ROS2 incorporates important security related improvements. It

offers secure communication through the integration of the Data Distribution Service

(DDS) standard, implements a more robust access control system called "ROS2

Security", separates configuration files from the core codebase easing secure

customization, and introduces proper dependency management. Moreover, ROS2

community actively monitors and addresses security issues, releasing updates and

patches promptly. While ROS2 addresses many common security concerns, it is

essential to follow security best practices and consider the broader security aspects, as

far as developing and deploying robotic systems is concerned.

The necessity of evaluating the security of robotic systems is emphasized in reference

[4], which presents several observations made by the authors regarding industrial

robots. The first observation highlights the growing interconnectedness of robotic

systems, leading to the expansion of potential attack points. Previously, industrial robots

operated in isolated environments under strict control. However, with their integration

into information and communication technology (ICT) ecosystems, they are now

connected to external networks, including the Internet. This connectivity of industrial

robots serves purposes such as control, monitoring, and maintenance, and is even

incorporated into ISO standards for the integration of robot systems [5]. Furthermore,

there is a trend towards developing robot application programming interfaces (APIs)

that provide endpoints for user-defined requests, enabling control of the robots.

Additionally, robots can be managed and supervised using portable devices like

smartphones [6].

Furthermore, a prevailing tendency is observed in the adoption of safety mechanisms,

where programs and libraries are being prioritized over hardware-based solutions

employed in the past. This shift in implementation introduces a heightened vulnerability

to potential security incidents. Compounded with the emergence of next-generation

industrial robots designed to work in close proximity to humans, the scope of security

attacks on robotic systems expands significantly, posing a direct threat to human safety.

Another notable observation relates to the inadequate recognition of risks faced by

robotic systems. In reference [4], the authors conducted a survey that revealed

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 3

Confidentiality: Public Distribution

concerning findings. Some of the key results indicated that: i) a significant portion of

the survey respondents (60%) modify default safety measures, thereby introducing

limitations; ii) access control measures are not implemented for robots and robot-

controllers among 28% of the respondents; and iii) a substantial majority (76%) do not

utilize security assessment as a means of enhancing security.

The historical practice of providing services through industrial robots in closed and

trusted environments appears to have led robot manufacturers to overlook essential

security mechanisms [7].

The security challenge intensifies in distributed multi-robot systems (MRSs). In such

configurations, if one robot is targeted in an attack, it has the potential to impact other

robots or even the entire system. The compromised robot can act as a malicious entity,

commonly referred to as a "bad bot," carrying out automated tasks according to the

adversary's intentions, initiating attacks on other components of the system, including

robots and robot-controllers. An illustrative incident described in reference [8] involves

100 drones crashing into a building during a light show in Chongqing, China. The root

of the problem originated from the control system's mainframe [9].

The evaluation of security in robotic systems, which involves the identification,

assessment, and mitigation of security risks to ensure compliance with system security

requirements, appears to be essential. This process encompasses the recognition of

valuable assets and potential vulnerabilities, the identification of threats capable of

compromising those assets, and the exploration of protective measures while

considering the calculated level of risk.

2.2 STATE OF THE ART IN SECURITY ASSESSMENT

2.2.1 Threat modelling and security assessment

Ensuring security in robotic systems requires a holistic approach that considers the

overall system design. It is crucial to address security concerns early in the system

design process. Threat modelling plays a vital role in identifying, communicating, and

understanding potential threats to the system, enabling the definition of

countermeasures to mitigate their effects. Threat modelling involves investigating the

system from an adversary's perspective, determining what needs to be protected and

from whom. The process includes steps such as system description, architecture

dataflow, identification of trust boundaries, threat analysis, and determination of

countermeasures. Different threat modelling methods, such as STRIDE, PASTA,

LINDDUN, and CVSS, offer distinct approaches and perspectives in assessing and

addressing security risks. Several open-source threat modelling tools, including Cairis,

Microsoft Threat Modelling Tool, OWASP Threat Dragon, Threagile, and Tutamantic,

facilitate the implementation of threat modelling processes.

2.2.2 Security assessment in robotic systems

Robots are becoming increasingly prevalent in various aspects of daily life, such as

transportation, surveillance systems, home assistance, and medical services. However,

the integration of different sensors, actuators, interfaces, and information processing in

robots introduces new vulnerabilities that can be exploited, leading to economic damage

and safety issues. Several works have explored the security analysis of robotic systems

to identify cyber-attacks and their impacts. For example, one study [3] employed a

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 4 Version 1.0 5 July 2023

Confidentiality: Public Distribution

cyber-physical honeypot using ROS (Robot Operating System) to discover

vulnerabilities and exploits, while another [10] demonstrated hacking a modern

automobile and compromising its digital dash, door locks, brakes, and engine control

components. Attacks on unmanned aerial vehicles (UAVs) were also investigated [40]

revealing the impact of denial-of-service attacks on UAV cameras and network latency.

Furthermore, a model was introduced to represent the performance of multi-robot

systems [12], highlighting the potential for denial-of-service attacks to compromise

cloud-robotic platforms.

In terms of security assessment methodologies, researchers have focused on evaluating

the security of specific robotic systems. One study conducted a security assessment of

Pepper [13], a social robot, through automated and manual phases involving port

scanning, vulnerability scanning, traffic analysis, and brute force attacks. Flaws were

identified that could enable credentials spoofing, data theft, and hacking of connected

devices. A similar assessment was performed on the Franka Emika Panda robot [7],

uncovering vulnerabilities in its web application that could affect human safety and the

manufacturing process. Additionally, an analysis of security issues in cyber-physical

systems (CPS) [14] highlighted the importance of securing sensors, transmission, and

application layers, with suggested solutions including Physically Unclonable Functions

(PUF) for unique identification and identity-based encryption for privacy protection.

Finally, an experimental security analysis of an industrial robot controller [4] identified

potential attacker goals, access points, and capabilities, along with specific attack

classes, demonstrating the feasibility of attacks on a reference robot.

Overall, these works emphasize the need for robust security measures in robotic systems

to address the vulnerabilities arising from their integration of various technologies and

ensure the safety and reliability of these systems in our daily lives.

2.2.3 Security knowledge repositories

There are many repositories, lists, and directories that enclose information about

vulnerabilities, weaknesses, bugs, etc. All these security knowledge repositories are

vital resources for the SESAME security assessment process.

The security knowledge repositories mentioned in the text are vital resources for

understanding and addressing vulnerabilities, weaknesses, bugs, and attack patterns.

The Common Vulnerabilities and Exposures (CVE) [15] list provides identifiers for

computer security flaws and vulnerabilities, allowing for easy recognition and

communication. The National Vulnerability Database (NVD) [16] supplements CVE by

offering additional information such as severity scores, countermeasures, and affected

software configurations. The Common Weakness Enumeration (CWE) [17] provides a

comprehensive list of weaknesses in software and hardware, including detailed

descriptions and relationships with other weaknesses. The Common Attack Pattern

Enumeration and Classification (CAPEC) [18] serves as a hierarchical classification and

dictionary of known attack patterns, facilitating the understanding of how system

weaknesses can be exploited.

Additionally, the Robot Vulnerability Database (RVD) specifically focuses on

vulnerabilities and bugs related to robots' software and hardware. It offers a centralized

repository for categorizing and recording these flaws, providing researchers and

practitioners with valuable information to assess and mitigate robot-related security

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 5

Confidentiality: Public Distribution

issues. The Robot Vulnerability Scoring System (RVSS) is used to rate the

vulnerabilities included in the RVD, aiding in the prioritization and management of

robot security concerns. Overall, these repositories play a crucial role in enhancing

security practices by providing valuable insights and resources for vulnerability

detection, assessment, and mitigation.

3. THE SESAME SECURITY METHODOLOGY

3.1 PROCESSES OF THE SESAME SECURITY METHODOLOGY

Threat modelling process plays a crucial role in defining the security design and

selecting appropriate security technologies for a system, considering its specific security

requirements. The security assessment conducted within the context of SESAME is

heavily influenced by the threat modelling process and adopts its fundamental

principles. The SESAME security assessment follows a well-structured set of steps that

often overlap with the systematic process of threat modelling, which has clearly defined

steps based on the chosen model. The methodology diagram in Figure 1 illustrates these

steps, including their inputs, outputs, external resources, and processes.

While the high-level steps outlined in the following sections provide a general

approach, the key to effectively applying the proposed methodology to individual MRSs

with unique requirements lies in providing a detailed description of the specific system

under consideration. Factors such as the importance of assets and the delineation of trust

boundaries containing these assets help to capture the distinct security requirements of

each system. Additionally, the identification of vulnerabilities and their combinations

contribute to each system being a unique use case, resulting in varying outputs from the

SESAME security methodology, such as potential attack scenarios and corresponding

mitigations.

3.1.1 System description

The initial stage of the SESAME security assessment involves identifying the target

system. It is important to gather a comprehensive description of key aspects such as the

system's objectives, its components, and its architecture. This information allows for a

thorough understanding of the system's functionalities and the potential threats that may

arise.

To achieve this, system administrators are required to provide a detailed system

description and respond to a series of questions. The collected information serves as a

foundation for identifying both cyber and physical vulnerabilities within the system, as

well as potential attacks that could exploit these vulnerabilities. The desired information

is organized into categories (Purpose, Components, Architecture, and Scope) and

further elaborated upon in the subsequent sub-sections.

.

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 6 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 1: SESAME security methodology

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 7

Confidentiality: Public Distribution

3.1.1.1 Purpose

Having a clear understanding of the purpose and usage of the system is crucial for

assessing its security. This information helps determine the criticality of potential

attacks and the overall security level of the system under specific attack scenarios. The

following questions fall under this category:

1. What is the primary function of the system? Does it perform a single task or

multiple tasks?

2. Is the system critical to the organization's operations?

3. Does the system serve a specific business goal?

4. What would be the impact of system unavailability?

5. Are there any compliance requirements associated with the system?

6. Who are the users of the system and what roles do they have?

7. Are there any known system vulnerabilities?

8. Which parts of the system are considered the most critical?

Answers to these questions give insights to the security assessment regarding the

system's significance and its potential risks.

If a SESAME safety methodology has been followed, introduced and described in D4.5

―Safety Analysis Concept and Methodology for EDDI development (Final Version)‖,

some of the requested information -- such as the safety-critical effects of system

unavailability -- will already be available and stored in EDDIs, which can be used to

inform this assessment.

3.1.1.2 Components

Identifying each system component is essential as vulnerabilities within these

components can pose risks to the overall system. Any vulnerability in a component can

potentially expose attack surfaces and compromise the system's security. These

components can include software, hardware, networking infrastructure, and databases.

The process of identifying potential cyber-attacks differs slightly from that of physical

attacks, so the desired information is gathered in two distinct ways, as described below.

Cyber vulnerabilities: When gathering information about cyber vulnerabilities in each

system component, the desired information includes the following details:

1. Component Host. The host of the component refers to the system or

infrastructure where the component is deployed. Understanding the host is

important because if a specific host is compromised due to an attack, it can

impact the availability and security of all the components hosted on it.

Moreover, a vulnerability of a not so crucial component becomes more critical,

if the vulnerable component is cohosted with a component of great importance.

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 8 Version 1.0 5 July 2023

Confidentiality: Public Distribution

2. Name and Version. Different versions of a component may have different

vulnerabilities, and newer versions may address or introduce vulnerabilities.

Different product versions may have varying levels of vulnerability, as security

flaws can be discovered and addressed over time.

3. Vendor. The vendor refers to the entity or organization that develops or provides

the component. Vendor name could help tracking vendor-specific security

information.

4. Common Platform Enumeration (CPE). CPE is a standardized naming format

hosted and maintained by the National Institute of Standards and Technology

(NIST). It provides a unique identifier for software system components,

including information technology systems, software, and packages. CPE can be

used for easier identification of known vulnerabilities and automation of the

whole security assessment process.

Table 1 below presents a snippet of software system components description, with a

column for every needed information. It presents software running in two different hosts

(Raspberry Pi and Pixhawk) of the target system.

Table 1: Description of system components organized in columns

Host Software name Software

version

Software

vendor

Software CPE

Raspberry Pi 4 arca Trusted OS 1.0.0 CYSEC NA

 python 3.10.4 Python cpe:2.3:a:python:python:3.

10.4:*:*:*:*:*:*:*

 docker 20.10.15-ce Docker cpe:2.3:a:docker:docker:20.

10.15:*:*:*:-:*:*:*

 docker-compose 1.29.2 Docker NA

Pixhawk 6C PX4 1.13.2 PX4 NA

 nuttX 10.10.0 Apache cpe:2.3:a:apache:nuttx:10.0

.0:*:*:*:*

… … … … …

Cyber vulnerabilities are the input for the Identification of potential attacks process,

where they are coupled with attacks that can be conducted, exploiting each of these

vulnerabilities. The discovered cyber-attacks are then compared with attacks mentioned

in the Template Attack Trees for the definition of the final potential attack trees of the

system in question. Template Attack Trees provide a structured framework for

modeling potential attack scenarios and capturing the various steps an attacker may take

to compromise the system's security. All these processes are described later in the

document.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 9

Confidentiality: Public Distribution

Physical vulnerabilities: To identify physical vulnerabilities and potential physical

attacks in the system, additional information about the individual robots and the overall

system hardware is required. While the previous process focused on cyber

vulnerabilities and cyber-attacks, physical vulnerabilities and physical attacks pose a

different set of challenges that need to be addressed.

Robotic systems are particularly susceptible to physical attacks due to their use of

sensors, motors, and various physical surfaces. Additionally, robots often operate in

close proximity to humans, either sharing the same workspace or collaborating closely

to achieve specific tasks, such as in automotive manufacturing. While this collaboration

can enhance productivity and precision, it also increases the feasibility of physical

attacks and introduces safety risks. If a robot is compromised, it has the potential to

harm human operators and others nearby.

Physical attacks can take various forms, including tampering/vandalism, theft, physical

operation disruption, physical intrusion, and physical manipulation.

Tampering/vandalism involves actions such as breaking or removing parts of the robot

or altering its environment, which can impact its functionality. Theft entails the removal

of the entire robot or essential components like batteries and sensors. Physical operation

disruption may involve blocking the robot's path or interfering with the movement of its

components, such as arms or rotors. Physical intrusion occurs when an unauthorized

person gains physical access to the robot. Lastly, physical manipulation occurs when an

attacker intentionally alters the behavior or performance of the robot.

There are some system scope questions that can be asked to gather information for

potential physical attacks:

1. Are there any weaknesses in the premises’ physical security?

2. Is there unauthorized access to your system?

3. Are there security measures for detecting physical intrusions?

4. Are there physical assets that can be stolen or damaged?

However, robot scope questions should be asked for every vulnerable robot:

1. Does any individual share the same space with the robot during its operation or

while it is idle?

2. Does the robot have any parts that can be easily removed?

3. Is there direct access to the internals of the robot? Is any essential part exposed?

4. Do the robot components come from an authorized dealer?

5. What kind of sensors does the robot carry?

6. Are there any exposed ports on the robot?

This kind of questions can reveal the physical vulnerabilities of the system and its

individual components, and help to identify potential physical attacks. Physical

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 10 Version 1.0 5 July 2023

Confidentiality: Public Distribution

vulnerabilities are coupled with physical attacks as cyber vulnerabilities are coupled to

cyber-attacks. These physical attacks are compared with attacks of the physical attack

trees of the Template Attack Tree repository. A match could identify one of the

Template Attack Trees as a potential attack tree of a given system. Once again, there is

a link with the safety assessment of a target robotic system. If a physical attack damages

or impairs a component, that would often count as a failure and may have safety

implications. Given that attack trees and fault trees are compatible, this link may arise

naturally if the root of a physical attack tree is used as input to the corresponding fault

tree for that component or hazard.

3.1.1.3 Architecture

Understanding the system architecture is crucial for a comprehensive security

assessment. Architecture involves the overall design, communication channels, access

points, and data flow within the system. This information may reveal additional attacks,

or even attack patterns, to those discovered through the identification of the known

vulnerabilities.

Defining the communication protocols that are used among the system components,

allow the SESAME security assessment to reveal vulnerabilities that are not present in

any individual component. This is especially relevant in the context of multi-robot

systems where communication plays a vital role. The communication among the robots

allows them to create swarms and work together, and at the same time, it introduces

new vulnerabilities and new attack surfaces. Questions that towards understanding of

system architecture include the following:

1. What is the overall design of the system?

2. How are the system components connected?

3. Which are the system access points?

4. What is the path that data follow? What is the input and the output of the

system?

5. Are there any third-party integrations to the system?

6. Is the system monitored?

3.1.1.4 Scope

Defining the desired scope of the security assessment determines the extent of the

analysis. The SESAME security assessment can be conducted on various levels, ranging

from the entire target system to specific subsystems or individual components,

depending on specific security requirements. Factors that may influence the security

assessment include the system's complexity, the level of potential risk, the available

resources, and the specific requirements or regulations governing the system.

Questions that fit this category include the following:

1. What are the boundaries of the system to be assessed?

2. What is the acceptable security level for the system to be assessed?

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 11

Confidentiality: Public Distribution

3. Are there any compliance requirements for the system to be assessed?

3.1.2 Identification of vulnerabilities

By gathering all the information provided by the system administrator, the deployed

programs, libraries, and services along with the used hardware are pinpointed. This is

the input for the next process of SESAME security assessment, the Identification of

vulnerabilities.

During this process, publicly available repositories with known vulnerabilities are

utilized, defining the system vulnerabilities. The CVE catalogue, mentioned in

subsection 2.2.3, is the main repository, used by the security assessment solution that

has been developing during the lifetime of the SESAME project. Nevertheless, given

that our target systems are MRSs, the RVD directory is considered a necessary addition,

which focuses on bugs, weaknesses, and vulnerabilities specifically related to robots. In

that way, we envision to address the unique complexities and characteristics of robots,

which may not be adequately covered in other general vulnerability lists. RVD aims to

enhance vulnerability disclosure by providing robotics-specific information [19].

A parser is utilized to search these vulnerability directories, leveraging the name and

version of each software component present in the system, in order to identify any

associated vulnerabilities. Both vulnerability directories assign a unique identifier to

each documented vulnerability. This identifier is called CVE identifier (CVE-ID) for

the CVE list and ID for the RVD database. The output of Identification of

vulnerabilities process is a list of vulnerability identifiers corresponding to the

vulnerabilities that are considered relevant to the target system. The vulnerability

directories are regularly updated with information about newly discovered

vulnerabilities, making the Identification of vulnerabilities process dynamic, since it

remains synchronized with the updated directories, ensuring the inclusion of the latest

vulnerability information.

The process that was just described is also offered as functionality by a set of automated

tools, called vulnerability scanners. Following the same principle, they scan a given

network and/or subnetworks for available services and then use open vulnerability

databases to discover known vulnerabilities. OpenVAS, OPENSCAP, OWASP ZAP are

some of the open-source options. For the sake of completeness, the SESAME security

assessment includes the use of such scanning tools, since the provider of the system

information may not be aware of some services that are running in devices, which are

part of the system, and have some known vulnerabilities. Of course, the prerequisite in

this case is that the system must be up and running, otherwise the vulnerability scanning

tools cannot produce an output, meaning that these automated scanning tools cannot be

used during the design phase of a system

3.1.3 Identification of potential attacks

As it is already mentioned, the output of Identification of vulnerabilities process is a list

of vulnerability identifiers that is used as input for the next process in line, the

Identification of potential attacks. Additional input includes the CWE catalog, a list of

software and hardware weakness types, and CAPEC, a dictionary of identifiers for

attack patterns, both mentioned in 2.2.3. CWE plays the role of common language for

security tools. Due to the wider acceptance of CWE it is used as a stepping stone

between the spotted vulnerabilities and the potential attacks. Figure 2 depicts the route

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 12 Version 1.0 5 July 2023

Confidentiality: Public Distribution

from the pinpointed vulnerabilities of a target system to the information of the

corresponding potential attacks, showing how all the aforementioned directories are

connected with each other.

Figure 2: Discovering potential attacks from known vulnerabilities – from [20]

CWE is the connection point between CVE and CAPEC. ―Weakness Enumeration‖ is

one of the fields in the description of a given vulnerability. In this field a list of all the

weakness types, in the form of CWE-IDs, that are related with the specific vulnerability

is provided. Moreover, the description of every weakness type (CWE-ID) includes a

field called "Related Attack Patterns", presenting the attack patterns (CAPEC-ID) used

for the exploitation of the corresponding weakness. In this way, it is possible to trace a

list of CAPEC-IDs from a single CVE-ID. This process is repeated for each of the

identified system vulnerabilities, meaning that the output of the Identification of

potential attacks process is a number of different sets of CAPEC-IDs, one for each

discovered vulnerability identifier.

Information related to a CAPEC-ID that is highly valuable to the Identification of

potential attacks process, includes a description in natural language, relationship with

other attacks, prerequisites for the attack to be performed, and mitigation actions.

3.1.4 Identification of mitigations

The hierarchical classification of CAPEC includes the category, meta, standard, and

detailed attack levels. Documented attacks in the last two levels (standard and detailed)

include, in their majority, mitigation actions. More specifically, especially for the

detailed level, a very specific protection mechanism is required to mitigate the actual

attacks and this mechanism is mentioned under the Mitigations section. During the

Identification of mitigations process the information under Mitigation tab is collected

for every defined CAPEC-ID. If the CAPEC-ID in question is of standard and detailed

level, the information is directly available. On the other hand, a meta level attack pattern

is more abstract, avoiding information about specific methodologies, techniques,

implementations and protection mechanisms. Said attack pattern serves as

generalization of a more well-defined group of standard level attack patterns. In such a

case, mitigations that are mentioned in the corresponding standard level attack patterns

will be utilized for gathering the mitigation actions.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 13

Confidentiality: Public Distribution

3.1.5 Template Attack Trees

The SESAME security assessment methodology relies on specific security knowledge

repositories that store valuable information related to system components

vulnerabilities, software and hardware weaknesses, and various types of attacks. These

repositories serve as a centralized source of knowledge and are essential for the

methodology's effectiveness. By leveraging the information contained within these

repositories, the methodology is able to establish connections between vulnerabilities

and potential attacks. This enables the identification of potential attack scenarios that

could be targeted against a specific system based on its vulnerabilities.

SESAME security assessment methodology incorporates an additional security

knowledge repository called Template Attack Trees, which are essentially predefined

attack patterns. These attack patterns describe well-known methods employed by

malicious attackers to exploit known vulnerabilities or weaknesses in system

components, with the intention of achieving their objectives. Each attack pattern

outlines a series of steps that an attacker can follow to accomplish their ultimate goal,

which may involve compromising a system host, gaining unauthorized access to

sensitive data, or disrupting system operations. The Template Attack Trees repository

used in SESAME is not a pre-existing resource. Instead, it is created specifically for

each individual system based on its unique characteristics and security requirements.

This customized approach allows the methodology to align closely with the specific use

case and system being assessed, ensuring that the identified attack patterns are relevant

and tailored to the system under evaluation.

An attack tree is a graphical representation of a hierarchical structure that can

incorporate a set of different attack scenarios or attack steps of an attacker towards their

ultimate objective. In that sense, an attack tree can be used to represent an attack

pattern. Template Attack Trees are considered as attack patterns and can be very helpful

to security experts since they reveal common attack methods and techniques and ease

the development of corresponding mitigation actions. In that way, the security exposure

and the possibility of successful attacks can be reduced.

Template Attack Trees are used in Generation of attack trees process, described in the

next subsection. The created repository of Template Attack Trees includes a number of

Templates with specific attacks (CAPEC-IDs) at their leaves, the ultimate goal at the

root of the trees, and sub-goals in between. These sub-goals describe achievements of

the attacker that bring them closer to their goal. Such goals could include the following:

• Control the movement of the robot

• Make the robot unresponsive (loss of availability)

• Steal/Change sensitive information (loss of integrity)

• Make a robot not to achieve a business goal

Once again, there is a separation as far as the cyber and physical system vulnerabilities

are concerned, as it is described below.

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 14 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Cyber vulnerabilities: The completion of the Identification of potential attacks

process, described previously, provides us with a number of different sets of CAPEC-

IDs, one for each of the system cyber vulnerabilities. These CAPEC-IDs, which are the

attacks that potentially could be conducted against our system, are compared with the

CAPECs in the Template Attack Trees’ leaves. A matching CAPEC-ID, which through

one of the tree paths, could lead us to the ultimate goal of the tree’s root, is enough to

characterize the given Template as a potential attack tree of the target system. Potential

attack trees include at least one attack scenario, according to which, an attacker could

take advantage of a known cyber vulnerability of the target system and conduct an

attack that will lead them to achieve their objective. Such known vulnerabilities of

products are available in repositories such as CVE. What follows are two examples of

Template Attack Trees.

 False situational assessment Template Attack Tree

Figure 3 depicts a Template Attack Tree with three potential attacks at its leaves.

These attacks can be conducted due to system known vulnerabilities of the antennas

that are used as infrastructure for the establishment of Wi-Fi networks. Such means

of communication is present in SESAME use cases.

The first two are known attacks, documented in the CAPEC repository. The first has

CAPEC-ID 126 and title ―Path traversal‖. This is an attack according to which an

attacker uses path manipulation methods to obtain access to data that should not,

normally, be retrievable by well-formed requests. The result of such an attack is the

adversary being able to steal information or manipulate sensitive files. The second

vulnerability’s ID is 76 and its title is ―Manipulating Web Input to File System

Calls‖. This is a quite similar attack, where the attacker, once again, manipulates

inputs to the target software. That input is then passed to the file system calls in the

target operating system. In that way, the attacker is able to access and even modify

areas of the file system that should not be accessible.

Either of these attacks can lead to a security state where the attacker gains root

access of the Wi-Fi access point. By doing so, the attacker is able then to alter the

path of data that are exchanged among the different components of a given system.

A more specific example that applies in the KIOS use case is the adversary routing

the video that is captured by the surveillance drones to an alternative destination and

not the ground control station.

According to the third attack that is described in the Template Attack Tree, an

attacker is able to send malicious traffic to the ground control station. This is a more

sophisticated attacks with the precondition that the attacker has knowledge of the

structure of the messages that are exchanged and is able to contrast and send

manipulated traffic to the destination.

The combination of the ―Attacker reroutes the traffic from the drone to an

alternative destination‖ state and the last described attack can lead to another

security state, where the operators of the ground control station receive manipulated

data (video) and end up with a false situational assessment for the observed area. In

the context of the KIOS use case, this means that the operators may not be able to

spot a trapped person under a building ruins after a catastrophic earthquake. ―False

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 15

Confidentiality: Public Distribution

situational assessment‖ state is the ultimate goal of an attacker in the False

situational assessment Template Attack Tree.

Figure 3: False situational assessment Template Attack Tree

 Publish tampered messages Template Attack Tree

Figure 4 depicts a Template Attack Tree where the ultimate goal of the adversary is

publishing malicious messages to communication topics, and three known attacks

reside at its leaves. All three attacks can be found in the CAPEC repository.

The first known attack has CAPEC-ID 94 and title ―Adversary in the Middle

(AiTM)‖. The attacker places themselves within the communication channel

between two components and tries to change the transmitted data. The

communicated data flow through the attacker, who has the opportunity to observe

and even alter it. The prerequisite here is the adversary being able to understand the

nature of the communication between the targeted components. If this attack can be

combined with a compromised robot, used by the attacker for publishing messages

to individual topics, we are led to a security state where the attacker is able to

publish its own tampered messages using a message queue command line interface.

The second known attack has CAPEC-ID 8 and title ―Buffer Overflow in an API

Call‖. According to this attack, the adversary targets software that makes use of

libraries, which are vulnerable to buffer overflow attacks. This software become

also vulnerable by association. The third attack had CAPEC-ID 63, title ―Cross-Site

Scripting (XSS)‖ and is used by attackers that want to embed malicious scripts in

content that will be served to web browsers. In that way, the target executes the

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 16 Version 1.0 5 July 2023

Confidentiality: Public Distribution

script with the user’s privilege level. Any of these two attacks can lead to a security

state where the attacker compromises the robot’s API.

Either the ―Attacker uses a message queue command line interface‖ or the ―Attacker

compromises robot's API‖ security state can lead to the ultimate goal of the attacker,

which is to ―Publish tampered messages to communication topic to change the robot

trajectory‖. Message queue topics are a common way for SESAME use cases for the

control station to communicate the trajectories to a robot. If an attacker manages to

publish tampered messages to such topics, the trajectory of one or more robots could

be altered, causing the affected robots to crush, intervene with other robots or cause

safety issues.

Figure 4: Publish tampered messages Template Attack Tree

Physical vulnerabilities: Physical vulnerabilities, on the other hand, are not included in

a repository, where they can be discovered. They are essentially described by the system

administrator, during the completion of the system description questionnaire, designed

to reveal the physical vulnerabilities of the target system (robots and hardware in

general, see 3.1.1.3). Cyber vulnerabilities are connected with specific attacks (CPAEC-

IDs) during the Identification of potential attacks process. Similarly, physical

vulnerabilities are connected with physical attacks. The Template Attack Tree

repository includes trees with physical attacks at their leaves. These trees represent

attack patterns of physical attacks. Through the matching process, such trees can also be

identified as potential attack trees of the target system. Examples of Template Attack

Trees with physical attacks at their leaves are presented below.

 Lidar Template Attack Tree

Drones that are used in the SESAME use cases are equipped with Lidar sensors.

Lidar stands for ―light detection and ranging‖ or ―laser imaging, detection and

ranging‖ and is a method for determining ranges by measuring the time a reflected

light needs to reach the receiver.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 17

Confidentiality: Public Distribution

Figure 5 depicts a Template Attack Tree with tree vulnerabilities at the lower level

(leaves of the tree). ―Unauthorized personnel can reach drones while they are

landed‖ is the first one according to which, there is the possibility of human with no

authorization being in the same physical space with the drones while they do not fly.

That could happen at the drone storage space, during their transportation to the

desired destination or during the flight preparation stage. ―The lidar of the drones is

exposed‖ is the second physical vulnerability. According to that, the lidar sensor of

a drone is not enclosed in a protective casing. It is just attached to the drone, being

exposed to anyone that could cause damage to it. As it is depicted by the Template

Attack tree (AND gate), the presence of the two aforementioned physical

vulnerabilities can lead to the security state where the drone can ―become object of

vandalism‖. Unauthorized personnel could take advantage of an exposed sensor and

spray paint on the laser source, destroy a part of the sensor, make the sensor point to

an area of no importance, or even steal the whole sensor.

Figure 5: Template Attack Tree with Lidar physical vulnerabilities

The third physical vulnerability of the system is the fact that ―The lidar has no

housing‖. Such a lidar sensor could allow the laser beam to be directed to locations

different than the intended targets for range calculating. The OR gate of the

Template Attack tree shows that either the security state, where the drone has

become object of vandalism, or the ―The lidar has no housing‖ vulnerability can

lead to another security state where a human being is exposed to laser radiation and

the risk of permanent eye damage. Both a vandalized lidar sensor or a sensor that

has no proper housing could direct their laser beam towards a human being causing

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 18 Version 1.0 5 July 2023

Confidentiality: Public Distribution

physical damage to them and general safety issues. This final security state is the

root of the Template Attack Tree and the ultimate goal of the attacker.

It should also be mentioned that there could be other versions of the ultimate goal of

the attacker (= root of the tree). The mentioned physical vulnerabilities could lead to

a more general outcome, such as that the damaged/non-functional lidar impairs

navigation and detection. This could be depicted in a separate Template Attack

Tree.

In both cases though, there is a strong link among the security and safety analysis

processes. Both Template Attack Trees can be integrated with corresponding fault

trees.

 Compass Template Attack Tree

A compass is a very common sensor in robot fleets. This is also the case for the

SESAME use cases. A multi-robot system equipped with compasses may have a set

of physical vulnerabilities. The Template Attack Tree of Figure 6 depicts such

vulnerabilities on its leaves.

According to the first vulnerability, an adversary could use a magnetic field source

to manipulate the compass readings. Such compass readings are used by a drone to

define its direction and calculate its trajectory. The second physical vulnerability

indicates that there is an exposed physical port on a drone. Such a port could be used

as an entry point for malicious code. An attacker could put a USB stick on that port

and inject its code to the drone operating system. That code could then be run and

execute a large range of malicious commands, controlling the drone functionality. If

the target of the attacker is the drone compass, the exposed port physical

vulnerability could lead to the security state where the injected malicious code is

used for altering the compass calibration or readings.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 19

Confidentiality: Public Distribution

Figure 6: Template Attack Tree with Compass physical vulnerabilities

Either the ―Use a magnetic field source to manipulate the compass readings‖

physical vulnerability or the ―Use malicious software to modify the compass

calibration or readings‖ security state can lead to the next security state, where the

manipulated compass readings are used to change the drome trajectory. Changing

the drone trajectory could have a range of unwanted results with crashing drone to

the ground being one of them. According to the Template Attack Tree of Figure 6,

altering the drone’s trajectory is the attacker’s ultimate goal.

3.1.6 Generation of attack trees

The next process in the SESAME security methodology is the Generation of attack

trees, including two different steps. In the first step, the information provided by the

CAPEC repository is once again leveraged. CAPEC employs a hierarchical

classification that captures various relationships between different attack patterns, such

as "CanFollow" and "CanPrecede". The "CanFollow" relationship indicates the attacks

that may follow a specific attack pattern in a sequential manner. It provides insights into

the potential progression of attacks based on a given attack pattern. On the other hand,

the "CanPrecede" relationship reveals attacks that could have been executed prior to a

particular attack, setting the stage for its successful execution. By examining these

relationships, it becomes possible to construct distinct attack trees, where two or more

CAPEC-IDs are connected. An example of such a graph can be seen in Figure 7.

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 20 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 7: Example graph that can be produced utilizing the CanFollow relationship of CAPEC

Prerequisite for the creation of such a tree is each of the included attacks (CAPEC-IDs)

to be included in the lists of CAPEC-IDs that are the output of the Identification of

potential attacks process. Supposing all the attacks mentioned in Figure 7 are already

identified as potential attacks of a target system, during the first step of the Generation

of attack trees process the presented tree will be created based on the ―CanFollow‖

relationship of the participating attacks. During a Dictionary-based Password Attack, an

attacker tries all the words of a dictionary as passwords of a specific user account. If the

chosen password is in the dictionary, the attack is successful and the attacker gains

access. In case the broken account is a Windows administrator account, the attacker

could conduct a Windows Admin Shares with Stolen Credentials attack. During such an

attack, the attacker gets access to Windows Admin Shares, which allow administrators

to access all disk volumes on a network-connected system and copy, write and execute

files. This opens the way for another attack, the Identify Shared Files/Directories on

System. During this attack, the adversary may locate and collect sensitive data through

the use of shared folders or drives between systems or system parts. Another possible

usage of required information is the design of routes in the network that serve other

attacks. An attack that can follow is the so-called Pull Data from System Resources.

During this attack, an adversary pulls data from resources that has access, such as files

or memory. The attacker does not need to know what the information that they pull is.

The scanning of the information can be done afterwards.

In the second step of the Generation of attack trees process utilization of Template

Attack Trees takes place. As it is already mentioned in 3.1.5, a Template Attack Tree

includes a number of specific attacks (CAPEC-IDs) at its leaves, the ultimate goal of an

attacker at the root of the tree, and a number of attacker’s sub-goals in between. The

Identification of potential attacks process creates a list of CAPEC-IDs that are

considered relevant to the target system. By ―relevant‖ we mean that there are system

vulnerabilities that an attacker may take advantage of to conduct these attacks. This list

of CAPEC-IDs is compared with the CAPEC-IDs at the leaves of each available

Template Attack Tree. An identified match reveals a path from the leaves of the tree to

its root (= ultimate goal of the attacker), or a series of actions that an attacker can

follows to achieve their goal. The existence of a match in a Template Attack Tree leads

to its characterization as ―potential attack tree‖ for the target system. The output of the

Generation of attack trees process is a list of potential attack trees.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 21

Confidentiality: Public Distribution

Moreover, Template attack trees can be used for merging together graphs that have been

created in the first step of this process. If the vulnerabilities mentioned in the leaves of a

template are included in a graph, that graph could substitute the leaf. In that way, more

than one graph could replace leaves and be merged in a Template attack tree.

3.1.7 Generation of security EDDIs

The output of the Generation of attack trees process serves as input in the Generation of

security EDDIs process. During the latter, all the produced information is used for the

creation of the security EDDI.

The EDDI solution represents a progression from the DDI concept, encompassing

additional elements essential for real-time implementation and addressing concerns

associated with MRS. EDDI functions as an extended version, serving both as a

dependability artefact during the design phase and as a dynamic tool for managing

dependability during runtime. Its primary role involves two aspects: firstly, facilitating

online monitoring to oversee and regulate the safety and security of the system, and

secondly, enabling distributed communication among various components of the system

to effectively manage dependability within a broader MRS framework.

The EDDI’s features include the following:

• Event monitoring to monitor dependability-related inputs from the system;

• Runtime diagnostics to determine probable causes and possible consequences of

detected failure and security violation events;

• Dynamic risk prediction, to update design-time risk estimates with new information

based on the current system state;

• Mitigating actions and recovery planning, such as recommending the system enter a

safe failure state or a degraded mode to continue operation.

• Intercommunication with other connected EDDIs to both assure them of the system

dependability status and respond to errors reported by other EDDIs.

More details about the EDDI and the DDI concepts can be found in D4.5 ―Safety

Analysis Concept and Methodology for EDDI development (Final Version)‖, where an

elaborated description of both can be found along with their architectures.

The information that is produced by the security assessment must conform to the ODE

metamodel. Structured Assurance Case Meta-Model (SACM), a metamodel specialised

for the creation of structured system assurance cases, provides the ODE with assurance

case support. In our case, an assurance case incorporates the arguments and evidence

that support the claim that a given system or service is able to satisfy safety and security

requirements. The form such an assurance case can be expressed in is a machine-

readable model carrying information such as the scope of the system, the operational

context and the safety and/or security arguments [21].

The ODE metamodel has been extended during the lifetime of SESAME project to be

able to model additional information that is produced by the SESAME security

assessment process. Such information includes common software/hardware

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 22 Version 1.0 5 July 2023

Confidentiality: Public Distribution

vulnerabilities of systems and system components, related weaknesses due to these

vulnerabilities, and common attacks that can be conducted based on defined system

weaknesses. All the proposed ODE extensions are described in details in combined

deliverable D4.2 – D5.2 ―Safety and Security-Targeted ODE and EDDI specification‖.

ODE includes a security-oriented package called Threat Analysis and Risk Assessment

(TARA). This package captures Risk Assessment that is based on Threat Agents, which

perform Attacks taking advantage of Assets with identified Vulnerabilities. The

performed attacks can be addressed by Security Capabilities of the system, which are

implemented by Security Controls [22]. The TARA package is one of the most

important ODE packages as far as security is concerned. For convenience the proposed

additions for the TARA package along with their relationships with classes of the

FailureLogic and FTA packages are presented, in the form of a class diagram, in Figure

8.

EDDIs can also incorporate information for communicating with runtime security

monitoring tools. Valuable input from tools such as IDSs, Anti-Viruses, and Breach

Detection Systems (BDSs) can be included in the security part of an EDDI, towards to

definition of remedy actions. IDSs are used for the identification of malicious packets.

In case of protection of known attacks, attack signatures as used for the creation of rules

that recognize specific patterns in the header or body of the traffic packets. As far as the

unknown attacks are concerned, anomaly detection techniques are used, detecting

alteration in the traffic from the normal one. Moreover, Anti-Viruses are another type of

protection that detects and removes malware from the host. Breaches and side-channel

attacks are detected by BDSs. Finally, anti-phishing solutions protect from phishing

attempts.

The current implementation based on the SESAME security methodology utilizes Snort,

an open-source intrusion detection and prevention system that utilizes signature-based

detection to analyse network traffic, allowing it to identify and respond to known

patterns of security threats.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 23

Confidentiality: Public Distribution

Figure 8: Proposed additions for the TARA package along with their relationships with classes of the
FailureLogic and FTA packages

As it is described in D4.5 ―Safety Analysis Concept and Methodology for EDDI

development (Final Version)‖, the deployment of an EDDI could be done two ways. It

could be synthesized into code and run on the target platform or, in a virtual machine-

style approach, the EDDI is executed by a target-specific native program.

3.2 SAFETY AND SECURITY

According to the definitions provided in [23], security refers to safeguarding plants or

machinery against unauthorized external access and protecting sensitive data from

corruption, loss, and unauthorized internal access. On the other hand, safety’s goal is the

functional integrity of plants, specifically protecting individuals and the environment

from foreseeable risks that may arise from machinery. While security and safety possess

distinct meanings, their relationship is obvious.

A conducted attack that results in the manipulation of robot parameters, control or

calibration, can lead to human injuries during human-machine interactions.

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 24 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Furthermore, the integration of external safety sensors into a robotic system introduces

additional attack surfaces, as mentioned in [24]. This complex relationship between

security and safety makes it crucial to take care both these aspects to avoid faulty and

unexpected robot behaviour. Security measures will protect against unauthorized access

and malicious manipulation while safety mechanisms will safeguard human well-being

and prevent potential harm during human-robot interactions.

In the concept of EDDIs, security related information such as the fact that a target

system is under attack, the type of the attack, and potential consequences of the attack

are part of the security part of an EDDI and are communicated to the corresponding

safety part. To the EDDI monitoring the system, both a hardware fault and a security

attack could result in the same danger. The EDDI is intended to assess the consequences

of that danger and make recommendations to avert or mitigate it on the basis of the

diagnosed cause. For safety, this might mean switching to a backup component, while

for security it might entail filtering the incoming traffic or distributing it across multiple

resources.

The security assessment process described herein can serve as input for the safety

reasoning model. Security and safety are both important if the dependability goals are to

be achieved, and so combining both security and safety assessment is necessary to

ensure the dependability of a robotic system.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 25

Confidentiality: Public Distribution

4. TOOLS FOR APPLYING SECURITY ASSESSMENT AND EDDI PRODUCTION

The description of the SESAME security assessment methodology was given in section

3. The primary objective of the security assessment process is to gather information

regarding the security status of a particular system. The discovered vulnerabilities of the

individual system components lead to the identification of potential attacks that an

adversary could try to conduct, taking advantage of the existing system flaws.

The extension of the ODE metamodel allows us to store the gathered information in an

EDDI model-based artefact along with all the dependability information of a system.

While EDDIs are primarily intended for runtime usage, the information included within

them is collected during the design and testing phases using various tools and

techniques, described in the next subsections of this deliverable. Each subsection refers

to one of the SESAME security methodology processes.

4.1.1 System description

To facilitate the collection of security information of the target system for the SESAME

security assessment, two individual ways have been used during the lifetime of the

project. The first one is a user interface (UI) for gathering the necessary details about

the system, consisting of forms and questionnaires that the system administrator needs

to fill out to provide the required information. The second one is OpenVAS, an

automated scanner tool that can scan given network and/or subnetworks for available

services. The advantage of the usage of such scanning tools is that they can reveal

services that are running in devices, which are part of the target system, and the

provider of the system information may not be aware of. On the other hand, their

disadvantage is that they can be used only after the system is up and running, otherwise

the vulnerability scanning tools cannot produce an output.

UI:

These forms and questionnaires of the created UI capture specific details about the

system architecture, components, assets, entry points, and trust boundaries. The goal of

each form or questionnaire is to guide the system administrator to provide relevant

information.

Structuring the information collection process through a UI, it becomes easier to ensure

that all necessary details are gathered consistently and in a standardized format. This

allows the following steps of the security assessment methodology to take place.

Moreover, the UI is designed in a user-friendly manner, providing clear instructions

speeding the whole process of gathering information, enhancing the efficiency and

effectiveness of the assessment. The UI is a web-based application that is developed in

Java utilizing Bootstrap, a popular HTML, CSS, and JavaScript framework for

developing responsive, mobile-first websites. The UI application urges the user to

provide security information of the target system in steps, in the form of a software

wizard or setup assistant. Breaking down a complex, rare, or unfamiliar task into

simpler components can significantly facilitate its execution. In that way, individuals

are provided with step-by-step guidance that navigates them through each simplified

piece of the task.

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 26 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 9: Step -1 of system description – SESAME security methodology

Figure 9 above depicts one of the steps of the wizard that refers to the overall purpose of

the target system. Answering questions like ―What would be the impact of system

unavailability?‖ or ―Which parts of the system are considered the most critical?‖ allows

us to have an idea about how crucial each of the system parts is and, as a consequence,

how critical a corresponding attack could be.

Figure 10 depicts yet another step of the wizard for the identification of each of the

system components. As it is described in subsection 3.1.1.2, information such as

component host, name and version, vendor, and CPE is considered necessary for

pinpointing each individual system component. During this step, the use needs to feel

out the corresponding fields. These fields correspond to just one component. Using the

―Add component‖ button, the description of more components can be added.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 27

Confidentiality: Public Distribution

Figure 10: Step -2 of system description – SESAME security methodology

OpenVAS:

Although Open Vulnerability Assessment Scanner (OpenVAS) is mentioned in this

subsection as a way to discover exposed services of a system, its capabilities are way

beyond that. It is a generic scanner that offers several capabilities and considers a

significant number of different vulnerabilities. Its core strength is that it can

meticulously scan all ports on the target system for active services and provide a

comprehensive report on the discovered assets, such as running software, specific

version numbers etc. Furthermore, OpenVAS is able to conduct attacks to the

discovered services by using a plethora of known exploits and reporting on the

vulnerable ones by providing a high-level description of each vulnerability and the

CVE’s assigned CVSS score and severity level. Another advanced capability of

OpenVAS is that it already makes use of wrappers for other vulnerability scanners (e.g.,

Nmap, wapiti) and leverages them to enhance its coverage, as well as number and type

of detected vulnerabilities. Finally, OpenVAS offers a set of predefined configurations

that cover the most common scanning scenarios, including fast, fast ultimate, deep and

deep ultimate scans. One last feature of OpenVAS is the addition of custom

configurations through its administrator dashboard.

The following steps have to be followed for the installation of OpenVAS, in a

containerized form (Listing 1):

~/# git clone https://github.com/mikesplain/openvas-docker.git

~/# sudo docker run -d -p 443:443 --name openvas mikesplain/openvas

Listing 1: OpenVAS installation commands

As it can be seen, the first command clones the code from the corresponding GitHub

project and then the docker run command is used for the creation and start of the

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 28 Version 1.0 5 July 2023

Confidentiality: Public Distribution

OpenVAS container. By doing so, the individual OpenVAS components will be

installed and become available. The whole installation, gsad, will be running on port

443. The OpenVAS Scanner (openvassd) will be running on TCP Port 9391 and the

OpenVAS Manager (openvasmd) on TCP port 9390. Finally, the redis-server will be

running on TCP 6379. The OpenVAS web interface is available in the browser, which

shows the login screen for the Greenbone Security Assistant (Figure 11).

Figure 11: OpenVAS web interface

It should be mentioned that while OpenVAS was extensively used as part of the

proposed security assessment process, a second scanner was also tested (see D5.3).

Moreover, the modular design of the identification of vulnerabilities process allows for

the easy addition of even more such tools.

4.1.2 Identification of vulnerabilities

Based on the information gathered with the methods and tools described in the previous

subsection, the Identification of vulnerabilities process requests free repositories,

catalogs and databases for known vulnerabilities of the recognized software, hardware

and communication protocols.

Two main repositories are used by the SESAME security methodology, CVE and RVD.

CVE has been already mentioned in 2.2.3 and a more extended description can be found

in section 2.2.3 (Security knowledge repositories) of D5.1. CVE is a list of computer

security flaws, cybersecurity vulnerabilities, and can be used for searching or

incorporated into products and services for free. Each of these flaws is assigned an

identifier called CVE-ID, which is used as a dependable way to uniquely recognise

vulnerabilities. Likewise RVD is described in 2.2.3 and in section 2.2.3 of D5.1. RVD

includes robot related vulnerabilities and bugs that are referred to software and

hardware. The aim is to record and categorize robot related flaws. We decided to

incorporate RVD to our methodology due to the fact that SESAME focuses on MRSs.

Towards the goal of Identification of vulnerabilities process, two parsers are needed,

one for each of the two repositories. These parsers search for known vulnerabilities

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 29

Confidentiality: Public Distribution

based on the identified system components. These two parsers are CVE-search and

RVD custom parser.

CVE-search: CVE-Search is an open-source vulnerability search and management tool

based on the CVE repository. It allows users to search for specific vulnerabilities,

explore detailed information about them, and track their status and associated resources.

CVE-Search offers information about known vulnerabilities in various software and

systems. The goal of the tool is to ease the process of vulnerability management.

CVE-search is a tool that imports CVE and CPE into a MongoDB, facilitating search

and processing of CVEs. The main advantage of this tools is the fact that a local

instance of CVE is created serving lookup requests. In that way, direct requests to the

public CVE databases are reduced. At the same time, local requests are served faster

without exposing sensitive information to the internet. Among the cve-search offerings

are the following: i) a back-end to store vulnerabilities and related information, ii) an

intuitive web interface for search and managing vulnerabilities, iii) a series of tools to

query the system and a web API interface. cve-search is used by many organizations

including the public CVE services of Computer Incident Response Center Luxembourg

(CIRCL). The source code is available on GitHub
1
. A whole community maintains it

including CIRCL.

There are different ways to form a request asking for vulnerabilities.

 Request returning vulnerabilities directly assigned to a specific product

(./bin/search.py -p microsoft:windows_7 -a -o json).

 Request returning vulnerabilities based on text search in the vulnerability

summary (./bin/search.py -f “robotic simulator” -a -o json).

 Request for a specific CVE ID (./bin/search.py -c CVE-2010-3333).

 Request the last 2 CVE entries in atom format (./bin/dump_last.py -f atom

-l 2).

More details about the tool’s installation and usage can be found in section 2.1.1.1 of

D5.3 (Tools for Automated Security Analysis of MRS and for Production of EDDIs

(Initial Version)).

RVD custom parser: CVE-search is a great tool for searching and processing

vulnerabilities from the CVE catalogue. However, we need an additional tools that will

offer the same functionality for the RVD database. RVD comes with a set of tools for

the management of the database entries and is available as an opensource project at

GitHub
2
. Although RVD project developed by Alias Robotics provides its own set of

access tools, they do not fulfill our specific requirements. These tools lack essential for

us functionalities, such as the capability to search the vulnerability database for robot

vulnerabilities based on a provided product description or a CPE identifier.

1
 https://github.com/cve-search/cve-search

2
 https://github.com/aliasrobotics/RVD

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 30 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Additionally, it would be beneficial to have the ability to query the database for related

CWEs associated with a particular CVE entry.

Towards the desired functionality described in the previous paragraph, a custom RVD

parser has been created. The RVD installation offers the ―rvd list --dump --label

vulnerability‖ command that returns all the RVD database entries, which are labeled

as vulnerabilities. An example of such an entry is depicted in Listing 2. The provided

information for each robot vulnerability include related CVEs and CWEs, affected

systems, severity scores (RVSS, CVSS), exploitation and mitigation descriptions.

id: 3337

title: Service DoS through arbitrary pointer dereferencing on KUKA

simulator

type: vulnerability

description: "Visual Components (owned by KUKA) is a robotic simulator

that allows simulating factories and robots in order toimprove plan-

ning and decision-making processes. … Accordingly, a DoS in the simu-

lation might have higher repercusions, dependingon the Industrial Con-

trol System (ICS) ICS infrastructure."

cwe: CWE-248

cve: CVE-2020-10292

keywords:

- KUKA, RMS sentinel LM, Visual Components, DoS

system: Visual Components Network License Server 2.0.8

vendor: KUKA Roboter GmbH, Visual Components

severity:

 rvss-score: 6.1

 rvss-vector: RVSS:1.0/AV:IN/AC:L/PR:N/UI:N/S:U/Y:Z/C:N/I:L/A:H/H:N

 severity-description: High

 cvss-score: 8.2

 cvss-vector: CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:H

links:

- https://cwe.mitre.org/data/definitions/248.html

- https://www.visualcomponents.com/products/downloads/

- https://www.visualcomponents.com/products/visual-components/

flaw:

 phase: runtime-operation

 specificity: subject-specific

 architectural-location: application-specific

 application: Visual Components, RMS sentinel LM

 subsystem: simulation

 package: null

 languages: null

 date-detected: null

 detected-by: Sharon Brizinov (Claroty)

 detected-by-method: testing-dynamic

 date-reported: 2020-10-27

 reported-by: Sharon Brizinov (Claroty)

 reported-by-relationship: security researcher

 issue: https://gitlab.com/aliasrobotics/offensive/rvd/flaws/-

/issues/712

 reproducibility: always

 trace: null

 reproduction: null

 reproduction-image: null

exploitation:

 description: |

 To exploit this vulnerability the attacker needs to have network

access to the license server (either because

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 31

Confidentiality: Public Distribution

 it's exposed or because the internal network has been compromised.

Cause is related to the number of requested

 strings to merge, which is not correlated to the number of strings

provided, and so arbitrary pointers from the

 stack are popped out and dereferenced. This results with an un-

caught Access Violation exception which terminates

 the program. PoC available constructs a response reply to

featureInfoToFile with is a mismatch between the

 number of strings to merge and the requested amount leading to an

Access Violation exception and terminating the

 program. See alurity's robotsploit/exploits/kuka/rms exploits.

 exploitation-image: Not available

 exploitation-vector: null

 exploitation-recipe:

 networks:

 - network:

 - driver: bridge

 - name: kuka-simulation

 - subnet: 14.0.0.0/24

 vms:

 - vm:

 - name: vm1

 - path: $(pwd)/vms/visualcomponents_2.0.8

 - network: kuka-simulation

 - ip: 14.0.0.4

 containers:

 - container:

 - name: attacker

 - modules:

 - base: regis-

try.gitlab.com/aliasrobotics/offensive/alurity/alurity:latest

 - volume: regis-

try.gitlab.com/aliasrobotics/offensive/alurity/expl_robosploit/expl_ro

bosploit:latest

 - volume: regis-

try.gitlab.com/aliasrobotics/offensive/alurity/deve_atom:latest

 - volume: regis-

try.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest

 - volume: regis-

try.gitlab.com/aliasrobotics/offensive/alurity/expl_icssploit:latest

 - volume: regis-

try.gitlab.com/aliasrobotics/offensive/alurity/expl_metasploit:latest

 - volume: regis-

try.gitlab.com/aliasrobotics/offensive/alurity/fore_wireshark:latest

 - network: kuka-simulation

mitigation:

 description: |

 Do not launch Visual Components while connected to local or wide

area networks. Contain the simulation through

 virtualization.

 pull-request: null

 date-mitigation: null

Listing 2: Example robot vulnerability from the RVD database

The whole set of available robot vulnerabilities is the input for our custom parser. A set

of Java classes has been created for storing and managing the information provided for

the incoming robot vulnerabilities (Figure 12). The main class is called

―RvdVulnerability‖, while four more subclasses are needed, called ―Severity‖,

―Exploitation‖, ―Flaw‖, and ―Mitigation‖.

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 32 Version 1.0 5 July 2023

Confidentiality: Public Distribution

@PostMapping("/rvdinsert")

public String rvdInsert(@RequestBody ArrayList<RvdVulnerability> rvdJson) {

 //Generate the rvd database (rvdVulnerabilities) with the input from the

rvdjson array

 …

 System.out.println("Local RVD Repository has been updated");

 return "rvdresult";

}
Listing 3: REST API for the update of the local version of the RVD database

Figure 12: RVD Java classes of the custom RVD parser

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 33

Confidentiality: Public Distribution

A REST API has been created for the RVD parser to update the local version of the

RVD database. The corresponding code is depicted in Listing 3. As it can be seen, the

API endpoint is http://ipAddress:port/rvdinsert and the anticipated body of the request is

a list of RVD vulnerabilities. The structure of the RvdVulnerability class can be seen in

Figure 12. The @PostMapping annotation ensures that HTTP POST requests are

mapped onto a specific handler method, the rvdInsert in this case. The request is

expected to have a body in application/json format. The @RequestBody annotation

enables the automatic deserialization of the request body onto a Java object. After the

mapping of the request body to the corresponding Java instance, the instance is inserted

into the rvdVulnerabilities array list in the file system. This API endpoint allows for the

regular update of the RVD local version to include any newly added vulnerabilities.

Another exposed REST API is utilized for querying the local RVD database instance for

CWEs based on a given CVE. Listing 4 depicts the corresponding code.

@PostMapping(value = "/searchwithcve")

public String searchWithCve(@RequestBody String cveId) {

 ArrayList<String> cweFilteredArrayList = new ArrayList<>();

 for (int i = 0; i <rvdVulnerabilities.size() ; i++) {

 if (rvdVulnerabilities.get(i).cve.equals(cveId)){

 cweFilteredArrayList.add(rvdVulnerabilities.get(i).cwe);

 }

 }

 …

 return "rvdresult";

}

Listing 4: REST API for querying for CWEs based on a given CVE

The API endpoint is http://ipAddress:port/searchwithcve and the anticipated body of the

request is a CVE-ID. The @PostMapping annotation ensures that HTTP POST requests

are mapped onto the searchWithCve handler method. What follows is the collection of

all the related CWEs of the vulnerability with the given CVE-ID.

The implementation of the described custom RVD parser is an ongoing work that will

be continued the coming months of the project lifetime. More functionality will be

added, such as the ability to search for vulnerabilities using the name and version of

each software present in the system in question.

A parser searches said vulnerability directories and, using the name and version of each

software present in the system in question, spots the associated vulnerabilities. Each of

those vulnerabilities are uniquely identified by the CVE identifiers (CVE-IDs). A list of

such CVE-IDs is the output of this process. The said vulnerability directories are

constantly updated with information regarding newly discovered vulnerabilities.

Inherently the approach followed here is also not static as it will be in sync with the

updated directories.

http://ipAddress:port/rvdinsert
http://ipAddress:port/searchwithcve

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 34 Version 1.0 5 July 2023

Confidentiality: Public Distribution

4.1.3 Identification of potential attacks

The output of the Identification of vulnerabilities process (a list of CVE-IDs) serves as

input for the Identification of potential attacks process. The rationale behind this

process has been described in 3.1.1.1. The fact that two different vulnerability

repositories (CVE and RVD) are utilized from the SESAME security assessment

methodology allows the usage of two individual tools in this particular process, CVE-

search and CAPEC custom identifier.

CVE-search: CVE-search is already described in the previous subsection; however, it

is also mentioned here since it can be requested for known attacks related to a provided

CVE-ID or a specific product (software/hardware). In case of requesting for a specific

vulnerability and if the output of the request is defined to be in JSON format, one part

of the information that is returned is a list of attacks that are related to the given

vulnerability.

Listing 5 and Listing 6 depict the search command and the corresponding output

respectively.

~/# ./bin/search.py -p microsoft:windows_7 -a -o json

Listing 5: cve-search command for vulnerabilities related to specific software

{

 "Modified": "2017-09-19 01:31:00",

 "Published": "2011-03-03 20:00:00",

 "access": {

 "authentication": "NONE",

 "complexity": "HIGH",

 "vector": "NETWORK"

 },

 "assigner": "product-security@apple.com",

 "capec": [

 {

 "execution_flow": {

 "1": {

 "Description": "[Identify target application]...",

 "Phase": "Explore",

 "Techniques": []

 },

 "2": {

 "Description": "[Find injection vector] The ...",

 "Phase": "Experiment",

 "Techniques": ["Provide large input to a ..."]

 },

 "3": {

 "Description": "[Craft overflow content] The ...",

 "Phase": "Experiment",

 "Techniques": ["Create malicious shellcode ..."]

 "4": {

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 35

Confidentiality: Public Distribution

 "Description": "[Overflow the buffer] Using the...",

 "Phase": "Exploit",

 "Techniques": []

 }

 },

 "id": "8",

 "loa": "High",

 "name": "Buffer Overflow in an API Call",

 "prerequisites": "The target host exposes an API ...",

 "related_capecs": ["100"],

 "related_weakness": ["118", "119", "120", "20", "680", "697", "733",

"74"],

 "solutions": "Use a language or compiler that ... ",

 "summary": "This attack targets libraries or ...",

 "taxonomy": {},

 "typical_severity": "High"

 }

],

 "cvss": 7.6,

 "cvss-time": "2017-09-19 01:31:00",

 "cvss-vector": "AV:N/AC:H/Au:N/C:C/I:C/A:C",

 "cvss3": null,

 "cwe": "CWE-119",

 "exploitabilityScore": 4.9,

 "id": "CVE-2011-0112",

 "impact": {

 "availability": "COMPLETE",

 "confidentiality": "COMPLETE",

 "integrity": "COMPLETE"

 },

 "impactScore": 10.0,

 "last-modified": {

 "$date": 1505784660000

 },

 "products": ["itunes", "webkit"],

 "references": ["http://support.apple.com/kb/HT4554"],

 "summary": "WebKit, as used in Apple iTunes before 10.2 ...",

 "vendors": ["apple"],

 "vulnerable_configuration":

["cpe:2.3:a:apple:itunes:4.6.0:*:*:*:*:*:*:*"],

 "vulnerable_configuration_cpe_2_2": [],

 "vulnerable_configuration_stems": ["cpe:2.3:a:apple:itunes"],

 "vulnerable_product": ["cpe:2.3:a:apple:itunes:4.6.0:*:*:*:*:*:*:*"],

 "vulnerable_product_stems": ["cpe:2.3:a:apple:itunes"]

}
Listing 6: cve-search example vulnerability output

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 36 Version 1.0 5 July 2023

Confidentiality: Public Distribution

The command in Listing 5 requests the CVE repository for all the known vulnerabilities

related with Microsoft Windows 7 operating system. The very last part of the command

shows that the requested output should be in JSON format.

Listing 6 depicts just one of the vulnerabilities related to Microsoft Windows 7

operating system, with id ―CVE-2011-0112‖ and CVSS score ―7.6‖. Under the ―capec‖

element we see that the vulnerability is related to the attack named ―Buffer Overflow in

an API Call‖ and id ―8‖.

CVE-search is used for identifying the potential attacks that can be conducted against a

target system taking advantage of known vulnerabilities that are documented in the

CVE repository.

CAPEC custom identifier: A tool with similar functionality to the one described in the

previous paragraphs has been developed for the CAPEC database. Similarly to the RVD

parser, CAPEC custom identifier utilizes a local instance of the CAPEC catalogue for

retrieving information about known attacks based on given known weaknesses. A set of

Java classes has been created for storing all the information camming from the CAPEC

repository (Figure 13). As we can see, the CAPEC repository includes an

―AttackPatternCatalog‖, which includes a list of ―AttackPatterns‖. The ―AttackPattern‖

class corresponds to the known vulnerabilities including a lot information such as

related weaknesses, related attacks and proposed mitigation actions.

A REST API has been created for inserting the latest version of the CAPEC catalogue,

creating a local instance. The corresponding code snippet is depicted in Listing 7.

@PostMapping(value = "/capecinsert")

public String capecInsert(@RequestBody Capec capecJson) {

 //Generate the capec database (capecs) with the input from the capecJson

object

 …

 System.out.println("Local CAPEC repository has been updated");

 return "rvdresult";

}
Listing 7: REST API for the update of the local version of the CAPEC database

As it can be seen, the API endpoint is http://ipAddress:port/capecinsert and the

anticipated body of the request is a CAPEC object, which includes a list of known

attacks. The structure of the CAPEC class can be seen in Figure 13. The @PostMapping

annotation ensures that HTTP POST requests are mapped onto a specific handler

method, the capecInsert in this case. The request is expected to have a body in

application/json format. The @RequestBody annotation enables the automatic

deserialization of the request body onto a Java object. The request body is mapped to a

corresponding Java instance and then inserted into the capecs array list in the file

system. This API endpoint allows for the regular update of the CAPEC local version to

include any newly added known attacks.

One of the desired functionalities of the CAPEC custom identifier is to be able to

discover known attacks based on given CWEs. This list of CWEs is created by the RVD

parser we have already described and includes the known weaknesses related to a given

http://ipAddress:port/capecinsert

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 37

Confidentiality: Public Distribution

vulnerability. A REST API is available for initiating the process of querying the local

CAPEC catalogue instance, and is depicted in Listing 8. The API endpoint is

http://ipAddress:port/searchwithcwe . The @PostMapping annotation ensures that

HTTP POST requests are mapped onto the corresponding ―searchWithCwe‖ handler

method. Regarding the logic, the CAPEC catalogue is searched against every incoming

CWE. If there is a match with the related CWEs of a known attack, the known attack is

stored in the ―capecFilteredArraylist‖ list, creating the output.

http://ipAddress:port/searchwithcwe

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 38 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 13: CAPEC classes of the custom CAPEC identifier

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 39

Confidentiality: Public Distribution

@PostMapping(value = "/searchwithcwe")

public String searchWithCwe(@RequestBody ArrayList<String> cweIds) {

 ArrayList<AttackPattern> capecFilteredArraylist = new Ar-rayList<>();

 //Iterate all cwe to find the capecs

 for (int i = 0; i < cweIds.size(); i++) {

 String tempCWE= cweIds.get(i).substring(4);

 for (int j = 0; j <capecs.size() ; j++) {

 AttackPattern tempCapec = capecs.get(j);

 for (int k = 0; k <temp-

Capec.related_Weaknesses.related_Weakness.size() ; k++) {

 RelatedWeakness tempRelatedWeak-

ness=tempCapec.related_Weaknesses.related_Weakness.get(k);

 if (tempRelatedWeakness.cWEID.equals(tempCWE)){

 capecFilteredArraylist.add(tempCapec);

 }

 }

 }

 }

 System.out.println("The following CAPECs have been identified as potential

attacks related to :" + cveId);

 for (int i = 0; i < capecFilteredArraylist.size(); i++) {

 System.out.print(" "+capecFilteredArraylist.get(i).iD);

 }

 return "rvdresult";

}
Listing 8: REST API for querying for CAPECs based on a given CWE list

4.1.4 Generation of attack trees

The Generation of attack trees process includes two steps, the creation of relatively

small attack trees based on the "CanFollow" and "CanPrecede" relationships between

different attack patterns of the CAPEC repository, and the utilization of the Template

Attack Trees.

Regarding the first step, a Java class has been created for storing the information of a

―CanFollow‖ or ―CanPrecede‖ tree (Listing 9). Such a tree is an ArrayList of

corresponding nodes. Each node is directly connected to its parent node and children

nodes. This connection stores the information of which attack could follow or precede a

current attack. Roots of the ―CanFollow‖ and ―CanPrecede‖ trees compared with

Template Attack Trees’ leaves, and in case of a match, the former are incorporated to

the later.

package canprecede.model;

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 40 Version 1.0 5 July 2023

Confidentiality: Public Distribution

import java.util.ArrayList;

public class CanFollowPrecedeTree {

 private ArrayList<CanFollowPrecedeNode> nodes = new ArrayList<>();

 public ArrayList<CanFollowPrecedeNode> getNodes() {

 return nodes;

 }

 public void setNodes(ArrayList<CanFollowPrecedeNode> nodes) {

 this.nodes = nodes;

 }

 public void setNode(CanFollowPrecedeNode node) {

 this.nodes.add(node);

 }

 @Override

 public String toString() {

 return "CanPrecedeTree{" +

 "nodes=" + nodes +

 '}';

 }

}
Listing 9: Java class for CanFollow/CanPrecede trees

The Java class depicted in Listing 9 is also used for storing Template Attack Trees.

Such trees are pre-defined and stored in the form of a repository (list of Java classes).

After the identification of the potential attacks of a target system, during the

Identification of potential attacks process, the created list of attacks is compared with

the leaves of all the available Template Attack Trees to end up with a subset of them

called ―matching Template Attack Trees‖. Listing 10 includes the Java method that does

exactly that. The ―allTemplateAttackTrees” list includes all the predefined Template

Attack Trees. The ―checkLeavesFromCanPrecedeNode‖ method is called is called for

each of them, characterizing it as ―potential attack tree for the target system‖ or ―NOT

potential attack tree for the target system‖.

// method to return all the matched template trees

public CanPrecedeTree getMatchingTemplateTrees () {

 CanPrecedeTree matchingTrees = new CanPrecedeTree2();

 System.out.println("Find matching Attack-tree templates based on identi-

fied CAPECs...");

 // check all the available template attack trees

 int matchedTemplates = 0;

 for (int i = 0; i < allTemplateAttackTrees.getNodes().size(); i++) {

 CanPrecedeNode currentTemplateTree = allTemplateAttack-

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 41

Confidentiality: Public Distribution

Trees.getNodes().get(i);

 if (checkLeavesFromCanPrecedeNode(currentTemplateTree)) {

 matchingTrees.setNode(currentTemplateTree);

 System.out.println("Attack tree with root \"" + currentTemplat-

eTree.getData() + "\" is a potential attack tree for the target system.");

 matchedTemplates++;

 } else {

 System.out.println("Attack tree with root \"" + currentTemplat-

eTree.getData() + "\" is NOT a potential attack tree for the target sys-

tem.");

 }

 }

 return matchingTrees;

}
Listing 10: Java method for identifying “matching Template Attack Trees”

 // method to check if a given Tree (=CanPrecedeNode2) is a match or not,

based on the identified CAPECs

 public boolean checkLeavesFromCanPrecedeNode(CanPrecedeNode node) {

 boolean matchFlag = true;

 // if the node has children

 if (node.getChildren().size() > 0) {

 // if the node is gate

 if (node.getNodeType().equals(CanPrecedeNode.Type.GATE)) {

 // check if each child matches or not (childrenMatches list)

 ArrayList<Boolean> childrenMatches = new ArrayList<>();

 for (int i = 0; i < node.getChildren().size(); i++) {

 CanPrecedeNode currentChild = node.getChildren().get(i);

 childrenMatch-

es.add(checkLeavesFromCanPrecedeNode(currentChild));

 }

 // OR gate

 if (node.getData().equals("OR")) {

 matchFlag = false;

 for (int i = 0; i < childrenMatches.size(); i++) {

 if (childrenMatches.get(i).booleanValue() == true) {

 matchFlag = true;

 break;

 }

 }

 }

 // AND gate

 if (node.getData().equals("AND")) {

 matchFlag = true;

 for (int i = 0; i < childrenMatches.size(); i++) {

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 42 Version 1.0 5 July 2023

Confidentiality: Public Distribution

 if (childrenMatches.get(i).booleanValue() == false) {

 matchFlag = false;

 break;

 }

 }

 }

 }

 // if the node is not a gate

 if (!node.getNodeType().equals(CanPrecedeNode.Type.GATE)) {

 matchFlag = checkLeavesFromCanPrecede-

Node(node.getChildren().get(0));

 }

 return matchFlag;

 } else {

 matchFlag = checkCapec(node.getData());

 return matchFlag;

 }

 }
Listing 11: Java method for matching a given tree with a set of potential attacks

The way the Java class for the Templates Attack Trees is implemented, allows for

recursive parsing as the ―checkLeavesFromCanPrecedeNode‖ method in Listing 11

depicts. The method calls itself for every child of a given tree node. The

―childrenMatches‖ method is an auxiliary one that is responsible for the actual

checking.

Along with the examples of Template Attack Trees of subsection 3.1.5, we present here

yet another example that incorporates both cyber and physical vulnerabilities. As it can

be seen, Figure 14 depicts a tree that is a combination of the trees presented earlier. The

―Publish tampered messages‖ and ―Lidar‖ Template Attack Trees are present. A similar

with the ―Lidar‖ tree is also incorporated but this time for the camera sensor.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 43

Confidentiality: Public Distribution

Figure 14: Template Attack Tree with cyber and physical vulnerabilities

The ultimate goal of the tree is one drone to be instructed to crash on another drone. The way for the attacker to accomplish their

goal is drone A to be instructed to crash to drone B and at the same time drone B to suffer from loss of vision. The first prerequisite

is

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 44 Version 1.0 5 July 2023

Confidentiality: Public Distribution

achieved either by a GPS jamming attack that causes erroneous navigation to the drone

or by publishing tampered messages to the corresponding navigation topic of a message

queue. The second prerequisite is necessary since drone may use their camera and

appropriate software to avoid collision with obstacles. Since there might be two sensors

(camera and lidar) that can be used by a drone for that purpose, both of them should be

disabled, and no pre-flight checks should notice the vandalism.

We have already mention that security and safety are closely linked. This tree is another

opportunity to do so.

In a combined safety/security tree (attack/fault tree), non-malicious causes of non-

functional system components can be also incorporated. So, we could e.g. have a

mixture of security attacks (e.g. tampered messages or GPS jamming) and safety faults

(e.g. buildup of soot on the camera/lidar lenses). Such a tree could then form one

constituent part of the whole.

4.1.5 Generation of security EDDIs

The set of ―potential attack trees for the target system‖, output of the Generation of

attack trees process, incorporates all the possible attack scenarios that could take place,

based on the vulnerabilities (cyber and physical) of the target system. The high-level

information that is gathered for each attack can be seen in Listing 12, including
“capecId”, “title”, “capecDescription”, “severity”, “likelihood”,
“mitigation”, “relatedCapecs”, “relatedCwes”, and “relatedCves”.

{

 "capecId": "70",

 "title": "Try Common or Default Usernames and Passwords",

 "capecDescription": "An adversary may try certain common or default

usernames and

 passwords to gain access into the system and perform unauthorized ac-

tions. An adversary

 may try an intelligent brute force using empty passwords, known vendor

default credentials,

 as well as a dictionary of common usernames and passwords. Many vendor

products come

 preconfigured with default (and thus well-known) usernames and passwords

that should be

 deleted prior to usage in a production environment. It is a common mis-

take to forget to

 remove these default login credentials. Another problem is that users

would pick very

 simple (common) passwords (e.g. \"secret\" or \"password\") that make it

easier for the

 attacker to gain access to the system compared to using a brute force at-

tack or even a

 dictionary attack using a full dictionary.",

 "severity": "High",

 "type": "Detailed",

 "likelihood": "Medium",

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 45

Confidentiality: Public Distribution

 "mitigation": "[Delete all default account credentials that may be put in

by the product

 vendor., Implement a password throttling mechanism. This mechanism should

take into account

 both the IP address and the log in name of the user., Put together a

strong password policy

 and make sure that all user created passwords comply with it. Alterna-

tively automatically

 generate strong passwords for users., Passwords need to be recycled to

prevent aging, that

 is every once in a while a new password must be chosen.]",

 "relatedCapecs": [

 {

 "nature": "ChildOf",

 "cAPECID": "49",

 "selfClosing": "true"

 },

 {

 "nature": "CanPrecede",

 "cAPECID": "600",

 "selfClosing": "true"

 },

 ...

],

 "relatedCwes": [

 {

 "cWEID": "521",

 "selfClosing": "true"

 },

 ...

],

 "relatedCves": [

 {

 "cveId": "CVE-2019-5021",

 "vulnerabilityDescription": "Versions of the Official Alpine Linux

Docker images

 (since v3.3) contain a NULL password for the `root` user. This vul-

nerability

 appears to be the result of a regression introduced in December of

2015. Due to

 the nature of this issue, systems deployed using affected versions of

the Alpine

 Linux container which utilize Linux PAM, or some other mechanism

which uses the

 system shadow file as an authentication database, may accept a NULL

password for

 the `root` user.",

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 46 Version 1.0 5 July 2023

Confidentiality: Public Distribution

 "cvssScore": 9.8,

 "cvssVector": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",

 "vulnerableAsset": [

 {

 "cpeId": "cpe:2.3:a:gliderlabs:docker-alpine:3.3:*:*:*:*:*:*:*",

 "id": 0

 },

 ...

],

 "relatedCapecs": [

 "70",

 "191"

],

 "id": 0

 },

 ...

],

 "relatedCapecs": [

 "70",

 "191"

],

 "id": 0

 }

],

 "id": 0

 }
Listing 12: Snippet of code depicting the information that is gathered for every identified potential at-

tack of the target system

This information is then translated into the security EDDIs. The security EDDI consists

of a set of such Python scripts, one for each identified potential attack tree. Auxiliary

applications are an MQTT broker and an Intrusion Detection System (IDS). The Python

scripts hold the logic for discovering the ultimate goal of an attacker based on the

information of each potential attack tree and the alerts that are created from the running

IDS.

The IDS filters the network traffic of the system for malicious or suspicious packets and

creates an alert every time it detects one. These alerts are then published in an MQTT

topic. Every Python script listens to that topic, waiting for alerts of a conducted attack.

As soon as such an alert is detected, the logic in the Python script parses the tree based

on the parent/child relationships of the attacks, trying to identify the ultimate goal of the

attacker. The conducted attack itself is checked against the leaves of the tree. If there is

a match, the checking continues to the upper level of nodes, until the root is reached. If

the parsing of the tree reaches the root, the ultimate goal of the attacker can be achieved

based on the on-going cyber-attacks, recognised by the IDS, and present physical

attacks. It should be mentioned that IDS is not able to detect physical attacks. In their

majority, physical attacks are identified during design time. Sensors that could detect

physical attacks are out of the expertise of the authors of this document. However, such

a sensor of physical attacks could easily be incorporated in the security EDDI solution

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 47

Confidentiality: Public Distribution

due to the distributed nature of the latter. The only thing that is needed is a MQTT topic

that such a sensor would publish its alerts to and the corresponding Python scripts to

listen to it.

def connect_mqtt():

 def on_connect(client, userdata, flags, rc):

 if rc == 0:

 print("Connected to MQTT Broker!")

 else:

 print("Failed to connect, return code %d\n", rc)

 # Set Connecting Client ID

 client = mqtt_client.Client(client_id)

 #client.username_pw_set(username, password)

 client.on_connect = on_connect

 client.connect(broker, port)

 return client

…

def subscribe(client: mqtt_client):

 def on_message(client, userdata, msg):

 # convert json data to dictionary

 print(f"Received `{msg.payload.decode()}` from `{msg.topic}` topic")

 message_dict = json.loads(msg.payload)

 updateAllVariables(message_dict)

 client.subscribe(topic)

 client.subscribe(topic2)

 client.on_message = on_message

…

def checkFaultTree():

 print("checking fault tree...")

 global messageQueueCLI

 global compromisedRobotAPI

 global publishTamperedMessages

 # start of first layer

 if capec94.enabled and droneCompromised:

 print("Attacker uses a meesage queue cli interface")

 messageQueueCLI = True

 if capec8.enabled or capec63.enabled:

 print("Attacker compromises robot API")

 compromisedRobotAPI = True

 # end of first layer

 # Goal

 if messageQueueCLI or compromisedRobotAPI:

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 48 Version 1.0 5 July 2023

Confidentiality: Public Distribution

 print("Publish tampered messages to communication "

 "topic to change the robot trajectory")

 publishTamperedMessages = True

Listing 13: Python script for a specific “publish tampered mesages” attack tree, part of the security
EDDI

Listing 13 depicts snippets from such a Python script, part of a security EDDI. The

script corresponds to the attack tree with ultimate goal ―publish tampered messages‖

shown in Figure 4. The ―connect_mqtt()‖ function connects the script to the MQTT

broker. The ―subscribe‖ function makes the subscription to the topic where the IDS

alerts are published. Finally, the ―checkFaultTree‖ function includes the logic for

parsing the attack tree.

4.1.6 Runtime security- Intrusion Detection System

As it is mentioned already, the produced information from the security assessment

process is incorporated in the security EDDI, transferring said information to the

runtime to be used for the mitigation of threats. The prerequisite, in this case is the

monitoring of the security events that need to take place also during runtime. The tool

that is responsible for monitoring the network incoming malicious packets is an IDS.

An IDS is a monitoring system designed to detect suspicious activities in the

communication between a system and its external entities. When such activities are

identified, the IDS generates alerts to notify a system administrator or incident

responder for further investigation and implementation of mitigation measures. IDSs

can be categorized into three main types: host-based, network-based, and application-

based. Host-based IDSs are installed directly on individual hosts and monitor both

incoming and outgoing network traffic. These IDSs are typically deployed on systems

that handle sensitive data, cannot easily receive patches, or require additional security

measures. Network-based IDSs, on the other hand, are positioned at strategic points

within a network, such as the gateway, and analyse the traffic exchanged between

different network devices. They act as filters to identify potential intrusions.

Application-based IDSs focus on monitoring specific application protocols, such as the

SQL protocol, in order to detect and respond to intrusions that target those protocols.

The tool that was chosen for the monitoring of the incoming packets is a signature-

based IDS, which detects suspicious packets based on specific patterns in their headers

or body. More specifically, Snort is the tool that will be used due to its wide adoption.

Snort is a well-known open-source IDS that has gained popularity and has been

extensively studied in the literature. It employs a rule-based approach to define

malicious network activity, triggering alerts when a rule is matched. Developed by

Sourcefire since 1998, Snort utilizes a single-threaded architecture and relies on the

TCP/IP stack to capture and inspect network packets, including their headers and

bodies. It offers the flexibility to be configured as a comprehensive network Intrusion

Prevention System (IPS) that not only monitors network activity but also detects and

blocks potential attack vectors. When satisfied rules are triggered, alerts are generated

and logged, enabling the creation of reports based on these alerts. Snort is particularly

suitable for fulfilling lightweight IDS requirements.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 49

Confidentiality: Public Distribution

According to the CVE-2016-6267 vulnerability (NVD), Trend Micro Smart Protection

Server allows remote authenticated users to execute arbitrary commands. To illustrate

the functionality of Snort and provide an example output, we will utilize the Snort rule

presented in Figure 15. This rule is designed to identify packets originating from a user

attempting to exploit the aforementioned vulnerability and carry out an attack. The rule

is triggered when the string "/admin_notification.php" is detected in the http_uri path

(lines 4-5) and the string "spare_Community=" is present in the http_client_body (lines

6-7). The message to be printed when the alert is generated is specified in line 2, while

line 3 denotes the direction of the packets that could trigger this rule. Line 9 includes a

reference to the associated vulnerability, and line 11 assigns a unique identifier to this

rule.

Figure 15: Snort - example rule

Using the Lab1 pcap file, available with the installation of Snort, we were able to send

traffic to Snort with packets that can trigger the above rule. The rule was matched

against four packets included in the pcap file (alerts: 4). An alert was created for each

match, including the message ―SERVER – WEBAPP Trend Micro SPS command

injection attempt‖ (Figure 16).

Figure 16: Snort example output

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 50 Version 1.0 5 July 2023

Confidentiality: Public Distribution

5. APPLYING SESAME METHODOLOGY

In this section, we will present how the SESAME security assessment can be applied to

the project use cases. ROS is present in all three use cases that SESAME security

assessment is being evaluated for: unmanned aerial vehicles (UAVs) for fighting fungal

diseases in vineyards, inspection of a power station using UAVs in two operation modes

(normal and emergency), and safe and secure deployment of a fleet of AMR with task

exchangeability. Based on that common ground we conducted a security assessment

according to the proposed methodology and its individual processes.

Using the CVE-search open-source tool and the RVD custom parser tool we requested

both CVE and RVD for known vulnerabilities. The outcome of the requests was 11

vulnerabilities, presented in Table 2.

Table 2: Identified ROS-related vulnerabilities in CVE and NVD repositories

CVE-IDs CWE-IDs CWE Name

CVE-2016-10681 CWE-300 Channel Accessible by Non-Endpoint

CVE-2016-10681 CWE-310 Cryptographic Issues

CVE-2019-13445 CWE-190 Integer Overflow or Wraparound

CVE-2019-13465 CWE-noinfo NA

CVE-2019-13566 CWE-120 Buffer Copy without Checking Size of Input ('Classic Buff-
er Overflow')

CVE-2019-19625 CWE-200 Exposure of Sensitive Information to an Unauthorized
Actor

CVE-2019-19627 CWE-200 Exposure of Sensitive Information to an Unauthorized
Actor

CVE-2020-10271 CWE-668 Exposure of Resource to Wrong Sphere

CVE-2020-10272 CWE-306 Missing Authentication for Critical Function

CVE-2020-10289 CWE-20 Improper Input Validation

CVE-2020-16124 CWE-190 Integer Overflow or Wraparound

As it can be seen, the CVE-IDs along with the corresponding CWE-IDs and the CWE

names are presented. The CVE-IDs represent identified vulnerabilities, which are

associated with specific weaknesses (CWE-IDs) such as buffer overflow, missing

authentication, exposure of sensitive information, and more. Each weakness is

connected to particular attack patterns that adversaries can exploit when leveraging the

identified weakness. Consequently, the defined weaknesses give rise to a range of

potential attacks, as outlined in Table 3.

Table 3: Identified ROS-related attack patterns in CAPEC repository

CWE-IDs CAPEC-IDs CAPEC Name

CWE-300 CAPEC-466 Leveraging Active Adversary in the Middle Attacks to Bypass
Same Origin Policy

 CAPEC-57 Utilizing REST's Trust in the System Resource to Obtain Sen-
sitive Data

 CAPEC-589 DNS Blocking

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 51

Confidentiality: Public Distribution

CWE-IDs CAPEC-IDs CAPEC Name

 CAPEC-590 IP Address Blocking

 CAPEC-612 WiFi MAC Address Tracking

 CAPEC-613 WiFi SSID Tracking

 CAPEC-615 Evil Twin Wi-Fi Attack

 CAPEC-662 Adversary in the Browser (AiTB)

 CAPEC-94 Adversary in the Middle (AiTM)

CWE-310 -

CWE-190 CAPEC-92 Forced Integer Overflow

CWE-120 CAPEC-10 Buffer Overflow via Environment Variables

 CAPEC-100 Overflow Buffers

 CAPEC-14 Client-side Injection-induced Buffer Overflow

 CAPEC-24 Filter Failure through Buffer Overflow

 CAPEC-42 MIME Conversion

 CAPEC-44 Overflow Binary Resource File

 CAPEC-45 Buffer Overflow via Symbolic Links

 CAPEC-46 Overflow Variables and Tags

 CAPEC-47 Buffer Overflow via Parameter Expansion

 CAPEC-67 String Format Overflow in syslog()

 CAPEC-8 Buffer Overflow in an API Call

 CAPEC-9 Buffer Overflow in Local Command-Line Utilities

 CAPEC-92 Forced Integer Over

CWE-200 CAPEC-116 Excavation

 CAPEC-13 Subverting Environment Variable Values

 CAPEC-169 Footprinting

 CAPEC-22 Exploiting Trust in Client

 CAPEC-224 Fingerprinting

 CAPEC-285 ICMP Echo Request Ping

 CAPEC-287 TCP SYN Scan

 CAPEC-290 Enumerate Mail Exchange (MX) Records

 CAPEC-291 DNS Zone Transfers

 CAPEC-292 Host Discovery

 CAPEC-293 Traceroute Route Enumeration

 CAPEC-294 ICMP Address Mask Request

 CAPEC-295 Timestamp Request

 CAPEC-296 ICMP Information Request

 CAPEC-297 TCP ACK Ping

 CAPEC-298 UDP Ping

 CAPEC-299 TCP SYN Ping

 CAPEC-300 Port Scanning

 CAPEC-301 TCP Connect Scan

 CAPEC-302 TCP FIN Scan

 CAPEC-303 TCP Xmas Scan

 CAPEC-304 TCP Null Scan

 CAPEC-305 TCP ACK Scan

 CAPEC-306 TCP Window Scan

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 52 Version 1.0 5 July 2023

Confidentiality: Public Distribution

CWE-IDs CAPEC-IDs CAPEC Name

 CAPEC-307 TCP RPC Scan

 CAPEC-308 UDP Scan

 CAPEC-309 Network Topology Mapping

 CAPEC-310 Scanning for Vulnerable Software

 CAPEC-312 Active OS Fingerprinting

 CAPEC-313 Passive OS Fingerprinting

 CAPEC-317 IP ID Sequencing Probe

 CAPEC-318 IP 'ID' Echoed Byte-Order Probe

 CAPEC-319 IP (DF) 'Don't Fragment Bit' Echoing Probe

 CAPEC-320 TCP Timestamp Probe

 CAPEC-321 TCP Sequence Number Probe

 CAPEC-322 TCP (ISN) Greatest Common Divisor Probe

 CAPEC-323 TCP (ISN) Counter Rate Probe

 CAPEC-324 TCP (ISN) Sequence Predictability Probe

 CAPEC-325 TCP Congestion Control Flag (ECN) Probe

 CAPEC-326 TCP Initial Window Size Probe

 CAPEC-327 TCP Options Probe

 CAPEC-328 TCP 'RST' Flag Checksum Probe

 CAPEC-329 ICMP Error Message Quoting Probe

 CAPEC-330 ICMP Error Message Echoing Integrity Probe

 CAPEC-472 Browser Fingerprinting

 CAPEC-497 File Discovery

 CAPEC-508 Shoulder Surfing

 CAPEC-573 Process Footprinting

 CAPEC-574 Services Footprinting

 CAPEC-575 Account Footprinting

 CAPEC-576 Group Permission Footprinting

 CAPEC-577 Owner Footprinting

 CAPEC-59 Session Credential Falsification through Prediction

 CAPEC-60 Reusing Session IDs (aka Session Replay)

 CAPEC-616 Establish Rogue Location

 CAPEC-643 Identify Shared Files/Directories on System

 CAPEC-646 Peripheral Footprinting

 CAPEC-651 Eavesdropping

 CAPEC-79 Using Slashes in Alternate Encoding

CWE-668 -

CWE-306 CAPEC-12 Choosing Message Identifier

 CAPEC-166 Force the System to Reset Values

 CAPEC-36 Using Unpublished Interfaces

 CAPEC-62 Cross Site Request Forgery

CWE-20 CAPEC-10 Buffer Overflow via Environment Variables

 CAPEC-101 Server Side Include (SSI) Injection

 CAPEC-104 Cross Zone Scripting

 CAPEC-108 Command Line Execution through SQL Injection

 CAPEC-109 Object Relational Mapping Injection

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 53

Confidentiality: Public Distribution

CWE-IDs CAPEC-IDs CAPEC Name

 CAPEC-110 SQL Injection through SOAP Parameter Tampering

 CAPEC-120 Double Encoding

 CAPEC-13 Subverting Environment Variable Values

 CAPEC-135 Format String Injection

 CAPEC-136 LDAP Injection

 CAPEC-14 Client-side Injection-induced Buffer Overflow

 CAPEC-153 Input Data Manipulation

 CAPEC-182 Flash Injection

 CAPEC-209 XSS Using MIME Type Mismatch

 CAPEC-22 Exploiting Trust in Client

 CAPEC-23 File Content Injection

 CAPEC-230 XML Nested Payloads

 CAPEC-231 Oversized Serialized Data Payloads

 CAPEC-24 Filter Failure through Buffer Overflow

 CAPEC-250 XML Injection

 CAPEC-261 Fuzzing for garnering other adjacent user/sensitive data

 CAPEC-267 Leverage Alternate Encoding

 CAPEC-28 Fuzzing

 CAPEC-3 Using Leading 'Ghost' Character Sequences to Bypass Input
Filters

 CAPEC-31 Accessing/Intercepting/Modifying HTTP Cookies

 CAPEC-42 MIME Conversion

 CAPEC-43 Exploiting Multiple Input Interpretation Layers

 CAPEC-45 Buffer Overflow via Symbolic Links

 CAPEC-46 Overflow Variables and Tags

 CAPEC-47 Buffer Overflow via Parameter Expansion

 CAPEC-473 Signature Spoof

 CAPEC-52 Embedding NULL Bytes

 CAPEC-53 Postfix, Null Terminate, and Backslash

 CAPEC-588 DOM-Based XSS

 CAPEC-63 Cross-Site Scripting (XSS)

 CAPEC-64 Using Slashes and URL Encoding Combined to Bypass Valida-
tion Logic

 CAPEC-664 Server Side Request Forgery

 CAPEC-67 String Format Overflow in syslog()

 CAPEC-7 Blind SQL Injection

 CAPEC-71 Using Unicode Encoding to Bypass Validation Logic

 CAPEC-72 URL Encoding

 CAPEC-73 User-Controlled Filename

 CAPEC-78 Using Escaped Slashes in Alternate Encoding

 CAPEC-79 Using Slashes in Alternate Encoding

 CAPEC-8 Buffer Overflow in an API Call

 CAPEC-80 Using UTF-8 Encoding to Bypass Validation Logic

 CAPEC-81 Web Logs Tampering

 CAPEC-83 XPath Injection

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 54 Version 1.0 5 July 2023

Confidentiality: Public Distribution

CWE-IDs CAPEC-IDs CAPEC Name

 CAPEC-85 AJAX Footprinting

 CAPEC-88 OS Command Injection

 CAPEC-9 Buffer Overflow in Local Command-Line Utilities

The first column of the table includes the IDs of the weaknesses mentioned in Table 2.

The remaining two columns in the table present the IDs and names of the attack patterns

associated with each weakness. These attack patterns encompass a range of attacks that

could potentially be executed against our system. The level of detail provided for each

attack varies, with some being more abstract and others offering a more granular

description. Detailed attack patterns are particularly valuable for our process, especially

when identifying mitigations. Although each of the attacks included in the table above

is a threat for our system on its own, some of them can be combined and create more

complex attacks. Using the CanFollow and CanPrecede relationships between the attack

patterns four small trees are created, presented in Figure 17.

Figure 17: Combined attack patterns based on the CanFollow and CanPrecede relationships

These trees group together attacks that can be conducted in sequence. One attack can

create the necessary prerequisites for another attack to happen.

The process of constructing the Template Attack Trees can start as soon as the

identification of potential attacks is concluded. During this process, security experts

create attack trees, which include a subset of the identified potential attacks. This can be

done utilizing knowledge published in the security related literature or available from

real-life conducted attacks incidents of the past. Such a Template Attack Tree that

includes CAPECs 8, 63, and 94 has already been depicted in Figure 4.

An updated version of it is shown in Figure 18. This version includes one of the

CanPrecede trees that were created according to the methodology described in 3.1.6. As

we saw in Figure 17, CAPEC-85 AJAX Footprinting is an attack that can open the way

for another attack with id CAPEC-63 Cross-Site Scripting (XSS). This exact

information is added in the updated version of the "publish tempered messages‖

Template Attack Tree, as the leaf at the very right side depicts.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 55

Confidentiality: Public Distribution

Figure 18: Updated version of the "publish tempered messages” Template Attack Tree

The next in line process of the proposed methodology is the creation of the security

EDDI. In our example, since a Template Attack Tree from the 'Template Attack Tree'

repository is considered a tree that describes an attack that could be conducted against

the target system, the next step is to create a Python script related to that tree.

class commonAttack:

 def __init__(self, capecID):

 self.name = capecID

 self.enabled = False

droneCompromised = False

messageQueueCLI = False

compromisedRobotAPI = False

publishTamperedMessages = False

capec8 = commonAttack(8)

capec63 = commonAttack(63)

capec94 = commonAttack(94)

listOfAttacks = [capec8,capec63,capec94,droneCompromised]

from paho.mqtt import client as mqtt_client

import json

broker = '127.0.0.1'

port = 1883

topic2 = "snort"

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 56 Version 1.0 5 July 2023

Confidentiality: Public Distribution

client_id = f'python-mqtt-eddi'

def connect_mqtt():

 def on_connect(client, userdata, flags, rc):

 if rc == 0:

 print("Connected to MQTT Broker!")

 else:

 print("Failed to connect, return code %d\n", rc)

 # Set Connecting Client ID

 client = mqtt_client.Client(client_id)

 #client.username_pw_set(username, password)

 client.on_connect = on_connect

 client.connect(broker, port)

 return client

def subscribe(client: mqtt_client):

 def on_message(client, userdata, msg):

 # convert json data to dictionary

 print(f"Received `{msg.payload.decode()}` from `{msg.topic}` topic")

 message_dict = json.loads(msg.payload)

 updateAllVariables(message_dict)

 client.subscribe(topic2)

 client.on_message = on_message

def checkFaultTree():

 print("checking fault tree...")

 global messageQueueCLI

 global compromisedRobotAPI

 global publishTamperedMessages

 # start of first layer

 if capec94.enabled and droneCompromised:

 print("Attacker uses a meesage queue cli interface")

 messageQueueCLI = True

 if capec8.enabled or capec63.enabled:

 print("Attacker compromises robot API")

 compromisedRobotAPI = True

 # end of first layer

 # Goal

 if messageQueueCLI or compromisedRobotAPI:

 print("Publish tampered messages to communication "

 "topic to change the robot trajectory")

 finalMsg = ""

 publishTamperedMessages = True

 print(listOfAttacks)

 sendToSafetyEDDI()

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 57

Confidentiality: Public Distribution

def sendToSafetyEDDI():

 print("Sending to SafetyEDDI")

def run():

 client = connect_mqtt()

 subscribe(client)

 client.loop_forever()

Press the green button in the gutter to run the script.

if __name__ == '__main__':

 run()
Listing 14: Python script (part of security EDDI) for the "publish tampered messages" Template Attack

Tree

Listing 14 includes the code of the Python script correlated with the "publish tampered

messages" Template Attack Tree. The ―connect_mqtt()‖, ―subscribe‖, and

―checkFaultTree‖ functions that we saw in 4.1.5 are also included. The presented script

subscribes to topic ―snort‖, since this is the topic that the running IDS publishes its

alerts.

This section showed a very simple example of how the SESAME security assessment

can be conducted. The set of vulnerabilities that we used as a starting point was small

(11 in total). However, even with that small set of vulnerabilities we end up with a

significantly larger set of potential attacks. Table 4 shows the identified attacks of the

UAVs for fighting fungal diseases in vineyards use case, based on a system description

that was provided. The first and the forth columns include known vulnerabilities of

system components. Columns 2 and 5 present the related weaknesses, while the third

and the sixth columns mention the attacks that are related to the given weaknesses.

Table 4: UAVs for fighting fungal diseases in vineyards use case identified attacks (Aero41)

CVE-IDs CWE-IDs CAPEC-IDs CVE-IDs CWE-IDs CAPEC-IDs

CVE-2015-20107 CWE-77 CAPEC-40 CVE-2021-3162 CWE-295 CAPEC-459

 CAPEC-136 CAPEC-475

 CAPEC-248 CVE-2016-9962 CWE-362 CAPEC-26

 CAPEC-43 CAPEC-29

 CAPEC-15 CVE-2019-14271 CWE-665 CAPEC-26

 CAPEC-183 CAPEC-29

 CAPEC-76 CVE-2021-44719 CWE-552 CAPEC-150

CVE-2022-45061 CWE-400 CAPEC-147 CAPEC-639

 CAPEC-492 CVE-2020-15360 CWE-862 CAPEC-665

CVE-2019-5736 CWE-78 CAPEC-6 CVE-2017-11468 CWE-770 CAPEC-230

 CAPEC-43 CAPEC-493

 CAPEC-88 CAPEC-528

 CAPEC-108 CAPEC-489

 CAPEC-15 CAPEC-125

CVE-2014-8179 CWE-20 CAPEC-182 CAPEC-147

 CAPEC-230 CAPEC-488

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 58 Version 1.0 5 July 2023

Confidentiality: Public Distribution

 CAPEC-28 CAPEC-496

 CAPEC-3 CAPEC-487

 CAPEC-42 CAPEC-130

 CAPEC-664 CAPEC-491

 CAPEC-67 CAPEC-229

 CAPEC-78 CAPEC-495

 CAPEC-13 CAPEC-197

 CAPEC-135 CAPEC-231

 CAPEC-14 CAPEC-469

 CAPEC-153 CAPEC-486

 CAPEC-262 CAPEC-490

 CAPEC-45 CAPEC-482

 CAPEC-72 CAPEC-494

 CAPEC-83 CVE-2021-26461 CWE-190 CAPEC-92

 CAPEC-109 CVE-2020-10281 CWE-319 CAPEC-383

 CAPEC-110 CAPEC-102

 CAPEC-120 CAPEC-117

 CAPEC-136 CAPEC-477

 CAPEC-22 CAPEC-65

 CAPEC-24 CVE-2020-10282 CWE-306 CAPEC-166

 CAPEC-250 CAPEC-12

 CAPEC-52 CAPEC-36

 CAPEC-71 CAPEC-62

 CAPEC-79 CVE-2020-28436 CWE-77 CAPEC-40

 CAPEC-73 CAPEC-136

 CAPEC-81 CAPEC-248

 CAPEC-85 CAPEC-75

 CAPEC-64 CAPEC-43

 CAPEC-7 CAPEC-15

 CAPEC-8 CAPEC-183

 CAPEC-31 CAPEC-76

 CAPEC-43 CVE-2022-38216 CWE-190 CAPEC-92

 CAPEC-588 CVE-2021-3749 CWE-1333 CAPEC-492

 CAPEC-80 CVE-2021-3749 CWE-400 CAPEC-147

 CAPEC-88 CAPEC-227

 CAPEC-10 CAPEC-492

 CAPEC-101 CVE-2021-3757 CWE-1321 CAPEC-77

 CAPEC-104 CAPEC-1

 CAPEC-108 CAPEC-180

 CAPEC-209 CVE-2022-31129 CWE-400 CAPEC-492

 CAPEC-267 CAPEC-147

 CAPEC-473

 CAPEC-23

 CAPEC-231

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 59

Confidentiality: Public Distribution

 CAPEC-46

 CAPEC-63

 CAPEC-9

 CAPEC-47

 CAPEC-53

CVE-2021-21284 CWE-22 CAPEC-78

 CAPEC-79

 CAPEC-64

 CAPEC-126

 CAPEC-76

CVE-2014-6407 CWE-59 CAPEC-132

 CAPEC-17

 CAPEC-76

CVE-2019-13509 CWE-532 CAPEC-219

CVE-2018-15514 CWE-502 CAPEC-586

CVE-2019-15752 CWE-732 CAPEC-127

 CAPEC-17

 CAPEC-180

 CAPEC-206

 CAPEC-60

 CAPEC-61

 CAPEC-1

 CAPEC-122

 CAPEC-234

 CAPEC-62

 CAPEC-642

Identifying all the known vulnerabilities related to the three use cases that SESAME

security assessment will be integrated is a very demanding task and is going to be

finalized the last months of the project. Defining the whole set of known vulnerabilities

of each use case will reveal the corresponding attacks and the possible mitigation

actions.

6. CONCLUSIONS

This deliverable presents the reader with a short description of the challenge of

conducting security assessments for robotic systems. The unique aspect of modern

robotic systems is that they operate in an environment that is connected to the external

world, interacting with various systems, devices, and services of uncertain

trustworthiness. Additionally, these robotic systems often operate in close proximity to

humans and engage in human-machine interactions. This environment differs

significantly from the traditional industrial robot setting, which was closed and

trustworthy.

What follows is the introduction to the SESAME security assessment methodology.

Each of the processes of the methodology are presented analysing the rationale behind

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 60 Version 1.0 5 July 2023

Confidentiality: Public Distribution

them. Section 4 focuses on the tools that were developed and used for materializing the

proposed methodology. Both open-source tools and custom applications, developed by

the authors, were used for that purpose.

Finally, an extensive example is provided, beginning with the identification of common

vulnerabilities found in all three use cases integrated with the proposed methodology.

The example then walks through each step of the methodology, showing the individual

outcome of each process.

 D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

5 July 2023 Version 1.0 Page 61

Confidentiality: Public Distribution

7. REFERENCES

[1] Ruffin White, Dr Christensen, I Henrik, Dr Quigley, et al. SROS: Securing ROS over the wire, in

the graph, and through the kernel. arXiv preprint arXiv:1611.07060, 2016.

[2] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler,

Andrew Y Ng, et al. ROS: an open-source Robot Operating System. In ICRA workshop on open

source software, volume 3, page 5. Kobe, Japan, 2009.

[3] David D Mascarenas, Jarrod McClean, Christopher J Stull, and Charles R Farrar. A Preliminary

Cyber-Physical Security Assessment of the Robot Operating System (ROS). Technical report, Los

Alamos National Lab (LANL), Los Alamos, NM (United States), 2013.

[4] Davide Quarta, Marcello Pogliani, Mario Polino, Federico Maggi, Andrea Maria Zanchettin, and

Stefano Zanero. An Experimental Security Analysis of an Industrial Robot Controller. In 2017 IEEE

Symposium on Security and Privacy (SP), pages 268–286. IEEE, 2017.

[5] International Organization for Standardization (ISO). Robots and robotic devices—safety require-

ments for industrial robots—part 2: Robot systems and integration, 2011.

[6] https://www.youtube.com/watch?v=yFi7UL70zTo&ab_channel=TUBerlin-

IndustrielleAutomatisierungstechnik, (accessed December 18, 2021).

[7] Siegfried Hollerer, Clara Fischer, Bernhard Brenner, Maximilian Papa, Sebastian Schlund, Wolf-

gang Kastner, Joachim Fabini, and Tanja Zseby. Cobot attack: a security assessment exemplified by a

specific collaborative robot. Procedia Manufacturing, 54:191–196, 2021.

[8] Gelei Deng, Yuan Zhou, Yuan Xu, Tianwei Zhang, and Yang Liu. An investigation of byzantine threats

in multi-robot systems. In 24th International Symposium on Research in Attacks, Intrusions and De-

fenses, pages 17–32, 2021.

[9] Global Times. Mainframe malfunction causes dozens of drones to crash into building in SW Chi-

na. https://www.globaltimes.cn/page/202101/1214165.shtml, 2021 (accessed December 18, 2021).

[10] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno, Stephen

Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, et al. Experimental

security analysis of a modern automobile. In 2010 IEEE symposium on security and privacy, pages

447–462. IEEE, 2010.

[11] Gabriel Vasconcelos, Rodrigo Miani, Vitor Guizilini, and Jefferson Souza. Evaluation of DoS at-

tacks on commercial Wi-Fi-based UAVs. International Journal of Computer Network and Infor-

mation Security, 11:212, 04 2019.

[12] Yuan Xu, Gelei Deng, Tianwei Zhang, Han Qiu, and Yungang Bao. Novel denial-of-service at-

tacks against cloud-based multi-robot systems. Information Sciences, 576:329–344, 2021.

[13] Alberto Giaretta, Michele De Donno, and Nicola Dragoni. Adding salt to pepper: A structured secu-

rity assessment over a humanoid robot. In Proceedings of the 13th International Conference on

Availability, Reliability and Security, pages 1–8, 2018

[14] Yosef Ashibani and Qusay H Mahmoud. Cyber physical systems security: Analysis, challenges

and solutions. Computers & Security, 68:81–97, 2017.

[15] MITRE. Common Vulnerabilities and Exposures. https://cve.mitre.org/cve/, (accessed December

18, 2021).

[16] NIST. National vulnerability database. https://nvd.nist.gov/, (accessed December 18, 2021).

[17] MITRE. Common Weakness Enumeration. https://cwe.mitre.org/, (accessed December 18, 2021).

https://www.youtube.com/watch?v=yFi7UL70zTo&ab_channel=TUBerlin-IndustrielleAutomatisierungstechnik
https://www.youtube.com/watch?v=yFi7UL70zTo&ab_channel=TUBerlin-IndustrielleAutomatisierungstechnik
https://www.youtube.com/watch?v=yFi7UL70zTo&ab_channel=TUBerlin-IndustrielleAutomatisierungstechnik
https://www.globaltimes.cn/page/202101/1214165.shtml
https://cve.mitre.org/cve/
https://nvd.nist.gov/
https://cwe.mitre.org/

D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final Version)

Page 62 Version 1.0 5 July 2023

Confidentiality: Public Distribution

[18] MITRE. Common Attack Pattern Enumerations and Classifications. https://capec.mitre.org/, (accessed

December 18, 2021).

[19] Víctor Mayoral Vilches, Lander Usategui San Juan, Bernhard Dieber, Unai Ayucar Carbajo, and

Endika Gil-Uriarte. Introducing the robot vulnerability database (rvd), 2021.

[20] Kenta Kanakogi, Hironori Washizaki, Yoshiaki Fukazawa, Shinpei Ogata, Takao Okubo, Takehisa

Kato, Hideyuki Kanuka, Atsuo Hazeyama, and Nobukazu Yoshioka. Tracing CAPEC attack patterns

from CVE vulnerability information using natural language processing technique. In Proceedings of

the 54th Hawaii International Conference on System Sciences, page 6996, 2021.

[21] Jan Reich, Daniel Schneider, Ran Wei Rasmus Adler, Marc Zeller Tim Kelly, Ioannis Sorokos, Joe

Guo, Georg Macher Christof Kaukewitsch, and Eric Armengaud. Digital Dependability Identities

and the Open Dependability Exchange Meta-Model. https://deis-

project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_meta-

model_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf, (accessed December 18,

2021).

[22] Jackson Wynn. Threat assessment and remediation analysis (TARA). https://www.mitre.

org/sites/default/files/publications/pr-2359-threat-assessment-and- remediation-analysis.pdf, 2014

(accessed December 18, 2021).

[23] PILZ. White paper security. https://www.pilz.com/mam/pilz/content/uploads/wp_ securi-

ty_en_2018_10.pdf, 2018 (accessed December 18, 2021).

[24] Gilbert Tang and Phil Webb. Human–robot shared workspace in aerospace factories. In Human–

Robot Interaction, pages 72–79. Chapman and Hall/CRC, 2019.

https://capec.mitre.org/
https://deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf
https://deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf
https://deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf
https://www.mitre.org/sites/default/files/publications/pr-2359-threat-assessment-and-remediation-analysis.pdf
https://www.mitre.org/sites/default/files/publications/pr-2359-threat-assessment-and-remediation-analysis.pdf
https://www.mitre.org/sites/default/files/publications/pr-2359-threat-assessment-and-remediation-analysis.pdf
https://www.pilz.com/mam/pilz/content/uploads/wp_security_en_2018_10.pdf
https://www.pilz.com/mam/pilz/content/uploads/wp_security_en_2018_10.pdf
https://www.pilz.com/mam/pilz/content/uploads/wp_security_en_2018_10.pdf

	1. Introduction
	1.1 Overview
	1.2 Security challenge

	2. The challenge of Security assessment
	2.1 Defining the problem
	2.2 State of the art in security assessment
	2.2.1 Threat modelling and security assessment
	2.2.2 Security assessment in robotic systems
	2.2.3 Security knowledge repositories

	3. The SESAME Security Methodology
	3.1 Processes of the SESAME security methodology
	3.1.1 System description
	3.1.1.1 Purpose
	3.1.1.2 Components
	3.1.1.3 Architecture
	3.1.1.4 Scope

	3.1.2 Identification of vulnerabilities
	3.1.3 Identification of potential attacks
	3.1.4 Identification of mitigations
	3.1.5 Template Attack Trees
	3.1.6 Generation of attack trees
	3.1.7 Generation of security EDDIs

	3.2 Safety and security

	4. Tools for Applying Security Assessment and EDDI Production
	4.1.1 System description
	4.1.2 Identification of vulnerabilities
	4.1.3 Identification of potential attacks
	4.1.4 Generation of attack trees
	4.1.5 Generation of security EDDIs
	4.1.6 Runtime security- Intrusion Detection System

	5. Applying SESAME methodology
	6. Conclusions
	7. References

