

Project Partners: Aero41, ATB, AVL, Bonn-Rhein-Sieg University, Cyprus Civil Defence, Domaine
Kox, FORTH, Fraunhofer IESE, KIOS, KUKA Assembly & Test, Locomotec,
Luxsense, PAL Robotics, The Open Group, Technology Transfer Systems,
University of Hull, University of Luxembourg, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SESAME Project Partners accept no liability for any error or omission in the same.

© 2023 Copyright in this document remains vested in the SESAME Project Partners.

Project Number 101017258

D8.9 Integrated Platform – Final Version

Version 1.0

30 December 2023
Final

Public Distribution

ATB

D8.9 Integration Platform – Final Version

Page ii Version 1.0 30 December 2023

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Aero41

Frédéric Hemmeler

Chemin de Mornex 3

1003 Lausanne

Switzerland

E-mail: frederic.hemmeler@aero41.ch

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

E-mail: scholze@atb-bremen.de

AVL

Martin Weinzerl

Hans-List-Platz 1

8020 Graz

Austria

E-mail: martin.weinzerl@avl.com

Bonn-Rhein-Sieg University

Nico Hochgeschwender

Grantham-Allee 20

53757 Sankt Augustin

Germany

E-mail: nico.hochgeschwender@h-brs.de

Cyprus Civil Defence

Eftychia Stokkou

Cyprus Ministry of Interior

1453 Lefkosia

Cyprus

E-mail: estokkou@cd.moi.gov.cy

Domaine Kox

Corinne Kox

6 Rue des Prés

5561 Remich

Luxembourg

E-mail: corinne@domainekox.lu

FORTH

Sotiris Ioannidis

N Plastira Str 100

70013 Heraklion

Greece

E-mail: sotiris@ics.forth.gr

Fraunhofer IESE

Daniel Schneider

Fraunhofer-Platz 1

67663 Kaiserslautern

Germany

E-mail: daniel.schneider@iese.fraunhofer.de

KIOS

Maria Michael

1 Panepistimiou Avenue

2109 Aglatzia, Nicosia

Cyprus

E-mail: mmichael@ucy.ac.cy

KUKA Assembly & Test

Michael Laackmann

Uhthoffstrasse 1

28757 Bremen

Germany

E-mail: michael.laackmann@kuka.com

Locomotec

Sebastian Blumenthal

Bergiusstrasse 15

86199 Augsburg

Germany

E-mail: blumenthal@locomotec.com

Luxsense

Gilles Rock

85-87 Parc d'Activités

8303 Luxembourg

Luxembourg

E-mail: gilles.rock@luxsense.lu

PAL Robotics

Gizem Bozdemir

C/ Pujades 77-79, 7-7

08005 Barcelona

Spain

E-mail: gizem.bozdemir@pal-robotics.com

The Open Group

Scott Hansen

Rond Point Schuman 6, 7
th

 Floor

1040 Brussels

Belgium

E-mail: s.hansen@opengroup.org

Technology Transfer Systems

Paolo Pedrazzoli

Via Francesco d'Ovidio, 3

20131 Milano

Italy

E-mail: pedrazzoli@ttsnetwork.com

University of Hull

Yiannis Papadopoulos

Cottingham Road

Hull HU6 7TQ

United Kingdom

E-mail: y.i.papadopoulos@hull.ac.uk

University of Luxembourg

Miguel Olivares Mendez

2 Avenue de l'Universite

4365 Esch-sur-Alzette

Luxembourg

E-mail: miguel.olivaresmendez@uni.lu

University of York

Simos Gerasimou & Nicholas Matragkas

Deramore Lane

York YO10 5GH

United Kingdom

E-mail: simos.gerasimou@york.ac.uk

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Initial draft based on deliverable D8.3 28 September 2023

0.2 First inputs collected from contributor partners 3 November 2023

0.3 Document harmonization and inclusion of further inputs 30 November 2023

0.4 Requirements update 8 December 2023

0.5 Final updates integration and harmonisation 19 December 2023

0.9 Final edits and updates version 22 December 2023

1.0 QA version for submission 30 December 2023

D8.9 Integration Platform – Final Version

Page iv Version 1.0 30 December 2023

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 8

1.1 Document Structure ... 8

1.2 Relationship to other deliverables ... 8

2. Integrated Platform Architecture .. 10

2.1 Components Overview ... 10
2.1.1 Collaborative Sensor Fusion ... 10
2.1.2 Trajectory Planning and Tracking ... 12
2.1.3 Executable Scenarios Workbench ... 16
2.1.4 EDDI-based Safety Analysis Tools .. 21
2.1.5 EDDI-based Security Analysis Tools ... 27
2.1.6 Simulation-Based Testing of EDDI Tools .. 30
2.1.7 Testing of ML Components Tools .. 47
2.1.8 Runtime EDDI Components and Generation Tools .. 52
2.1.9 Multi-Agent System for Security and Safety Management .. 55

3. Workflows .. 58

4. SESAME Integration Platform .. 61

4.1 Tools and Technologies ... 61

4.2 Implementations .. 62

4.3 Integration of tools .. 65

5. Continuous Integration & Deployment Process ... 73

5.1 Overview .. 73

5.2 GitHub Integration .. 73

6. Installation and Configuration of SESAME Tools ... 74

6.1 SESAME Integration Platform .. 74

6.2 Collaborative Sensor Fusion ... 75

6.3 Trajectory Planning and Tracking .. 76

6.4 Executable Scenarios Workbench ... 76
6.4.1 Bdd-dsl .. 76
6.4.2 Floor-Plan-DSL... 77
6.4.3 kindyngen .. 77

6.5 EDDI-based Safety Analysis Tools .. 78
6.5.1 Installation .. 78
6.5.2 Configuration .. 80

6.6 EDDI-based Security Analysis Tools... 90
6.6.1 Installation .. 90
6.6.2 Configuration .. 91

6.7 Simulation-Based Testing of EDDI Tools .. 93
6.7.1 Simulation-Based Testing Platform Tool .. 93
6.7.2 Methodology Execution Example ... 94
6.7.3 Implementing a SimlogAPI interface .. 98

6.8 Testing of ML Components Tools .. 99
6.8.1 DeepKnowledge configuration and usage ... 99
6.8.2 GenRepair Tool Configuration and Usage .. 101

6.9 Runtime EDDI Generation Tools .. 105
6.9.1 Runtime EDDI Generator Tools ... 105
6.9.2 ConSerts .. 106

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page v

Confidentiality: Public Distribution

6.9.3 Bayesian Networks ... 107
6.9.4 SafeML as ROS Monitoring Component .. 109

6.10 Multi-Agent System for Security and Safety Management ... 111

7. Conclusions .. 113

8. References .. 114

TABLE OF FIGURES

Figure 1: SESAME platform architecture ... 10
Figure 2: Trajectory Planning and Tracking components overview ... 13
Figure 3: Example of UAV model to pass through some given waypoints .. 13
Figure 4: Examples of the optimization times (where the x-axis represents the solver with the specifications) 14
Figure 5: Examples of trajectories with obstacles .. 14
Figure 6: 3D meshes and occupancy grid maps examples .. 17
Figure 7: Example of a minimal chain .. 18
Figure 8: Graphical representation of the textual model. .. 19
Figure 9: Example of safeTbox architecture modeling ... 22
Figure 10: Overview of Tool Adapter .. 22
Figure 11: Example of Genie BN Modeling ... 23
Figure 12: HiP-HOPS analysis output .. 24
Figure 13 - EDDI Editor ... 25
Figure 14: Common Tool Adapter .. 25
Figure 15: The integrated testing methodology, incorporating simulation-based testing and physical testing 30
Figure 16: The simulation-based testing methodology for WP6 .. 32
Figure 17: Generic scenario .. 34
Figure 18: SimServerAPI methods ... 36
Figure 19: SimServerAPI messages ... 38
Figure 20: SimlogAPI messages ... 40
Figure 21 SimlogAPI enumerations.. 46
Figure 22: KUKA Proof of concept integration scenario ... 46
Figure 23: ML Testing ToolKit workflow ... 48
Figure 24: Example of ConSert, from [18] ... 52
Figure 25: Abstract BN Example .. 53
Figure 26: Abstract Example of SafeML for Object Detection/Localization ... 54
Figure 27: Overview of EDDI Tailorability for ROS Applications .. 54
Figure 28: Example of ROSSystem Definition File, from [22] .. 55
Figure 29: Mapping from MAS architecture to MAPE-K control loop .. 56
Figure 30: SESAME high-level Workflow ... 58
Figure 31: SESAME detailed workflow ... 60
Figure 32: Front-end and back-end technologies of the SESAME platform .. 62
Figure 33: Project page (left-side) and create project pop-up window (right-side) .. 62
Figure 34: Module page (left side) and select modules list (right side) .. 63
Figure 35: Upload model page (left-side), and file upload success/error message (right-side) .. 64
Figure 36: Upload model page with a model specific instructions ... 64
Figure 37: A segment of the ‗run-floorPlanDSL-variation-tool‘ workflow .. 66
Figure 38: A segment of the ‗run-floorPlanDSL-simulation-tool‘ workflow ... 67
Figure 39: A segment of the ‗run-simulationBasedTesting-tool‘ workflow ... 68
Figure 40: A segment of the ‗transform-bayesianNetwork-to-eddi‘ workflow .. 69
Figure 41: A segment of the ‗tranform-eddi-to-bayesianNetwork‘ workflow .. 70
Figure 42: A segment of the ‗tranform-eddi-to-conSerts‘ workflow .. 71
Figure 43: A segment of the ‗execute-code-generator-runtimeEDDI‘ workflow ... 72
Figure 44: SESAME CI/CD workflow ... 73
Figure 45: A snapshot of the README.md file from the integrated platform code .. 74
Figure 46: Open a new project menu .. 81
Figure 47: Select a new project menu ... 81
Figure 48: Model in the browser ... 81
Figure 49: Context relevant properties dialog... 82

D8.9 Integration Platform – Final Version

Page vi Version 1.0 30 December 2023

Confidentiality: Public Distribution

Figure 50: Using connectors to link Input Ports to Output Ports .. 82
Figure 51: safeTbox spreadsheet editor (above) and tab menu (below) ... 83
Figure 52: safeTbox menu tab .. 83
Figure 53: Analysis dialog .. 84
Figure 54: project browser example ... 85
Figure 55: Toolbox pane to drag and drop elements onto the ConSert model .. 86
Figure 56: Initial screen of GeNIe Modeler .. 86
Figure 57: Button to select for creating new Bayesian network nodes ... 87
Figure 58: Button to select for creating new causal relationships between two nodes ... 87
Figure 59: Buttons for adapting the number of states of a node ... 87
Figure 60: Conditional probability table for a node that has two parents in an example Bayesian network 87
Figure 61: Update button to run an inference over the network ... 87
Figure 62: EDDI Editor .. 89
Figure 63: Docker-compose YAML file for the deployment of security part of EDDI .. 91
Figure 64 Generated example EDDI Input script ... 107

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page vii

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

The deliverable includes the integrated versions of the SESAME solutions, reports on

main features and installation/customization guidelines. The report documents the

integration of the final versions of the SESAME tools and modules. The report covers

the descriptions of the integrated platform architecture with a detailed description of all

integrated components. The report also includes the basic workflow of the SESAME

tools and components, and the description of the SESAME integrated platform. The

continuous integration and deployment process is highlighted as well. The report

provides the guide for the installation and configuration of the SESAME components.

The deliverable is in line with the project plan for delivering the SESAME technologies,

based on the selected Adaptive Project Management approach, the Incremental

Integration Strategy (IIS) methodology, and the planned features of the initial (M18,

D8.3 [1]) and final versions (M30) of the SESAME components and platform. The

deliverable is the updated of the initial version of the SESAME integrated platform that

was issued in the deliverable D8.3 at M18. In this document, the requirements that were

planned for the SESAME components are analysed, indicating to which extend the

requirements have been fulfilled. The modelling and tooling in the project are intended

to be robot operating system agnostic and therefore able to support multiple industrial

robotics platform.

D8.9 Integration Platform – Final Version

Page 8 Version 1.0 30 December 2023

Confidentiality: Public Distribution

1. INTRODUCTION

This deliverable documents the SESAME task 8.3, Platform Integration and Evaluation

Support. This task aims to integrate the technical contributions of WP2-7 into a unified

development studio and deployment platform, and to provide support to the

demonstrator use-cases. Our methodology is based on the Incremental Integration

Strategy (IIS), prioritising the integration of main components and interfaces. Following

this, we continuously integrate software and hardware components through incremental

builds, performing integration tests and fixing any identified integration errors, until we

produce the integrated SESAME technological solution and integrate it In the use case

partners‘ infrastructures. This task also documents the minimum preparatory activities

to be performed for certain use cases in order to install the system and instantiate it for

operation and in particular, D8.3 Integrated Platform–- Initial Version [1] documents all

this for the initial versions of the SESAME tools and modules, and D8.9 (the current

file) documents the final versions of the SESAME tools and modules and of the

integrated system. These deliverables (D8.3 and D8.9) strongly relate to the previous

deliverable D8.1 [2] in which we have delineated our plan for delivering the SESAME

technologies, justifying the reasons underpinning the selection of the Adaptive Project

Management approach and detailing the features comprising the initial (M18) and final

(M30) version of the SESAME platform. The attention is given to the fulfilment of the

requirements that were defined by both the use case partners and RTD partners at the

beginning of the project,

1.1 DOCUMENT STRUCTURE

The deliverable consists of the following sections:

 Section 2 describes the integrated platform architecture and describes the final

versions of SESAME components and tools. It also includes tables with the

requirements, as defined at the beginning of the project in the deliverable D1.1,

with assessment of the fulfilment of the requirements and with an analysis of

the requirements which are not fully fulfilled.

 Section 3 presents the workflows of the SESAME tools and components.

 Section 4 describes the SESAME integrated platform.

 Section 5 describes the continuous integration and deployment process.

 Section 6 presents a quick start guide for the installation and configuration of the

SESAME components.

 Section 7 concludes the report.

1.2 RELATIONSHIP TO OTHER DELIVERABLES

This deliverable provides guidelines and constraints for the tasks of all the technical

workpackages of SESAME (i.e., WP2-WP7). Therefore, the contents of this document

are relevant to all deliverables of those WPs. Moreover, this document is related to the

following deliverables:

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 9

Confidentiality: Public Distribution

▪ D1.1 - Project Requirements: To come up with an architecture that satisfies the

needs of the users, we analysed the user and technical requirements of the project.

▪ D1.2 - Evaluation Plan: To come up with an architecture that satisfies the needs

of the users, we also analysed the specific use cases that we will use in SESAME

to evaluate the technology offering.

▪ The following deliverables present the complete initial description of each of the

SESAME solutions:

o D2.3 Collaborative Sensor Fusion;

o D3.2 Executable Scenarios Workbench (Initial Version);

o D3.4 Executable Scenarios Workbench (Final Version);

o D4.2 Safety-Targeted ODE and EDDI specification;

o D4.3 Safety-Security Co-Engineering Framework;

o D4.4 Tools for Automated Safety Analysis of MRS and for Production of

EDDIs (Initial Version);

o D4.6 Tools for Automated Safety Analysis of MRS and for Production of

EDDIs (Final Version);

o D5.2 Security-Targeted ODE and EDDI Specification;

o D5.3 Tools for Automated Security Analysis of MRS and for Production

of EDDIs;

o D5.4 Tailorability of EDDIs;

o D5.6 Tools for Automated Security Analysis of MRS and for Production

of EDDIs (Final Version)

o D6.1 Assurance of Data Driven and Learning Components of EDDIs;

o D6.2 Simulation-Based Testing Methodology for EDDIs;

o D6.3 Tools for Automated Quality Assurance of EDDI-Supported MRS

(Initial Version);

o D6.6 Multi-staged Quality Assurance Methodology for EDDI-Supported

MRS

o D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS

(Final Version);

o D7.1 Runtime Safety and Security Concept - EDDI Runtime Model

Specification;

o D7.2 Tools for Generation of Runtime EDDIs;

▪ D8.1 – Architectural Guidelines Report; Presented the architecture of the

project‘s components.

▪ D8.3 - Integrated Platform (Initial Version): first implementation of the

SESAME offerings.

▪ D8.4-D8.8 and D8.10-D8.14: In these deliverables, the proposed architecture and

the related implementation are evaluated on the project‘s use cases.

D8.9 Integration Platform – Final Version

Page 10 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Additionally, the architecture of the SESAME technology offering is relevant to all the

management-related deliverables (WP10) and the dissemination deliverables (WP9).

2. INTEGRATED PLATFORM ARCHITECTURE

This section describes the integrated platform architecture and describes the final

versions of SESAME components and tools. The SESAME platform architecture is

shown in the following Figure 1.

Figure 1: SESAME platform architecture

A detailed description of the SESAME Integration Platform implementation is

presented in Section 4 SESAME Integration Platform.

2.1 COMPONENTS OVERVIEW

2.1.1 Collaborative Sensor Fusion

This component is used to provide perception information in front of the drone. It

consists of two sub-components:

 Perception: The perception sub-component is used to provide information of

the surrounding of the drone. This sub-component detects and tracks the target

drone in the input images captured by the camera and outputs the relative

positions of the detected drone to the sensor fusion sub-component.

 Sensor fusion: The sensor fusion sub-component is used to provide estimation

and association of information coming from onboard and offboard sensors (e.g.

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 11

Confidentiality: Public Distribution

onboard IMU and offboard position estimation from the camera of another

drone) that improves the current state estimation of the target drone.

Table 1: Requirements for Collaborative Perception

Req.
No.

Requirement Priority Resp.
WP

Status

D1 Provides support for collaborative sensor-fusion
within an MRS to increase the accuracy of robot
localization.

SHALL 2 Done

D2 Sensor fusion capabilities are able to use obstacle
detection sensor data to improve localization and
representations of MRS environments.

SHALL 2 Done

D3 Sensor-fusion capabilities are able to adapt to
sensor variability and availability.

SHOULD 2 Done

D4 Sensor-fusion capabilities are able to more
accurately represent the operating environment of
the MRS.

SHOULD 2 Done

D5 Sensor fusion capabilities are able to use RGB
camera data to improve localization and
representations of MRS environments

SHOULD 2 Done

D6 A protocol for data exchange and monitoring with
sensors (and other components) having different
communication protocols is provided by EDDI
Tools.

SHOULD 4, 5 Done

D7 A protocol for data exchange and monitoring with
sensors (and other components) having different
communication protocols is provided by ExSce
Workbench.

SHOULD 3 Done

Table 2: Requirements for Collaborative Intelligence Analytics

Req.
No.

Requirement Priority Resp.
WP

Status

D33 The collaborative intelligence analytics component
should conform to the ExSce methodology.

SHALL 2 Done

D34 Provide concepts to express scenario expectations
which conform to meta-models developed in the
ExSce approach.

SHALL 2 Partial
support

D35 Provide means to manually associate scenarios
and their expectations with instrumentation
requirements.

SHALL 2 Done for
ROS-based

systems

D36 Provide means to manually instrument scenarios
for collecting information relevant for assessing
different aspects of collaborative intelligence.

SHALL 2 Done for
ROS-based

systems

D37 Provide means to persistently store experiences of
executed scenarios.

SHOULD 2 Done for
ROS-based

systems

D38 Provide means to automatically instrument
scenarios for collecting information relevant for
assessing different aspects of collaborative
intelligence.

SHOULD 2 Partially

D39 Provide a runtime capable API to query
experiences associated with scenarios.

SHOULD 2 Done

D40 Provide methods to reason about deviations
between specified scenarios, expectations and
experiences.

SHOULD 2 Partially done
for

experiences
related to
scenery.

D42 Provide methods to derive explanations why MAY 2 Partial

D8.9 Integration Platform – Final Version

Page 12 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Req.
No.

Requirement Priority Resp.
WP

Status

certain scenarios are deviating from other
scenarios.

support

D43 Interface or exchange format to enable embedding
of EDDIs for the sake of scenario instrumentation
with ExSce Workbench.

SHALL 3 Partial
support

2.1.2 Trajectory Planning and Tracking

Trajectory planning is one of the most important capabilities of SESAME to be

addressed, i.e., to find an optimal path to the destination of MRS. The trajectory can be

defined as ―a time parameterized motion reference, i.e., geometric values of position,

heading, derivatives associated with time law, passing through the waypoints‖. One of

the main objectives is to integrate perception-awareness into MRS trajectory planning,

i.e., the construction of the trajectory on which the perception metric is incorporated. On

the other hand, one of the main features of the trajectory planner is collision avoidance

with other obstacles, humans, and other robots. These, generally, can be titled as static

and dynamic obstacles. So, we implement the updated information of the obstacles into

the proposed planner. Furthermore, perception-awareness and safety/security are to be

considered in the planning. Our main task falls at the planning level that we are going to

address the above-mentioned aspects on versatile MRS tasks. Another distinct feature to

be implemented is the concept of situational awareness. This may include localization,

geometric mapping, semantic mapping, obstacle detection and tracking, etc. Indeed, it

can be stated as collaborative and perception-aware trajectory planning, which

minimizes environmental uncertainty by using data provided by other robots in a team

combined with data collected by the perception components of the robot, provided by

Collaborative Perception component.

In addition to the trajectory planning, one significant capability is the trajectory tracking

control, i.e., the design of the control commands to make the MRS stable as well as to

track the trajectory (planned in the previous step) as close as possible. More

importantly, the aspect we address is the structural design of planning and tracking

parts, if we address and design them separately or simultaneously, considering the

priority. This implies another preliminary step to be taken, as ―the general planning and

tracking structural scheme, for the given MRS and use-cases, addressing the parts to be

(de)centralized and on/offline‖.

Finally, within the framework of autonomous robotic systems, the features of safety and

security are vital. However, considering the available literature, the devised approaches

are mainly stemmed from the corresponding definitions of safety and security, i.e., the

definition implies the corresponding solution. The security can be the resilience of the

solution to unauthorized access to communication channels. On the other hand, the

safety can be interpreted as tolerance against a family of faults, avoidance from a given

area, restriction of MRS states, and safely bound on the tracking drift. Cumulatively, we

present the solution as reliable autonomous robotic systems with quality assurance, risk

assessment and trust level.

These two components are illustrated in the following Figure 2.

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 13

Confidentiality: Public Distribution

Figure 2: Trajectory Planning and Tracking components overview

Figure 3: Example of UAV model to pass through some given waypoints

As an example, we have considered a UAV model to pass through some given

waypoints, while staying outside of the safety region around the obstacle. In the

following figures we have presented the planned trajectory which is followed by the

UAV. The red circle presents the safety region and the purple stars are the waypoints.

For this, examples of the optimization times are given below.

D8.9 Integration Platform – Final Version

Page 14 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Figure 4: Examples of the optimization times (where the x-axis represents the solver with the specifi-
cations)

Moreover, in the following graphics (Figure 5) we have considered two obstacles and

we have perturbed their positions (dashed black circles). Then the trajectory is

replanned to avoid the new position of the obstacles (green dashed lines). The initial and

replanning times are also given.

Figure 5: Examples of trajectories with obstacles

Table 3: Requirements status for Trajectory Planning and Tracking

Req.
No.

Requirement Priority Resp.
WP

Status

D8 Provide planned trajectories as motion references
(e.g. paths) to achieve the given task plans.

SHALL 2 Done

D9 The planned trajectories achieve the given metrics
on safety, security and quality.

SHOULD 2 Done

D10 The planned trajectories are given as time-
parameterised motion references.

SHOULD 2 Done

D11 The planned trajectories are collision-free, by
taking into consideration the metric-semantic
model of the environment (e.g. obstacles).

SHALL 2 Done

D12 The planned trajectories are feasible, by taking
into consideration the kinematic and dynamic
information of the robotic agents.

SHALL 2 Done

D13 The planned trajectories are perception-aware, by
taking into consideration the information of the
sensors.

SHALL 2 Done

D14 The planned trajectories are risk-aware, by taking
into consideration the safety, security and quality

SHALL 2 Done

24.8

4.7
0.47 0.25

0
5

10
15
20
25
30

C
o

m
p

u
ta

ti
o

n
 t

im
e

(S
ec

o
n

d
s)

Approach

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 15

Confidentiality: Public Distribution

Req.
No.

Requirement Priority Resp.
WP

Status

assurance metrics.

D15 The component supports multi-robot trajectory
planning.

SHOULD 2 Done

D16 The component supports real-time re-planning. MAY 2 Done

D17 Provide robot commands in the form of
actuator/driver commands to the robotics
platforms.

SHALL 2 Done

D18 A robot-agnostic interface for the outputted
actuator/driver commands to the robotics
platforms.

SHALL 2 Done

D19 A robot-agnostic interface is provided for the
outputted planned trajectories.

SHOULD 2 Done

D20 ExSce provides detailed information on the robot
dynamic and kinematic models and their
restrictions.

SHALL 2 Done

D21 ExSce provides detailed information on the list of
sensor and their perception models.

SHALL 2 Done

D22 Collaborative Perception provides the topologic,
semantic (e.g. scene understanding, points of
interest, QRs, ...) and geometric map of the
environment with fused sensorial information
updated in real-time.

SHALL 2 Done

D23 Collaborative Perception provides a real-time
estimation of the state (e.g. pose, velocity, etc.) of
each robot.

SHALL 2 Done

D24 Collaborative Perception provides sensorial,
perception and situational awareness metrics for
perception-aware planning, e.g. covariances, fields
of view, etc.

SHOULD 2 Partial
support

The metrics
are linked to
the sensor
limitations.

The
experiments
have shown

these
limitations

even if only
simulation

environments
were

promised at
this point.

D25 ExSce and/or Collaborative Intelligence provide
information of the task plans with metrics on
safety, security and quality assurance.

SHALL 2 Partial
Support

D26 EDDI provide safety, security and quality
assurance metrics for a requested planned
trajectory.

SHALL 2 Partial
Support

D27 Interface to exchange information of the dynamics
and kinematics of the robots with ExSce
Workbench.

SHALL 3 Done

D28 Interface to exchange information of the sensors of
the robots with ExSce Workbench.

SHALL 3 Done

D29 Interface to exchange information of the task plans
with ExSce Workbench.

SHALL 3 Done

D30 Interface to exchange information of the task plans
with Collaborative Intelligence.

SHALL 2 Done
The relative

position
estimation is

D8.9 Integration Platform – Final Version

Page 16 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Req.
No.

Requirement Priority Resp.
WP

Status

provided via
ROS topic

using
PoseStamped

messages.

D31 Interface to exchange information of the complete
situational awareness with Collaborative
Perception.

SHALL 2 Done
The position

of other
drones and
objects are
provided

using ROS
topic and

PoseStamped
messages.

D32 Versatile interface to request safety, security and
quality assurance metrics for a tentative trajectory
with EDDI Tools.

SHALL 4, 5 Done

2.1.3 Executable Scenarios Workbench

The Executable Scenario (ExSce) Workbench
1
 is a collection of metamodels and tools

for supporting stakeholders in carrying out various activities in the ExSce methodology,

which includes specification, transformation, execution, assurance, and generalization

of MRS scenarios. More details on what these activities may entail can be found on the

online definition of the methodology
2
. The tools currently available in the workbench

support one or more of these activities for specific aspects of an MRS scenario, namely

requirement and acceptance criteria, environment, and the system‘s kinematics and

dynamics. The rest of this section will describe these tools in more details.

Scenario: pickup scenario

 Given an object is located on the table

 When the robot starts picking

 Then the object is held by the robot

An important aspect of assuring the quality of any system is evaluating whether the

system satisfies stakeholders‘ acceptance criteria (AC). To this end, bdd-dsl
3
 provides a

domain-specific language (DSL) to specify AC following the Behaviour-Driven

Development
4
(BDD) approach using the JSON-LD

5
 syntax. bdd-dsl allows the

specification of generic scenario templates that can be extended with information about

the environment, task or agent unique to the specific scenario variants. The models of

these scenario variants can then be transformed into Gherkin
6
 feature files, which can

then be used for automated acceptance testing. A tutorial showing how to specify a

BDD template and variant for a simple pickup task such as one shown in the BDD

1
 https://sesame-project.github.io/exsce/exsce-workbench.html

2
 https://sesame-project.github.io/exsce/terminology.html

3
 https://hbrs-sesame.github.io/bdd-dsl/

4
 https://dannorth.net/introducing-bdd/

5
 https://json-ld.org/

6
 https://cucumber.io/docs/gherkin/

https://sesame-project.github.io/exsce/terminology.html
https://sesame-project.github.io/exsce/exsce-workbench.html
https://sesame-project.github.io/exsce/terminology.html
https://hbrs-sesame.github.io/bdd-dsl/
https://dannorth.net/introducing-bdd/
https://json-ld.org/
https://cucumber.io/docs/gherkin/

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 17

Confidentiality: Public Distribution

example above, as well as to generate Gherkin feature files from these models is

available online
7
.

We employ the model-driven approach to design a modelling language for describing

indoor environments: the Floor Plan DSL. The textual language enables developers

to specify the environment as a composition of both static elements such as spaces,

entryways, windows, as well as dynamic elements such as revolving doors. The DSL

enables developers to transform the descriptions into a composable representation as an

interchange format to communicate with other tools, including those in the ExSce

workbench. This paves the way to transform the interchange representation into 3D

meshes and occupancy grid maps, which can be used to simulate robot navigation tasks

in most robot simulators (see Figure 6). A tutorial showing how to create floor plan

models as well as how to transform them into various artefacts can be found on the

tool‘s GitHub repository
8
. In Task 3.3 we will extend the tool through means to model

points-of-interest inside the environment as well as the possibility to create variations of

the floor plans.

Figure 6: 3D meshes and occupancy grid maps examples

7
 https://hbrs-sesame.github.io/bdd-dsl/bdd-tutorial-feature-gen.html

8
 https://github.com/sesame-project/FloorPlan-DSL/blob/main/docs/Tutorial.md

https://hbrs-sesame.github.io/bdd-dsl/bdd-tutorial-feature-gen.html
https://github.com/sesame-project/FloorPlan-DSL/blob/main/docs/Tutorial.md

D8.9 Integration Platform – Final Version

Page 18 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Figure 7: Example of a minimal chain

Finally, the ExSce workbench also includes the kindyngen
9
 toolchain, which consists of

a metamodel for specifying composable models of kinematic chains, the tools to

synthesize correct-by-construction kinematics or dynamics solver algorithms given a

kinematic chain specification, and a code generator to transform the synthesized

algorithms into executable code. The following JSON-LD excerpt exemplifies how the

simple kinematic chain shown in Figure 8 can be realized using the kinematic chain

metamodel in kindyngen, while Figure 9 depicts a graphical representation of this

specification. Tutorials on how to use the toolchain for configuring the solvers
10

,

synthesizing solver algorithms and generating corresponding implmentations
11

, as well

as applying the solver in a control problem
12

 are available on the project GitHub

repository.

{

 "@context": [

 "/ontology/kinematic-chain/structural-entities.json",

 {

 "rob": "http://example.org/my-robot#"

 }

],

 "@id": "rob:chain",

 "@graph": [

 {

 "@id": "rob:joint1",

 "@type": ["Joint", "RevoluteJoint"],

 "between-attachments": [

 "rob:link1-joint1", "rob:link2-root"

],

 "common-axis": "rob:joint1-common-axis",

 "origin-offset": "rob:joint1-offset"

 },

 {

 "@id": "rob:kin-chain1",

 "@type": "KinematicChain",

9
 https://github.com/hbrs-sesame/kindyngen

10
 https://github.com/hbrs-sesame/kindyngen/blob/main/docs/tutorial_solver_configuration.md

11
 https://github.com/hbrs-sesame/kindyngen/blob/main/docs/tutorial_solver_robif.md

12
 https://github.com/hbrs-sesame/kindyngen/blob/main/docs/tutorial_controller.md

https://github.com/hbrs-sesame/kindyngen
https://github.com/hbrs-sesame/kindyngen/blob/main/docs/tutorial_solver_configuration.md
https://github.com/hbrs-sesame/kindyngen/blob/main/docs/tutorial_solver_robif.md
https://github.com/hbrs-sesame/kindyngen/blob/main/docs/tutorial_controller.md

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 19

Confidentiality: Public Distribution

 "joints": ["rob:joint1"]

 }

]

}

Figure 8: Graphical representation of the textual model.

Table 4: Requirements status for Executable Scenarios Workbench

Req.
No.

Requirement Priority Resp.
WP

Status

D44 Support a scenario-based development approach
enhancing both validation and verification
activities.

SHALL 3 Done

D45 Extend and improve RobMoSys meta-models and
composition structures to support scenario-based
development of MRS.

SHALL 3 Done

D46 Define an interface or protocol to exchange ExSce
with other components.

SHALL 3 Supported by
the

composable
model

structures in
JSON-LD

format

D47 Provide means to specify selected MRS
capabilities by extending RobMoSys meta-models
of robotic algorithms.

SHALL 3 Done,
supported by
the kindyngen
tool chain for
kinematics

and dynamics
algorithms

D48 Provide means to specify scenarios on different
levels of abstraction by composing mission-
relevant and mission-plausible information.

SHALL 3 Done,
Supported by

ExSce
Workbench

for modelling
varying

scenario
features

D49 Provide means to store and query reusable and
composable scenario models.

SHOULD 3 Done,
Supported by

SPARQL
queries of
scenario

models and
their

executions
represented

in W3C
provenance
standard, as
well as the

D8.9 Integration Platform – Final Version

Page 20 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Req.
No.

Requirement Priority Resp.
WP

Status

Repository of
ExSce

D50 Provide a composable capability model of selected
robotic simulators for the sake of integration in the
scenario-based methodology and for executing,
validating and verifying scenarios.

SHALL 3 Done,
through

configurable
model

transformatio
n of floor plan

models

D51 Provide means to transform scenario models into
both simulation and deployment models.

SHALL 3 Done,
through

configurable
model

transformatio
n of floor plan

and BDD
models

D55 Provide means to attach expected observable
outcomes to scenarios such that scenarios can be
validated and verified.

SHALL 3 Done,
through fluent
concepts in

BDD scenario
models

D57 Provide means to derive scenario templates from
executed scenarios.

SHOULD 3 Done,
through
querying

mechanisms
available in
the ExSce

Management

D58 Provide scenario templates as reusable models for
specifying future scenarios.

MAY 3 Partially done
through
ExSce

Management

D59 Provide explanations why scenarios are
succeeding or failing.

MAY 3 Partially done
through

visualizing
outcomes of
scenarios in

ExSce
Management

D60 Interface or exchange format to allow information
to be incorporated in the scenario-based approach
with EDDI Tools.

SHALL 4, 5 Done,
through

generated
floor plan

artefacts used
in integration

platform

D61 Interface or exchange format to allow information
from EDDI Security Analysis Tools and models to
be incorporated in the scenario-based approach.

SHALL 5 Done through
ExSce

Management

D62 Scenario instrumentation means developed for
Collaborative Intelligence need to be composable
in the scenario-based approach.

SHALL 2 Done, floor
plan models
are exploited

in
Collaborative
Intelligence

D63 Deployment plans of COSENS MRS capabilities
need to be composable in the scenario-based
approach with Collaborative Perception.

SHALL 2 Done

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 21

Confidentiality: Public Distribution

2.1.4 EDDI-based Safety Analysis Tools

The Executable Digital Dependability Identity — or EDDI — is a composable model-

based artefact that contains dependability information about a system. Although they

can serve as purely design-time artefacts, they are also intended to be executed at

runtime onboard or alongside their target system to perform dynamic dependability

management. An EDDI is therefore both an offline knowledge base storing

dependability information about a system and, in its executable form, an online monitor

that observes and manages its target system‘s safety and security.

EDDIs are based on the Open Dependability Exchange (ODE) metamodel, as defined in

D4.2/D5.2 [3] — Safety/Security ODE and EDDI Specification. The ODE is intended

to be the common interchange format between the different EDDI-related tools, so that

common models can be created and used to generate or interact with runtime EDDIs

regardless of the original design-time tool.

Several different safety analysis tools were targeted for EDDI support, including

safeTbox, BayesFusion GeNIe Modeler, HiP-HOPS, and Dymodia, while additional

supporting tools were developed (ODE Tool Adapter & EDDI Editor/Model Converter).

These tools allow the creation or import of architectural models of a system which can

then be annotated with failure data to record the failure behaviour of the system. This

data can then be analysed to produce safety analysis artefacts such as fault trees and

FMEAs. More information about each tool can be found in D4.6 — Tools for

Automated Safety Analysis of EDDIs [4] , but a brief summary is provided below.

2.1.4.1 SafeTbox

SafeTbox
13

 is a commercial model-based safety engineering tool, implemented as an

add-in to the Enterprise Architect
14

 modelling tool. The tool supports architectural

modelling (using a variant of the UML profile supported in Enterprise Architect),

Hazard Analysis and Risk Assessment (HARA) using a table-based approach, Failure

Analysis using Component Fault Trees [5], Safety Argumentation modelling using the

Goal Structuring Notation [6], and Conditional Safety Certificates (ConSerts) [7].

Figure 9 depicts an example of architecture modelling in safeTbox.

13

 https://safetbox.de/
14

 https://sparxsystems.com/

https://safetbox.de/
https://sparxsystems.com/

D8.9 Integration Platform – Final Version

Page 22 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Figure 9: Example of safeTbox architecture modeling

Using safeTbox, it is possible to export models (and related artefacts) of the above

features in the form of EDDIs. To achieve this, a tool adapter, originally implemented in

the DEIS research project [8], has been extended to support the updated ODE (see D4.2

[3]). The tool adapter facilitates interoperability with other tools, which can be extended

to receive the EDDIs as input.

An overview of how tool interoperability is supported can be seen in Figure 10, where a

modelling tool (e.g. safeTbox) uses the Tool Adapter interface to import, export, or

execute Epsilon scripts
15

 on the subject EDDIs.

Figure 10: Overview of Tool Adapter

The generated EDDIs are in an XML-based format (.ecore format of the EMF
16

). More

details on how tool interoperability is supported can be found in D5.6 [4]. More details

on exploiting development-time EDDIs for producing runtime EDDI components can

be found in D7.1 [9] and D7.2 [10].

15

 Epsilon (eclipse.org)
16

 Eclipse Modelling Project | The Eclipse Foundation

https://www.eclipse.org/epsilon/
https://www.eclipse.org/modeling/emf/

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 23

Confidentiality: Public Distribution

2.1.4.2 BayesFusion GeNIe Modeler

This is a commercial tool
17

 not provided by IESE (a trial version and academic licenses

are available), but used in the context of modelling Bayesian Networks (BNs). The

tool‘s output format (.xdsl) is planned to be supported for conversion into/from EDDIs.

IESE will make corresponding conversion tools available for this purpose. Equivalent

tools that produce or convert to the same format can also be supported.

In Figure 11, there is an example of modelling a Bayesian network in GeNIe Modeler.

Figure 11: Example of Genie BN Modeling

2.1.4.3 HiP-HOPS

HiP-HOPS
18

, or ―Hierarchically Performed Hazard Origin & Propagation Studies‖ to

give it its full title, is a comprehensive model-based safety analysis methodology with a

tool of the same name. Originally developed in the late 1990s, it has been the focus of

17

 https://www.bayesfusion.com/genie/

18

 https://hip-hops.co.uk

https://www.bayesfusion.com/genie/
https://hip-hops.co.uk/

D8.9 Integration Platform – Final Version

Page 24 Version 1.0 30 December 2023

Confidentiality: Public Distribution

continuous development over the ensuing 20+ years and its initial foundation has since

played host to a wide range of advancements and additional functionalities.

Figure 12: HiP-HOPS analysis output

The core HiP-HOPS methodology consists of four main phases: system modelling,

failure annotation, synthesis of fault propagation models, and the analysis phase, which

involves Fault Tree Analysis (FTA) & Failure Modes & Effects Analyses (FMEA)

(Figure 12). Because HiP-HOPS is primarily an analysis engine, system modelling and

failure annotation takes place in established modelling tools such as Matlab Simulink
19

,

SimulationX
20

, and MetaEdit+ (with EAST-ADL)
21

.

HiP-HOPS then imports the resulting model file, synthesises failure models that trace

the propagation of failures though the system, and performs analyses on them to obtain

fault trees and FMEAs. The output are XML files that can be viewed in a web browser

or Excel spreadsheets containing the same data.

HiP-HOPS also offers support for other experimental functionality, including

architectural optimisation, automatic allocation of safety requirements, dynamic failure

analysis, and more. A full manual is available on the HiP-HOPS website
22

.

By combining the architectural input model and the analysis results, a complete model

can be generated as a basis for EDDIs.

19

 https://www.mathworks.com/products/simulink.html
20

 https://www.esi-group.com/products/system-simulation
21

 https://www.metacase.com/solution/east-adl.html
22

 HiP-HOPS website

https://www.mathworks.com/products/simulink.html
https://www.esi-group.com/products/system-simulation
https://www.metacase.com/solution/east-adl.html
https://hip-hops.co.uk/manual/HiP-HOPS_Manual.pdf

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 25

Confidentiality: Public Distribution

2.1.4.4 Tool Adapter & EDDI Editor

For these tools to support ODE models, converters are required. A standalone model

converter with basic editing capabilities, the EDDI Editor, has been developed to

support conversion from HiP-HOPS and Dymodia (for state machines) This converter

imports a HiP-HOPS or Dymodia file (input, output, or both) and generates an ODE

model from it, which can be saved in XML format. It can also open ODE files exported

from safeTbox and merge files from different tools into a single model. This tool is

described further in section 6.5.2.5.

Figure 13 - EDDI Editor

In addition, the Common Tool Adapter is based on the Apache Thrift interface

definition framework (see Figure 14).

Figure 14: Common Tool Adapter

D8.9 Integration Platform – Final Version

Page 26 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Thrift is a cross-language, cross-platform framework. Its type system allows ODE data

structures to be defined and exchanged across tools. It offers a service-based approach

to allow definition of ODE-oriented services such as validation.

2.1.4.5 Requirements status

Table 5: Requirement status for EDDI-based safety analysis tools

Req.
No.

Requirement Priority Resp.
WP

Status

D64 Establish a dependability-driven methodology for
the development of EDDIs.

SHALL 4 Done

D65 Extend the ODE metamodel to support EDDIs by
incorporating new capabilities for safety,
uncertainty, and runtime monitoring and diagnosis.

SHALL 4 Done

D66 Define an interface or protocol for the exchange of
data between EDDIs or between EDDIs and other
components

SHALL 4 Done

D67 Generate safety-targeted EDDI artefacts with tool
support.

SHALL 4 Done

D68 Support hazard and risk analysis (HARA) of MRS. SHALL 4 Done

D69 Support semi-automatic requirement allocation for
MRS.

MAY 4 Partial
support

D70 Support design-time semi-automatic synthesis of
dependability models such as fault trees and
FMEAs for MRS.

SHALL 4 Done

D71 Support dynamic safety analysis of MRS on the
basis of combined architectural & behavioural
modelling.

SHOULD 4 Done

D72 Provide a SafeML software component that can
estimate the confidence in ML classification
accuracy at runtime to support safety-related
decision making.

SHALL 4 Done

D73 Expand the SafeML software component so that it
gives the reasoning behind the confidence level
assigned to the ML classifications it monitors (e.g.
by highlighting problematic runtime inputs).

MAY 4 Done

D74 Provide a method and a software component that
can translate confidence measures into metrics of
the reliability of safety-related ML classification
models.

MAY 4 Partial
support

D75 Integrate the reliability metrics for ML classifiers
with EDDIs that do probabilistic reasoning and
decision making about safety at runtime.

MAY 4 Done

D76 Security EDDIs shall be based on the ODE to
ensure compatibility and ease of import/export
when taking into account the safety implications of
security threats or violations.

SHALL 4 Done

D77 Runtime EDDI artefacts shall be compatible with
the ODE to ensure ease of generation and
execution using safety EDDI information.

SHALL 4 Done

D78 Bilateral interface or exchange format to allow
information to be communicated with Simulation-
based Testing Tools.

SHALL 6 Done

D79 Bilateral interface or exchange format to allow
information to be communicated with ExSce
Workbench.

SHALL 3 Done

D80 Bilateral interface or exchange format to allow
information to be communicated with Trajectory
Planning.

SHALL 2 Done

D81 Bilateral interface or exchange format to allow SHALL 2 Done

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 27

Confidentiality: Public Distribution

Req.
No.

Requirement Priority Resp.
WP

Status

SafeML to be used to analyse object identification
models with Collaborative Perception.

2.1.5 EDDI-based Security Analysis Tools

2.1.5.1 Security

The main goal of the EDDI-based security analysis tools is to collect data on the

security condition of a specific system. Uncovering vulnerabilities within individual

system components enables the identification of potential attacks that adversaries might

attempt by exploiting the existing weaknesses in the system. The acquired information

is then stored in an EDDI model-based artifact, encompassing all the dependability

information of a system. The tools that are involved in the process described above are

gathered below:

o OpenVAS is used for collection of security information of the target system. It is an

automated scanner tool that can scan given network and/or subnetworks for available

services. Using scanning tools offers the advantage of uncovering services actively

running on devices within the target system. These tools have the capability to

identify services that may be operational, even when the provider of the system

information is unaware of their existence.

OpenVAS‘ primary strength lies in its meticulous scanning of all ports on the target

system to identify active services, presenting a comprehensive report detailing

discovered assets, such as running software and specific version numbers. Moreover,

it can launch attacks on identified services using a wide range of known exploits.

The created reports on vulnerable services, include a high-level description of each

vulnerability, its associated CVE, CVSS score, and severity level. OpenVAS

exhibits advanced capabilities by incorporating wrappers for other vulnerability

scanners, such as Nmap and wapiti, thereby expanding its coverage and increasing

the variety and quantity of detected vulnerabilities. Additionally, OpenVAS offers

predefined configurations tailored to common scanning scenarios, including options

for fast, fast ultimate, deep, and deep ultimate scans.

o The process of requesting free repositories, catalogs and databases (CVE and RVD –

D5.1) for known vulnerabilities of the recognized software, hardware and

communication protocols is facilitated through the utilization of two parsers CVE-

search and RVD custom parser. CVE-search is a tool designed to import CVEs and

CPEs data into a MongoDB, streamlining the search and processing of CVEs. Its

primary advantage lies in the creation of a local instance of CVE, catering to lookup

requests. This approach reduces the need for direct queries to public CVE databases,

enhancing efficiency. Simultaneously, local requests are handled fast, offering faster

responses without exposing sensitive information to the internet. Key offerings of

cve-search include: i) a back-end for storing vulnerabilities and related information,

ii) an intuitive web interface for searching and managing vulnerabilities, iii) a suite

of tools for querying the system, and iv) a web API interface.

Moreover, an RVD custom parser has been developed, enabling the use of the "rvd

list --dump --label vulnerability" command. This command retrieves all database

D8.9 Integration Platform – Final Version

Page 28 Version 1.0 30 December 2023

Confidentiality: Public Distribution

entries in RVD that are labeled as vulnerabilities. Each entry provides

comprehensive information for robot vulnerabilities, encompassing related CVEs

and CWEs, affected systems, severity scores such as RVSS and CVSS, as well as

detailed descriptions of exploitation and mitigation measures. The comprehensive

collection of robot vulnerabilities serves as the input for our custom parser. A set of

Java classes has been crafted to store and handle the information associated with

incoming robot vulnerabilities (refer to Figure 12, D5.6). The primary class, named

"RvdVulnerability," anchors this structure, complemented by four essential

subclasses: "Severity," "Exploitation," "Flaw," and "Mitigation." These subclasses

play crucial roles in categorizing and managing specific aspects of the vulnerability

data, ensuring a well-structured and organized representation within the Java

framework.

o For the identification of potential attacks two tools are utilized, CVE-search and

CAPEC custom identifier. CVE-search has also another capability to be queried for

known attacks associated with a provided CVE-ID or a specific product

(software/hardware). When requesting information for a particular vulnerability,

especially if the output is specified in JSON format, a notable portion of the returned

information includes a list of attacks directly linked to the specified vulnerability.

The CAPEC custom identifier makes use of a local instance of the CAPEC catalog

to retrieve information about known attacks associated with specific weaknesses. A

set of Java classes has been developed to store and manage all the information

derived from the CAPEC repository (refer to Figure 13, D5.6 [11]). The CAPEC

repository structure encompasses an "AttackPatternCatalog," housing a

comprehensive list of "AttackPatterns." The "AttackPattern" class corresponds to

known vulnerabilities, encapsulating a wealth of information, including related

weaknesses, associated attacks, and suggested mitigation actions. This Java class

structure ensures a systematic representation and efficient handling of data sourced

from the CAPEC repository within the application.

o The information generated utilizing the aforementioned tools is integrated into the

Security EDDI, facilitating the transfer of this information to the runtime

environment for effective threat mitigation. A crucial prerequisite in this scenario

involves the continuous monitoring of security events during runtime. The tool

responsible for monitoring incoming malicious packets on the network is an

Intrusion Detection System (IDS).

Snort is a widely recognized open-source IDS that has garnered popularity and has

been extensively explored in the literature. It adopts a rule-based methodology to

characterize malicious network activities, activating alerts when a specified rule is

matched. Operating on a single-threaded architecture, Snort leverages the TCP/IP

stack to capture and scrutinize network packets, encompassing both headers and

bodies. Upon the detection of rule-satisfying events, Snort generates alerts and logs

them, providing the basis for creating reports derived from these alerts. Its design

makes Snort particularly well-suited for addressing lightweight IDS needs, offering

an effective solution for organizations seeking a flexible and adaptable intrusion

detection capability. Our decision was to integrate Snort into a suite of other tools,

with the objective of building a robust and flexible framework for monitoring and

mitigating network threats. This commonly adopted configuration combines Snort

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 29

Confidentiality: Public Distribution

with Barnyard and a relational database, presenting a comprehensive solution that

organizations often choose to fortify their security against cyber threats. This

integrated setup allows for efficient handling, analysis, and storage of Snort-

generated alerts, contributing to a more effective and scalable approach to network

security. Barnyard, a data handler and translator, reads Snort's binary logs, decrypt

and organizes them into a more comprehensible and structured format. This

processed data is then efficiently dispatched to a database for storage and subsequent

in-depth analysis.

Table 6: Requirement status for EDDI-based security analysis tools

Req.
No.

Requirement Priority Resp.
WP

Status

D82 Develop a methodology for delivering security-
based EDDIs.

SHALL 5 Done (D5.1)

D83 Extend the ODE metamodel to include support for
security characteristics of a system.

SHALL 5 Done (D4.2
– D5.2)

D84 Develop an interface for data transfer between
EDDIs and other SESAME or system components.

SHALL 5 Done
Security

EDDI sends
data to

Concert by
publishing it

to predefined
ROS topics

D85 Produce security-targeted EDDI artefacts. SHALL 5 Done (D5.6)

D86 Generate attack trees or other security-describing
models in a semi-autonomous.

SHALL 5 Done

D87 Provide semi-autonomous security analysis during
design time.

SHALL 5 Done

D88 Provide semi-autonomous security analysis during
runtime.

SHOULD 5 Done (5.6)

D89 Provide a mechanism ensuring the security of
EDDI executable.

SHALL 5 Done (5.5)

D90 Develop a ML-based Intrusion Detection System
that recognizes malicious incoming traffic.

MAY 5 Not done

D91 Create labelled data that classify incoming traffic to
benign or malicious.

MAY 5 Not done

D92 Determine the accuracy of the ML-based Intrusion
Detection System classification model.

MAY 5 Not done

D93 Security EDDIs shall be compatible with the ODE
for easier management.

SHALL 5 Done (D4.2
– D5.2)

D94 Runtime EDDIs shall be compatible with the ODE
for easier management.

SHALL 5 Done –-
(D5.6)

D95 Bilateral interface or exchange format to allow
information to be communicated with Simulation-
based Testing Tools.

SHALL 6 Partial
support

D96 Bilateral interface or exchange format to allow
information to be communicated with ExSce
Workbench.

SHALL 3 Not done
There is no

communicati
on between

these
components

D97 Bilateral interface or exchange format to allow
information to be communicated with Trajectory
Planning.

SHALL 2 Not done
There is no

communicati
on between

these
components

D8.9 Integration Platform – Final Version

Page 30 Version 1.0 30 December 2023

Confidentiality: Public Distribution

2.1.6 Simulation-Based Testing of EDDI Tools

2.1.6.1 Overview of WP6 Simulation-Based Testing and Multi-Stage MRS Testing Methodol-

ogy

The simulation-based testing platform proposed for WP6 interfaces with the MRS simu-

lation and deliberately alters or manipulates the simulation state in order to assess how

the system under test responds in various scenarios. This allows the behaviour of the

simulation under such disruptions (corresponding to transient faults, or deliberate at-

tacks) to be assessed by means of user-defined scenario-specific performance metrics.

Logs are generated, both from the testing platform and from the MRS simulation itself,

in order for SESAME users to assess the impact of their chosen simulation-based testing

campaigns.

Depending on the intent and availability of use case partners, it may be useful to assess

the behaviour of the discovered faults on the real physical MRS system. The SESAME

platform also supports interconnection to physical MRS scenarios, to inject faults and

noise in their behaviour and verify conformance between the behaviour of simulated

and real systems under fault scenarios. The overall methodology incorporating a transi-

tion from simulation to physical testing is illustrated in Figure 15, which comprises a

number of stages. The human symbol indicates those points which involve the use of

human assessment or intervention (e.g., robotics and software engineers), and the gear

symbol indicates automated processing or code execution. The robotic arm symbol in-

dicates the stages in the methodology which require access to a lab environment and

implementation of the robotic scenario in order to execute and assess it (which are also

emphasised with a blue background).

Figure 15: The integrated testing methodology, incorporating simulation-based testing and physical
testing

Step 1: which precedes the simulation experiments, begins with the definition of the

MRS scenario, its intent and the testing strategy, informed by the inputs to Step 1; in-

cluding an Executable Digital Dependability Identity (EDDI) as defined in Section

2.1.8.1, and the Executable Scenario (ExSce) Specification. The testing strategy will

involve the specification of performance metrics to quantify the MRS requirements, and

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 31

Confidentiality: Public Distribution

the selection of fuzzing operations to test specific system components by disrupting

their internal messages. This work is performed in conjunction with industrial partners

developing a particular scenario, in order to exploit their experience in the intended task

of the scenario, the requirements it must fulfil, and the types of failure to which the sys-

tem could be subjected. This step may be performed multiple times, considering the re-

sults of the validation process in Step 2.

Step 2: performs preparatory testing in a lab environment to validate the scenario de-

fined in Step 1. A primary aim here is to verify conformance between the simulation

and the physical system in a fault-free test case. Reality gaps between simulation and

physical systems could result from a variety of sources: different delays in communica-

tion with the physical system and in simulation; simplified simulation algorithms and

models; and noise/transient signals that trigger violations in a real system. After this, a

series of staged tests will be performed, gradually introducing the WP6 testing platform

into the simulation loop and verifying its behaviour on known tests. If any of the stages

in Step 2 fail, then it may be necessary to return to Step 1 to attempt to identify the

cause and compensate by scenario/fuzzing selection changes.

Step 3: performs simulation-based testing as detailed fully in Section 2.1.6.2. The test-

ing platform will iteratively generate and refine tests in an evolutionary loop, starting

with an initial random test selection and refining the population to generate those that

expose the worst-case performance metrics (representing edge cases and maximum fail-

ures) at minimal fuzzing time exposure.

Step 4: selects a subset of configurations found from simulation-based testing for physi-

cal execution. Because the simulation-based testing process is much faster and more

economical to execute than physical testing, a larger and more diverse set of configura-

tions can be explored in simulation-based testing than could be tested physically. There-

fore, the physical testing scenarios chosen for execution should be selected in order to

carefully utilise the limited physical testing time and resources, while providing infor-

mation on both the conformance between simulation and reality, together with valida-

tion of the real testing results.

This step also considers safety within the physical tests selected, since some simulated

tests may not be viable to execute directly. This may occur since either the modifica-

tions which they introduce to physical system values could cause system instability, or

the operations themselves could disable sensors or override motion in ways that cause a

collision or other risk. Various ways exist to mitigate this, such as safety zone expan-

sion, automated safety interlocks independent of the testing process, manual interven-

tion by an operator such as a safety pilot, or introduction of virtual objects. These are

fully detailed in our deliverable D6.6 [12].

Step 5: performs physical testing using the testing platform in the loop. The testing plat-

form will interface with the physical simulations and inject a particular test configura-

tion found from simulation, recording performance metrics.

Step 6: quantify and compensate for reality gaps between step 3 (simulation) and step 5.

Simulation necessarily provides a simplified model of the real system, which means that

physical system performance could deviate from reality either by false positives or false

negatives. Reality gaps could be systematic, or localised (only occurring under specific

fuzz testing configurations exhibiting combinations of operators, timing and other pa-

D8.9 Integration Platform – Final Version

Page 32 Version 1.0 30 December 2023

Confidentiality: Public Distribution

rameters). In the cases in which reality gaps exist, it is important to consider its source

and how it can be handled. If the reality gap occurs as a result of inadequate modelling

of a particular component, this model can potentially be improved and the simulation

re-executed.

2.1.6.2 SESAME Simulation-Based Testing Methodology

The SESAME WP6 simulation-based testing component enables the evolution of fuzz

testing configurations that reveal violations of system safety requirements, via a simula-

tion-based testing loop. These testing campaigns correspond to edge scenarios that can

be analysed by domain experts and inform the hardening of the MRS system scenario.

Identifying these edge scenarios using our implemented framework, entails following a

methodology presented with a number of steps (illustrated in Figure 16). We refer inter-

ested readers to the SESAME deliverable D6.6 [12] for further information about the

developed simulation-based testing methodology.

Figure 16: The simulation-based testing methodology for WP6

The steps defined in the methodology below are:

Step 3.1: Platform users (MRS test engineers) specify the testing space specification and

MRS structure model. The MRS structure model corresponds to the information provid-

ed by the Executable Scenarios workbench (see deliverable D3.2 [13]) which can op-

tionally be augmented from the information received from a model-to-model transfor-

mation. This MRS model encodes the characteristics of the target mission, including the

robotic systems, the simulation structure, and the mission requirements. The MRS struc-

ture model provides an encoding of the earlier scenario setup step (Step 1) in the wider

integrated methodology of Figure 16. The instantiation of the Testing DSL may also be

informed by the definition of the EDDI, permitting, for example, the generation of au-

tomatic fuzzing operations from the EDDI specification.

Step 3.2: The Testing and MRS models are automatically transformed to mission re-

quirement performance metric templates that provide the framework for quantifying

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 33

Confidentiality: Public Distribution

whether a mission or safety requirement is met, and if not, the extent and impact of the

violation. Since the fuzzing operations selected and requirements quantification are mis-

sion and system-specific, users are responsible for populating these templates. The

SESAME integrated online platform may also be used in performing these model-to-

code transformations from an uploaded model.

Step 3.3: Users implement the previously defined metric templates, to create the re-

quired custom scenario-specific metrics. They specify via the SESAME DSL particular

fuzzing test campaigns, corresponding to the particular experiments that they plan to

execute. These constitute a selection of a particular set of fuzzing attacks defined in the

testing space, and a subset of the defined metrics to assess requirement violations. The

type of experiment and any experiment-specific parameters are also specified. For ex-

ample, with genetic algorithms, experiment-specific parameters such as the number of

generations and iterations can be included.

Step 3.4: The SESAME fuzzing engine consumes the SESAME Testing DSL model,

metrics and selected experiment details and utilises the information from these models

in an evolutionary optimisation step, during which it evolves a population of tests. Each

test comprises a choice of fuzzing events, with events specifying the participating ro-

bots, the simulation messages to be fuzzed and their characteristics (including the fuzz-

ing operation and timing constraints). The experiment runner which incorporates the

evolutionary algorithm evaluates each test by first dynamically generating a specialised

test runner which acts as a middleware, communicating with the low-level simulator via

a simulation-specific interface, and using any custom supplied metric definitions pro-

vided in Step 2 to quantify the impact of the fuzzing test.

This information is communicated to the experiment runner and used to guide a multi-

objective optimisation process. This process uses genetic operations such as mutation

and crossover to create new tests, discarding the worst performing campaigns from the

population. This iterative process continues until an experiment-specific termination cri-

terion is satisfied, i.e., either the maximum number of permitted generations is reached,

or no improvement occurs over a specified number of evolution rounds. Once the evolu-

tion terminates, SESAME produces an approximate Pareto optimal set of fuzzing cam-

paigns, along with the associated approximate Pareto front of mission requirement val-

ues. SESAME also logs all intermediate results using the framework to the model, or to

files, depending on the selection in the DSL.

2.1.6.3 Testing tool and simulation platforms interfaces for KUKA Use Case

Within the context of the Simulation Based Testing Framework, an important role is

played by the interface between the Testing Tool and the simulation platforms. Upon

the Java implementation of the testing framework developed by York, an abstraction in-

terface layer (provided by ISimulator Java interface) is provided to support the integra-

tion with different (robotic) simulation environment, via specific classes in distinct

packages that implement this generic interface.

In particular, the interfacing strategy of the simulation-based testing framework is based

on the assumption that the simulated environment exposes model variables through a

publish/subscribe mechanism. This is perfectly compatible with ROS compliant simula-

tors, but it requires adaptation tiers to couple with simulation engines that are not

equipped with a native ROS interface. For this reason, in the KUKA use case, intercon-

D8.9 Integration Platform – Final Version

Page 34 Version 1.0 30 December 2023

Confidentiality: Public Distribution

nection to the TTS DDD simulator has been focused on the implementation of a general

purpose set of APIs, (SimlogAPI V2), together with a central shared memory intercon-

nection component, that also permits interconnection to the EDDI and to the deployed

robotic system as shown in Figure 17.

Figure 17: Generic scenario

2.1.6.4 The TTS SimlogAPI V2

The TTS Simlog API underwent an iterative process of improvement that led to the lat-

est release currently applied for the integration of the components in the simulation

based testing scenarios. Some of the previous features have been modified to comply

with the evolved requirements of the systems during the advanced evaluation phase,

while some others have been maintained and enhanced. The following list reports the

main requirements fulfilled by the final version of the API:

● be cross-platform and cross-application, supporting the adoption by applications

written in major programming languages (such as the testing platform in Java

and EDDIs implemented in Python);

● ensure high performance communication, to support the efficient exchange of

large sets of I/O signals between the testing framework and the TTS DDD simu-

lation engine;

● comply with a publish/subscribe approach, to support the extensibility of the

type and structures of the exchanged messages;

● support direct read/write operations of registries of the Shared Memory enabling

synchronous polling and modification of data;

● support the Google proto-buffer library
23

 of standard message definitions for the

modelling of general purpose dynamic data structures capable of capturing the

different needs to represent complex information exchange between compo-

nents.

23

 https://github.com/protocolbuffers/protobuf

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 35

Confidentiality: Public Distribution

● support deterministic simulations by allowing precise control of simulation time

via the testing platform, and ensuring proper sequencing of operations

● enable the full synchronisation of external components with the internal simula-

tion thread through a controlled queueing of the read/write events.

The API has been based on gRPC
24

 which is a high performance, open-source universal

remote procedure call framework. It provides support to most of the common develop-

ment platforms used for software engineering like C++, Java, C#, and others. The gRPC

framework uses Protocol Buffers, an industry ready open-source mechanism for serial-

ising structured data provided by Google, as both its Interface Definition Language

(IDL) and as its underlying message interchange format. The interface for Protocol

Buffers communication is defined by a proto definition file. From the architecture point

of view, gRPC relies on the implementation of a server artefact and of client stubs that

manage the function calls in a way that is transparent both to the server and to the client

applications. The framework, starting from the Protocol Buffer defined interface, gener-

ates the server and stubs code in the specific target language of the hosting application,

so that both the endpoints of the communication can use local compiled methods. Rely-

ing on a binary socket implementation, the procedure calls run not only locally but also

remotely through the network. This technology brings a set of benefits that can be

summarised in:

 Transparency of the underlying transport protocol: the application code doesn‘t

have to comply with specific patterns like the stateless mode of the RESTful

API;

 Performance: the default binary implementation of the Protocol Buffers is de-

signed for performance so the impact on the normal operation times is negligi-

ble;

 Vendor independence: the possibility to use the proto definition file format as

IDL to define the API, allows to open the specification to any vendor interested

in integrating with the architecture;

 Complexity management: the possibility to define data structures and articulated

method signatures brings within the integration layer the same design patterns

that can be applied with normal OOP (Object Oriented Programming) code, i.e.,

the observer pattern.

The API definition is split into two major set of functionalities:

● Simulation server API (SimServerAPI): it exposes the functionalities to con-

trol the time progression of the simulation, allowing an external API user to

start, pause, step and end a loaded model, as well as receiving notification about

the simulation clock steps. This API has been integrated as native remote control

interface of the DDD Simulator and is available on all the simulation model dis-

tributions. This is the part of the API allowing the simulation-testing platform to

control the advancing of time in the DDD Simulator, in order to provide deter-

ministic simulations.

24

 https://grpc.io/

https://grpc.io/

D8.9 Integration Platform – Final Version

Page 36 Version 1.0 30 December 2023

Confidentiality: Public Distribution

● Simulation I/O API (SimlogAPI): it gives access to the internal Shared

Memory of the simulation, through which all the components of the model and

the external data sources exchange signals and internal states.

The two API sets correspond respectively to two separate proto files SimServerA-

PI.proto and SimlogAPI.proto, available at our SimlogAPI Github repository (branch

V2)
25

, that specifies the exposed functions and the exchanged data structures (called

messages).

The SimServerAPI

Figure 18: SimServerAPI methods

Figure 18 reports the specification of the main methods that compose the API:

25

 https://github.com/sesame-project/SimlogAPI

https://github.com/sesame-project/SimulationTestingFramework

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 37

Confidentiality: Public Distribution

Method Behaviour

start(StepRequest) Starts the simulation, putting the status of the animation

thread in automatic mode. The provided step request specifies

the number how much a single step of the animation will last

in milliseconds.

If the simulation is already running, a call to start will not

affect the execution.

If start is called on a stopped simulation, the result will be

invalid and the model will stay in finished status.

If start is called on a paused model, the execution will be re-

sumed with the new provided step size.

The method returns a SimStatus message corresponding to the

new status. The API caller can use the message to verify if the

action succeeded.

pause() Pause the execution of a running model. The animation thread

won‘t be stopped and will be ready for subsequent calls to

start().

If called on a paused or stopped model the method will have

no effect.

The method returns a SimStatus message corresponding to the

new status. The API caller can use the message to verify if the

action succeeded.

stop() Stops and finishes the execution of a model.

The model will complete the exit operations.

The method can be called on a started or paused model. After

a call to stop, no further calls to start or pause will have effect.

The method returns a SimStatus message corresponding to the

new status. The API caller can use the message to verify if the

action succeeded.

step(StepRequest) Perform a single simulation step advancing the time of the

required amount of milliseconds.

The model will complete all the logical and visual operations

(included notifications) triggered during the specified amount

of time and then will return in pause mode.

If called on a running (started) or stopped model it will have

no effect.

The method returns a SimStatus message corresponding to the

new status. The API caller can use the message to verify if the

action succeeded.

subscribe() Registers an external component to be informed on simulation

status related events. The subscriber will receive notification

when the simulation model changes state in reaction to a call

D8.9 Integration Platform – Final Version

Page 38 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Method Behaviour

to the start/stop/pause methods or to an action of the end user

on the GUI.

The notified events are structured in a SimStatus message the

contains detailed information about model (see message struc-

tures).

The following tables document the message structures defined by the SimServerAPI:

Figure 19: SimServerAPI messages

StepRequest

deltaTime int64 Amount of time in milliseconds the simulation

clock should progress in response to a step()

call.

StartRequest

deltaTime int64 Amount of time in milliseconds of each single

step of the simulation clock during the auto-

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 39

Confidentiality: Public Distribution

matic execution.

SimStatus

clock int64 Current value of the internal simulation clock.

Value expressed in milliseconds since the ini-

tialization of the model.

deltaTime int64 Current simulation step size in milliseconds.

alive bool True if the simulation model is ready for exe-

cution. When true start/step methods can be

called.

playing bool True if the simulation is running in automatic

mode. When true calls to start/step will have

no effect, whale stop/pause can be called.

exitCode int32 Exit code of the simulation, valid only when

alive=false, playing=false. The meaning of the

provided code is model specific.

D8.9 Integration Platform – Final Version

Page 40 Version 1.0 30 December 2023

Confidentiality: Public Distribution

The SimlogAPI

Figure 20: SimlogAPI messages

Figure 20 reports the specification of the main methods that compose the API and that

allow the testing platform to operate with the data exposed through the SharedMemory:

Method Behaviour

GetTopicInfo

(TopicInfoRequest)

Requires information about a topic. The returned data

informs the caller if the topic exists, the actual topic

path to be used for read/write or pub/sub operations,

the type of expected value and the direction

(IN/OUT/INOUT) of the topic.

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 41

Confidentiality: Public Distribution

Method Behaviour

CreateSubscriber

(Subscriber)

Creates a subscriber handle required to successfully

call the Subscribe method. Each subscriber should use

a single generated handle to be sure that all events

will be notified in the correct sequence on a single

socket.

The method opens and returns the channel for mes-

sages notification specific to the calling subscriber.

Subscribe

(SubscriptionRequest)

Registers a specific subscriber to a requested topic.

The generated notifications will be sent on the chan-

nel opened with the CreateSubscriber method.

The notified messages will comply with the topic de-

scription reported by the GetTopicInfo method.

Publish

(stream PubRequest)

Opens a stream for asynchronous publication of mes-

sages on a specific topic. The opened stream will ac-

cept only messages matching the type contained in the

provided TopicDescriptor instance.

Write(PubRequest) Performs a single synchronous operation of writing on

a specific topic. The payload of the sent message must

comply with the expected topic value type returned by

the GetTopicInfo method.

Read(ReadRequest) Performs a single synchronous reading operation on a

set of topics. The returned message contains the list of

values corresponding to the requested topics. Each

value is compliant with the topic description returned

by GetTopicInfo.

Inject(InjectRequest) Allows an external component to behave as a man-in-

the-middle on a specific topic. This method has been

designed to enable the testing platform to alter signal

values directed to the simulation model or generated

by it and consumed by other components like the

Conserts.

The method creates the shadowing topics required to

implement the routing of the original messages to the

caller of the inject and the altered messages to the

original consumer(either simulation or other compo-

nents).

The following tables document the message structures defined by the SimlogAPI:

D8.9 Integration Platform – Final Version

Page 42 Version 1.0 30 December 2023

Confidentiality: Public Distribution

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 43

Confidentiality: Public Distribution

Figure 20: SimServerAPI messages

D8.9 Integration Platform – Final Version

Page 44 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Subscriber

name string Human readable name of the subscriber for

logging and debugging purposes

uuid string UUID of the subscriber to be created. Each

subscriber must have a unique ID in a single

execution session.

SubscriptionRequest

path string Full path of the topic for which the subscrip-

tion should be created

subscriberUUID string A UUID identifying a subscriber created with

the CreateSubscriber method. All the subscrip-

tion requests issued with the same subscribe-

rUUID will generate events on the same noti-

fication chanell.

TopiInfoRequest

path string Full path of the topic for which information is

required

TopicInfo

path string Full path of the topic information is referred to

type ValueType Type of the value exchanged on the topic

direction DirectonType Direction of the topic.

exists bool Specifies if the topic exists, i.e. the corre-

sponding registry exists on the Shared

Memory

SimlogMessage

header Header Header of the message containing meta-data

type ValueType Type of the value contained in this message

value google.protobuf.

Value

Actual value

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 45

Confidentiality: Public Distribution

Header

timestamp google.protobuf.T

imestamp

Timestamp of the message

path string Full path of the topic

ReadRequest

path string[] Array of full path of topics to be read.

ReadResponse

messages SimlogMessage[] Arrays of messages containing the values of

the requested topics.

InjectRequest

targetPath string Full path of the topic whose values should be

altered.

shadowPathPrefix string Prefix of the path of the shadow topics creat-

ed to send the altered values.

InjectResponse

shadowPathIn string Full path of the shadow topic the altered val-

ues should be sent on.

shadowPathOut string Full path of the shadow topic where the injec-

tion user will receive the original values.

PubRequest

topic string Full path of the topic that must be written

data SimlogMessage Payload of the write request

The documented messages refer to the following enumerations when defining the type

of exchanged values and the direction of the topics.

D8.9 Integration Platform – Final Version

Page 46 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Figure 21 SimlogAPI enumerations

Proof of concept Deployment Scenario

A reference implementation of the API at simulation side has been developed based on

TTS‘s DDD Simulation platform, creating a dedicated communication library. The im-

plementation has been tested with a preliminary proof of concept model extracted from

the KUKA use case. In particular, the generalisation of the SimlogAPI has been further

extended to prove the possibility to adapt the developed approach to complex and artic-

ulated scenarios where several components concur to the execution of a simulated tested

session. In particular, the EDDI has also been interconnected with the V2 API, and

demonstrated to transmit and receive data to and from the DDD Simulator.

Figure 22: KUKA Proof of concept integration scenario

In Figure 22 the component SHM I/O acts as a brokering endpoint mirroring the Shared

Memory used by Siemens and KUKA proprietary applications during a Virtual Com-

missioning session to the Testing Framework and to the TTS Simulation engine using a

SimlogAPI implementation. In this way it is possible to perform several kinds of relia-

bility tests and acquire custom metrics to measure the level of dependability of the sim-

ulated system.

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 47

Confidentiality: Public Distribution

2.1.6.5 Requirements status

Table 7: Requirement status for simulation based testing of EDDI tools

Req.
No.

Requirement Priority Resp.
WP

Status

D98 Support semi-automated transformation of ExSce
definition into testing scenarios to be exercised in
simulation.

SHALL 6 Done

D99 Support the execution of simulated ExSce with
tracking of acceptance criteria and provenance
data in the form of logs.

SHALL 6 Done

D100 Define an open API specification for the monitoring
and manipulation of simulated ExSce at runtime.

SHALL 6 Done

D101 Support data stream acquisition from the real de-
vices into a Digital Twin platform.

SHALL 6 Done

D102 Support integration of simulated ExSce with EDDI
logic with bi-directional data exchange.

SHALL 6 Done

D103 Support the interpretation of ExSce. SHALL 6 Done

D104 Support integration of different simulation plat-
forms.

SHOULD 6 Done

D105 Support simulation model updating according to
data stream analysis on the Digital Twin Platform.

SHOULD 6 Done

D106 Support Virtual Commissioning mode for hardware
in the loop analysis.

MAY 6 Done

D107 Provide a configuration User Interface to ease the
Model to Model transformation.

MAY 6 Done

D108 Support interfacing with EDDI. MAY 6 Done

D109 ExSce shall generate the input required by the
target simulator.

SHALL 3 Done

D110 ExSce shall be readable/queryable so that the
testing DSL can be initialised.

SHALL 3 Done

D111 EDDIs shall be readable/queryable so that the
testing DSL can be initialised.

SHALL 4, 5 Done

D112 A customisable logging mechanism shall record
information related to the target mission and be
linked with the target simulator.

SHALL 2, 3,
4, 5,

7

Done

2.1.7 Testing of ML Components Tools

The York team introduced an ML Testing Toolkit that encompasses the following tool-

supported techniques:

D8.9 Integration Platform – Final Version

Page 48 Version 1.0 30 December 2023

Confidentiality: Public Distribution

1) DeepKnowledge: A white-box testing tool, which is an implementation of a new sys-

tematic testing approach for deep neural networks (DNNs) based systems. This is an

assurance technique for data-driven and learning components.

2) GenRepair: A hardening and repairing tool, which incorporates a novel coverage-

guided data augmentation fuzzing technique for Deep Learning models underpinned

by generative AI. It provides a comprehensive methodology for repairing data-driven

components. The tool incorporates a technique for model repair that strengthens the

prediction capabilities of DNNs, enabling them to operate more safely when facing :

(i) buggy inputs; and (ii) data distribution shifts.

Both tools operate synergistically, offering also the option for independent function-

ality.

Figure 23: ML Testing ToolKit workflow

2.1.7.1 DeepKnowledge: A white-Box Testing Approach for Data-Driven Components

The DeepKnowledge tool-supported technology whose high-level workflow is shown

on the left side of Figure 23, is a systematic testing approach for DNN systems. Using a

trained DNN, an in-distribution (ID) and an out-of-distribution (OOD) dataset,

DeepKnowledge analyses how the model learns and transfers knowledge abstractions

under domain shift in step A.1 (Analyse Knowledge Abstraction). During this analysis,

the learning problem is looked at through the prism of the DNN generalisation theory

[14], based on which DeepKnowledge establishes a fundamental understanding of out-

of-distribution generalisation at the neuron level and quantifies the individual

contribution of each neuron to this process.

Step A.2 (Select Transfer Knowledge Neurons), involves a filtering process through

which DeepKnowledge identifies a set of Transfer Knowledge (TK) neurons, which,

given their contribution to the model's generalisation performance, are considered core

DNN computational units. The rationale behind using out-of-distribution generalisation

is that it enables the analysis of what part of the knowledge gained during DNN training

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 49

Confidentiality: Public Distribution

can be employed in a new domain without re-training or fine-tuning. Thus, it allows the

simulation of real-world corner cases the model could encounter during deployment.

Finally, step A.3 (Estimate Knowledge Coverage) involves the execution of fine-

grained clustering analysis to determine activation value clusters that reflect the changes

in neurons' behaviour with respect to new inputs. The produced clusters of the transfer

knowledge neurons are then used to assess the coverage adequacy of the test set,

conforming to the combinatorial analysis method defined in DeepImportance [15].We

refer interested readers to the SESAME deliverable D6.1 [16] for further information

about the developed DeepKnowledge technology.

Analyse Knowledge Abstraction

Identifying the Transfer Knowledge (TK) neurons within the DNN trainable layers is a

key principle of DeepKnowledge. Our approach begins by evaluating the prominence of

each neuron and its connections to the OOD generalisation process. This analysis aims

to identify neurons that can generalise knowledge abstracted during training and apply it

to an OOD domain without re-training or fine-tuning.

These TK neurons are core components of the DNN, collectively contributing to its

generalisation behaviour, and, consequently, have a positive effect on the DNN accura-

cy and robustness, enabling them to reach their peak performance.

Our method allows the identification of input instances that produce the highest activa-

tion values for a neuron. Then, we turn these representations into probability distribu-

tions to quantify the shift in abstracted knowledge by utilizing a statistical metric on the

defined space of probability distributions at the individual level (i.e., per neuron). Neu-

rons able to achieve a certain threshold (that is empirically defined) of the statistical

measure are selected as candidate transfer knowledge neurons.

By this means we leverage a novel test adequacy criterion for testing DNN models by

assessing test set quality and semantic diversity.

Estimate Knowledge Coverage

To increase our confidence in the robustness of learning-enabled components, i.e., DNN

models, we assess the test set adequacy, i.e., how well the test set exercises the set of

identified TK neurons.

DeepKnowledge determines regions within the TK activation value domain central to

the DNN execution and clusters them into separate combinations. Each combination of

clusters reflects different knowledge abstracted during the training phase.

We can assess the knowledge diversity of the test set by assessing if it adequately co-

vers these combinations, similar to combinatorial interaction testing in conventional

software testing. We posit that semantically similar inputs, i.e., inputs with similar fea-

tures, generate activation values with a similar statistical distribution at the neuron level.

Software and machine learning teams can use this information to augment the dataset

and increase the coverage, thus, increasing their confidence in the capacity of the DNN

to function correctly when deployed in the real world.

D8.9 Integration Platform – Final Version

Page 50 Version 1.0 30 December 2023

Confidentiality: Public Distribution

2.1.7.2 GenRepair: A Coverage-guided hardening and Repairing Approach for Data-Driven

Components

GenRepair, is a coverage-guided fuzz testing and repairing framework for learning-

enabled components. In particular, GenRepair is suitable for hardening and retraining

DNN models using the original training dataset augmented with the newly identified

corner case inputs.

The underpinning approach applies a generative AI-based data augmentation strategy to

generate new semantically tests, and leverage multiple extensible coverage criteria as

feedback to guide the test generation, such that extensible DNN testing, hardening and

repairing can be performed.

While most existing data augmentation methods focus only on automatically encoding

buggy inputs through simple geometric and colour space transformations (e.g., changing

brightness, rotation, blurring, etc.), GenRepair leverages semantic-based methods to

generate inputs that have not been encountered during training, and which could yield

potentially severe corner cases.

The general structure of our GenRepair approach is given on the right side of Figure 21.

The tool-based technique iterates back and forth between two main components: a cor-

ner-cases generation component (steps B.1 and B.2) and a coverage-guided repair com-

ponent (steps B.3 and B.4).

Augment Dataset with Synthetic Inputs and Estimate their Fidelity

In step B.1, we select input seeds from the initial dataset that may result in corner cases

that resemble previously unseen data samples, potentially leading to unsafe DNN be-

haviour due to input transformations (e.g., corruption, perturbation). Then, we intro-

duce an augmentation method to synthetically generate these corner cases using the se-

lected input seeds. For this purpose, we leverage generative AI models, e.g., Inpainting

using Stable Diffusion. Then, we iteratively execute a semantic-based data augmenta-

tion loop.

In step B.2, we introduce an automated fidelity estimation technique that filters out non-

photo-realistic augmented seeds. This step allows to maximize the photo-realism of the

augmented seeds with respect to the input seed. Since not all augmented seeds corre-

spond to realistic images, our approach estimates the visual or textual fidelity of each

augmented seed.

Coverage Tracing and Continuous Learning

Additional iterations are performed and extensible coverage criteria are deployed in step

B.3 as feedback to guide the selection of augmented seeds from the previous steps. Cru-

cially, a set of novel corner cases that is important for the performance of the DNN in

its target operational environment, i.e., solve the oracle problem and increase the cover-

age score, is created. Finally, the initial dataset is augmented with corner cases from the

data augmentation process which increase its diversity.

In step B.4, an iterative re-training mechanism is introduced, termed Coverage-Guided

DNN Repairing, for which the collected corner cases are used as sources that enable the

rectification of these failure patterns. We mainly deploy a continuous learning strategy

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 51

Confidentiality: Public Distribution

for the repairing phase. After the execution of generation and verification steps, the out-

put of the procedure is a DNN model with repaired weights.

Our Generative repair tool efficiently generates photo-realistic corner cases, and deploy

them to successfully repair DNNs achieving high accuracy without harming their initial

performance on InDD data.

We refer interested readers to the SESAME deliverable D6.4 [17] for further infor-

mation about the developed GenRepair technology.

2.1.7.3 Requirements status

Table 8: Requirements status for testing of ML components tools

Req.
No.

Requirement Priority Resp.
WP

Status

D113 Support white box analysis of the ML model given
the training and testing sets.

SHALL 6 Done

D114 Quantify the adequacy of the test set for the target
ML model.

SHALL 6 Done

D115 Synthesise new inputs using the training/testing
sets as source.

SHALL 6 Done

D116 Select scenarios to be used in the online verifica-
tion mode.

SHALL 6 Done

D119 ExSce shall generate the input required by the
target simulator [ExSce Workbench].

SHALL 3 Partial

This has
been

achieved for
the Floorplan

DSL, and
additional

interfaces for
other parts of

the ExSce
and testing
DSL, will be
developed

based on the
use cases

needs.

D120 ExSce shall be readable/queryable so that the
testing DSL can be initialised.

SHALL 3 Partial

This has
been

achieved for
the Floorplan

DSL, and
additional

interfaces for
other parts of

the ExSce
and testing
DSL, will be
developed

based on the
use cases

needs.

D121 EDDIs shall be readable/queryable so that the
testing DSL can be initialised.

SHALL 4, 5 Partial

Design time
is complete
and runtime

D8.9 Integration Platform – Final Version

Page 52 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Req.
No.

Requirement Priority Resp.
WP

Status

in progress

D122 A customisable logging mechanism shall record
information related to the target mission and be
linked with the target simulator.

SHALL 2, 3,
4, 5, 7

Don
e

2.1.8 Runtime EDDI Components and Generation Tools

A brief overview of each of the runtime EDDI components is provided below. Further

details can be found in D7.1 [9] and D7.2 [10].

2.1.8.1 Conditional Safety Certificates (ConSerts) ROS Component

ConSerts [7] are dynamic modular safety concepts, which allow systems to specify pre-

assured configurations during development. At runtime, evidence collected from the

operational context, e.g. through monitoring, and satisfied demands placed on external

systems can trigger appropriate reconfiguration.

A brief example can be seen in Figure 24; on the left side of the figure, the graphical

representation of the ConSert depicts how a guarantee, listed as safety goal (SG) 4, is

established, based on live monitoring evidence, listed as runtime evidence (RtE) 3,4 and

5. Boolean logic gates connect the RtE to establish the SG. On the right side of the

figure, the XML-based representation of the equivalent ConSerts is shown. Equivalent

specifications (e.g. in YAML) can also be constructed similarly. Note that the figure

shows a single ConSert of a solitary system. In the general case, the ConSert can also

support demands, which are fulfilled by service guarantees from external systems.

Figure 24: Example of ConSert, from [18]

Based on a ConSert specification, a corresponding runtime component can be

generated. The runtime ConSert component offers the following features:

 It allows runtime composition checks from dependent systems to supporting

systems‘ services. Only valid combinations of services (both in terms of function

compatibility, and in terms of demand satisfaction) are allowed.

 It enables live evaluation of the guarantee(s) provided by a given ConSert, given

the current RtE and demands available. Switching from one guarantee to another

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 53

Confidentiality: Public Distribution

can be used as a recommendation to the host system to reconfigure its behavior

accordingly e.g. degrade performance to reduce safety risk due to increased

operational risk perceived by RtEs or received demands.

2.1.8.2 Bayesian Network ROS Component

Bayesian Networks (BNs) [19] [20] are a (usually graphical) representation of joint

probability distributions. Individual nodes on the graph represent factorizations of joint

probability distributions e.g. joint probability P(E,A,B) could be represented by having

nodes representing P(E|A,B), P(A|B) and P(B) for abstract effect E and causes A and B.

Directional arrows connect nodes and represent the (probabilistic) causal dependency

between nodes. This is illustrated as an abstract Bayesian network in Figure 25.

Figure 25: Abstract BN Example

BNs are very flexible in their usage; for our purposes, they can be used as (input to)

monitor/analysis, by probabilistically estimating which state a system (or MRS) is

currently in, based on related sensor input. This effectively evaluates the network in a

forward direction along the arrows, based on causal conditions observed at runtime.

2.1.8.3 SafeML ROS Component

SafeML is relevant when the host application uses ML models. It can be deployed as a

monitor which checks whether the runtime input data received by the ML model is

statistically ‗similar‘
26

 as (a subset of) the training data. If this check fails, it indicates

that the ML model might be trying to provide an answer for a situation it has not been

trained for, and might therefore be unreliable. An abstract example of how this process

can be applied is shown in Figure 26. In the figure, input images received by the robot‘s

embedded camera are provided to an ML-based detector for some task e.g. object

detection. SafeML compares the input images with a set derived from the model‘s

training images. The more dissimilar the input to the reference images, the lower the

confidence in the ML‘s outcome. Different levels of confidence can then be associated

with corresponding responses e.g. performing a minimal risk manoeuvre, notifying

human operators etc.

26

 Is likely to belong to the same probability distribution.

D8.9 Integration Platform – Final Version

Page 54 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Figure 26: Abstract Example of SafeML for Object Detection/Localization

2.1.8.4 EDDI Tailorability Support Tool for ROS Platform

In D5.4 [21], the MROS meta-control framework [22] is used to tailor EDDIs to MRS

that use the Robot Operating System (ROS) platform. MROS can be used to

automatically generate models of an existing ROS architecture i.e. an MRS‘

architecture. These models can then be further exploited by associated tools to generate

appropriate configuration files for the EDDI runtime generators and the components

themselves.

An overview of this process can be seen in Figure 27. Blue parallelograms correspond

to process steps, and green rectangles to input/output files. Starting from the left side,

MROS is applied to an existing ROS application, generating a ‗ROSSystem Definition

File‘ (RDF). An example of an RDF can be seen in Figure 28. For each EDDI

component that is intended to be used, a corresponding RDF must also be created

(currently, manually). The graphical modelling tool Eclipse Sirius
27

 and MROS can be

used to combine the set of RDFs into a combined application which integrates the EDDI

runtime components into the ROS application. At the end of this step, a combined RDF

is available. Finally, using the latter RDF, a mapping between the EDDI runtime

components and the ROS application environment can be created, yielding an EDDI

configuration file for each of the EDDI runtime components.

Figure 27: Overview of EDDI Tailorability for ROS Applications

27

 https://www.eclipse.org/sirius/

https://www.eclipse.org/sirius/

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 55

Confidentiality: Public Distribution

Figure 28: Example of ROSSystem Definition File, from [22]

2.1.8.5 Requirements status

Table 9: Requirements status for EDDI components and generation

Req.
No.

Requirement Priority Resp.
WP

Status

D123 Support generation of ConSerts for dynamic risk
assessment and management (and associated
executable components) from EDDIs and ExSces.

SHALL 7 Done

D124 Support generation of Bayesian Networks for
dynamic risk assessment and management (and
associated executable components) from DDIs and
ExSces.

SHALL 7 Done

D125 Support runtime estimation of uncertainty for ML
components.

SHALL 7 Done

D126 Support distributed execution of real-time analytics
and monitoring facilities.

SHALL 7 Done

D127 Support probabilistic reasoning for dynamic risk
assessment.

SHOULD 7 Done

D128 Provide interface for data exchange to/from EDDIs. SHALL 7 Done

D129 Provide interface for data exchange to/from
runtime models.

SHALL 7 Done

D131 Bilateral interface or exchange format to allow
information to be communicated with EDDI Tools.

SHALL 4, 5 Done

D132 Bilateral interface or exchange format to allow
information to be communicated with ExSce
Workbench.

SHALL 3 Done

D133 Bilateral interface or exchange format to allow
information to be communicated with Trajectory
Planning.

SHALL 2 Done

D134 Bilateral interface or exchange format to allow
information to be communicated with Simulation-
based Testing Tools.

SHALL 6 Done

2.1.9 Multi-Agent System for Security and Safety Management

By viewing MRS as Multi-Agent Systems (MAS), we can consider how the role of each

changes dynamically as the mission context changes (usually with respect to system and

operational context changes). Figure 29 depicts an abstract overview of how the MAS

viewpoint relates to our EDDI runtime components. In the case of the figure, the

ConSert, Dynamic Risk Assessment (DRA), and SafeML components are depicted, but

this is arbitrary; other combinations are also possible. Additionally, the figure indicates

D8.9 Integration Platform – Final Version

Page 56 Version 1.0 30 December 2023

Confidentiality: Public Distribution

that our initial focus is on supporting ROS architectures, but the approach can be

adapted to support other platforms.

Under this view, each MRS plays the role of an agent, providing either mission-level

monitoring, analysis, and/or planning, and then circulating their observations to the rest

in each iteration. The MAS roles can be interchangeable, and allocated according to the

specific application. Arriving at this vision is still work-in-progress and technically

depends on the individual EDDI runtime components being discussed in this document.

Figure 29: Mapping from MAS architecture to MAPE-K control loop

Table 10: Requirement status for multi agent system for security and safety

Req.
No.

Requirement Priority Resp.
WP

Status

D135 Support MAS-oriented deployment of dynamic risk
management runtime models.

SHALL 7 Done

D136 Support MAS-oriented distributed execution of
real-time analytics and monitoring facilities.

SHALL 7 Done

D137 Specification of secure protocol for MAS
communication protocol.

SHALL 7 Partial

D138 Provide explainable feedback regarding the MRS
and their operation.

SHALL 7 Done

D139 Provide situation-aware risk prediction service for
MRS constituents.

SHOULD 7 Done

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 57

Confidentiality: Public Distribution

Req.
No.

Requirement Priority Resp.
WP

Status

D140 Support MRS resilience via individual agent role
adaptation.

SHOULD 7 Done

D141 Support risk-aware coordination via risk source
inference and collaborative risk management.

SHOULD 7 Done

D142 Support MRS resilience via MRS-wide adaptation. MAY 7 Done

D143 Support MRS operation optimization with respect
to dependability and mission efficiency.

MAY 7 Not done

D144 The MRS perception stack provides information
regarding the MRS operational context.

SHOULD 2 Done

D145 The MRS perception stack provides information
regarding the MRS planned tasks.

SHOULD 2 Done

D146 Safety models regarding the MRS are available at
runtime from EDDI-based Safety Tools.

SHOULD 4 Done
This is

supported
from the tool
side, models
need to be
created for

the use
cases.

D147 Security models regarding the MRS are available
at runtime from EDDI-based Security Tools.

SHOULD 5 Done

D148 Quality models regarding the MRS are available at
runtime from Simulation-based Testing and ML
Testing Tools.

SHOULD 6 Done

D149 MRS task planning, operational environment, and
runtime capability models are available at runtime
from Trajectory Planning.

SHOULD 2 Done
From the
trajectory

planner, the
trajectory
and the
actuator

commands
to follow

that
trajectory

are
provided.

this is ready
as shown in

the
simulations

and
experiment

s, for
validation.

D150 MRS task planning, operational environment, and
runtime capability models are available at runtime
from Collaborative Perception.

SHOULD 2 Partial
support

D151 MRS task planning, operational environment, and
runtime capability models are available at runtime
from Collaborative Intelligence Analytics.

SHOULD 2 Partial
support

D8.9 Integration Platform – Final Version

Page 58 Version 1.0 30 December 2023

Confidentiality: Public Distribution

3. WORKFLOWS

Studying the SESAME tools and components, we have analysed the lifecycle of MRS

from design, over development and up to use and identified several steps. The high-

level, simplified workflow can be seen in Figure 30. However, the presented workflow

can be instantiated in a flexible manner allowing different iterations.

Figure 30: SESAME high-level Workflow

As we have described in D8.1 – Architectural Guidelines [2], the various SESAME

components can be employed for the systematic development of dependable MRS. The

workflow above supports this systematic development as follows:

▪ Step 1: Robotic users utilise configurable and extensible domain-specific

languages to specify ExSce for MRS capturing both MRS mission-relevant

information and mission-plausible information. This step is informed by the

knowledge base of SESAME through the set of MRS capabilities available for the

specific mission and ExSce templates.

▪ Step 2: Safety and security engineers, forming the dependability team, use ExSce

to develop the EDDI, potentially leveraging EDDI templates from the knowledge

base. This iterative safety-security co-engineering process enables establishing

desirable tradeoffs between safety and security requirements, and other

dependability features encapsulated within the EDDI. Once completed, a set of

MRS mission-specific EDDI is generated.

▪ Step 3: Given the ExSce and EDDI, this step semi-automatically generates the

EDDI-enabled MRS along with models, runtime monitors and interfaces needed

for simulation and digital twin instantiation, quality assurance, and self-

adaptation.

▪ Step 4: Through a systematic quality assurance process both in simulation and

real-world settings, the EDDI- enabled MRS is evaluated. This process assesses

the quality of the EDDI and ExSce, and the adequacy of AI-based perception

components generating the data consumed by the EDDI. Depending on the

outcomes, the ExSce or EDDI might require enrichment or refinement, leading to

another design-time SESAME iteration.

EDDI-based
Safety/Security
Analysis Tools

Executable Scenarios

Simulation-Based Testing Runtime EDDI

Step 1 + 2 Step 3 Step 4

Robotics Capabilities

Pilot Case

Robotic Application

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 59

Confidentiality: Public Distribution

In a more detailed overview of the whole system of tools and components (see Figure

31) we can identify the inputs/outputs of each tool and component as well as the

interactions between them.

D8.9 Integration Platform – Final Version

Page 60 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Figure 31: SESAME detailed workflow

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 61

Confidentiality: Public Distribution

4. SESAME INTEGRATION PLATFORM

The SESAME integration platform consolidates the software and tool developments

done in the work packages (WP 2-7), and gives support to the demonstrator use-cases.

The integrated platform will provide centralized access to all the technologies that

produce during the project for developing dependable MRS and makes it readily

available to the engineers, essentially being the central connector between the

interconnected components.

4.1 TOOLS AND TECHNOLOGIES

The development of the integrated platform is carried out in a stepwise and iterative

way. Several technologies and tools are needed to support the development of the

platform and the integration of all provided models and artifacts of the components.

Table 11 describes the selection of tools and technologies that are used in the scope of

the platform development.

Table 11 - Tools and technologies to support the integrated-platform development

Description Tool Link

Version control

(common source code reposi-

tory and project storage reposi-

tory)

Git http://git-scm.com/

IDE IntelliJ IDEA https://www.jetbrains.com/idea/

Front-side programming lan-

guage

JavaScript - An-

gular

https://angular.io/start

Back-end runtime environment

Node.js - Ex-

press.js

https://expressjs.com/

As described in the SESAME detailed workflow (Figure 31), the SESAME portal offers

user interface (UI) to interact with the SESAME tools though different processes and

methods by providing the options for uploading and downloading the various models

and artifacts of the different components or modules for the projects (use cases). In

addition, in the backend, the Git is chosen as data storage where the folder structure is

followed for different engineering step of the SESAME processes and methods of the

use cases. The implementation of t this platform was required to integrate with Git as

project storage and implement graphical interfaces to expose these functionalities to the

developer.

The final version of the SESAME platform is implemented according to the

technologies architecture depicted in Figure 32. The Angular framework of JavaScript

is chosen for the front-end development because of its compelling features that include

templating, two-way binding, modularization, RESTful API handling, dependency

http://git-scm.com/
https://angular.io/start

D8.9 Integration Platform – Final Version

Page 62 Version 1.0 30 December 2023

Confidentiality: Public Distribution

injection, and so on. The front-end interacts with Git (e.g., GitHub) through the

RESTful API backend server developed using Express framework for Node.js.

Figure 32: Front-end and back-end technologies of the SESAME platform

4.2 IMPLEMENTATIONS

The final implementation provides seamless navigation across three distinct pages, each

serving a specific purpose.

Project Creation and Configuration:

The initial page, showcased in Figure 33 offers users the ability to create and configure

projects. By clicking the ‗Create Project‘ button in the upper-right corner, a pop-up

window appears, allowing users to define a project name and select from models like

EDDI or ExecSce.

Figure 33: Project page (left-side) and create project pop-up window (right-side)

In the backend, a new directory is automatically created within our model storage Git

repository for the new project. To enhance the user experience, we have incorporated

features such as a project filter (located in the upper-left corner) and options for sorting

projects in ascending or descending order at the top of the project table. Additionally,

users have the ability to delete entire project.

Adding Modules/Components to Projects:

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 63

Confidentiality: Public Distribution

Clicking on a specific project redirects users to the second page, illustrated in Figure 34,

which is designed for adding and removing modules/components to the selected project,

and these modules are related to various work packages. The upper section provides a

dropdown module list, enabling users to add the modules they wish to incorporate into

their project. In the lower section, all existing modules are displayed in a table, where

users can delete each module as needed. In the backend, adding a module creates a

specific module directory within the project directory in our model storage Git

repository.

Figure 34: Module page (left side) and select modules list (right side)

Uploading and Downloading Models and Artifacts:

Clicking on a particular module redirects users to the third page, depicted in Figure 35.

This page is dedicated to uploading new models and downloading existing ones. In the

upper part, users can select the model or artifact files they want to upload. Furthermore,

the system incorporates robust error-handling functionality, which is showcased on the

right side of the figure, to capture and communicate file upload errors effectively. In the

lower section, all existing models are displayed in a table, giving users the option to

download or delete each model.

In the backend, uploading a model adds the model file to the specific module and

project directory in the Git repository. This page, too, features a model filter and options

for sorting in ascending or descending order to optimize the user experience.

D8.9 Integration Platform – Final Version

Page 64 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Figure 35: Upload model page (left-side), and file upload success/error message (right-side)

When uploading models to specific modules, various tool execution workflows (GitHub

Action) will be triggered. Detailed descriptions of the tool integrations and workflow

execution can be found in Section 4.3. Certain tool executions have specific

prerequisites that must be met before commencing the execution process. For instance,

when dealing with the ‗Runtime EDDI Generation Tools‘, users are required to upload

both processing and configuration files prior to uploading the model. These files are

essential for the proper functioning of the tool and workflow execution. These

prerequisites are clearly outlined on our ‗Upload Model‘ page, as illustrated in Figure

36.

Figure 36: Upload model page with a model specific instructions

Success Message

Error Message

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 65

Confidentiality: Public Distribution

By adhering to these specified requirements and following the detailed tool execution

instructions, users can ensure a smooth and efficient execution of developed GitHub

Actions workflows for added models and utilizing the associated tools within the

specific modules and projects.

4.3 INTEGRATION OF TOOLS

In this section, we will demonstrate the integration of tools across different components

of the work packages into our integrated platform.

For tool integration, we have developed a versatile and modern continuous integration

process leveraging GitHub Actions. GitHub Actions is a powerful feature that

automates tasks and workflows within the GitHub repository. We have created

workflows to automate tasks such as fetching the latest code from specific tool

repositories, running the tools, and uploading the resulting outputs as artifacts for

different tools. Furthermore, these workflows can be initiated by adding or uploading

input models to various modules within the project on our platform. One can access all

the developed workflows in our sesame-model-storage repository within the sesame-

project
28

. The details of tool integration and workflow development are as follows.

FloorPlan-DSL Tools:

The FloorPlan-DSL, belonging to work package 3, serves as a modeling language

tailored for indoor environments. It empowers users to craft 3D models and maps,

instrumental in simulating robot navigation across various simulators. This tool offers

the capability to create diverse environment variations and design simulation scenarios.

One can find the repository for these tools at https://github.com/sesame-

project/FloorPlan-DSL, and for comprehensive instructions on how to execute this tool,

please refer to Section 6.4.2. To accommodate these functions of the tool, we have

devised two distinct workflows, outlined as follows:

FloorPlan-DSL: Variation

Utilizing the Variation DSL, a complementary language, users can specify variation

points for all spatial relations through probability distributions. The tool then generate

concrete floor plans by sampling from these distributions.

28

 https://github.com/sesame-project/sesame-models-storage/tree/main/.github/workflows

https://github.com/sesame-project/sesame-models-storage/tree/main/.github/workflows

D8.9 Integration Platform – Final Version

Page 66 Version 1.0 30 December 2023

Confidentiality: Public Distribution

To streamline the tool execution process, we have created a specialized workflow, as

depicted in Figure 37. This workflow is triggered automatically once users upload a

‗.variation‘ model with the ‗number of variation‘ suffix inside the ‗Executable

Scenarios Workbench‘ module within the project on our platform. Furthermore, it is

important to note that in order to generate variations of the floorplan model, the

floorplan model should be uploaded prior to the variation model.

Figure 37: A segment of the ‘run-floorPlanDSL-variation-tool’ workflow

The workflow begins with a trigger event, which occurs when a user upload variation

model in the ‗.variation‘ file format to the designated module, ‗Executable Scenarios

Workbench‘ within the project environment. Upon triggering, the workflow initiates an

input validation process. It checks if the model file is added and confirms that it adheres

to the expected structure.

If the input passes validation, the workflow proceeds to next steps, as illustrated in

Figure 37. In these steps, prior to running the variation tool, you must configure Python

and Blender and install the requisite dependencies. Subsequently, execute the

FloorPlan-DSL variation tool, which generates different floorplan models and saves

them in the output folder. These generated floorplans are then uploaded as workflow

artifacts for further utilization.

FloorPlan-DSL: Simulation Environment

This function facilitates the transformation of floor plan descriptions into 3D models in

the widely recognized STL format, compatible with numerous simulators.

To streamline the execution process, we have formulated a dedicated workflow, visually

depicted in Figure 38. This workflow is automatically activated when users upload a

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 67

Confidentiality: Public Distribution

‗.floorplan‘ model within the ‗Executable Scenarios Workbench‘ module of the project

on our platform.

Figure 38: A segment of the ‘run-floorPlanDSL-simulation-tool’ workflow

Similar to the floorplan-DSL Variation workflow, the workflow begins with a trigger

event and checks if the model file is added then workflow proceeds. In the simulation

tool execution, setting up Python and Blender and installing the necessary requirements

is a prerequisite. Following this, you can execute the FloorPlan DSL simulation tool,

which generates ‗.stl‘ 3D models and saves them in the output folder as workflow

artifacts, ready for further utilization.

Simulation-Based Testing Tool:

This tool is part of work package 6, and the initial phase code generator is seamlessly

integrated into our platform. It is designed to generate metrics and experiment runners

based on the model provided. The experiment runner is responsible for creating tests

according to the strategy defined for the experiment's test campaign, and these tests are

executed locally for thorough validation. One can find the repository for this tool at

https://github.com/sesame-project/simulationBasedTesting, and a technical description

of this process in Section 6.7.1.

A glimpse of the developed workflow for this tool is depicted in Figure 39, which is

automatically triggered when users upload a ‗.model‘ file to the ‗Simulation-Based

Testing of EDDI tools‘ module within their project.

D8.9 Integration Platform – Final Version

Page 68 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Figure 39: A segment of the ‘run-simulationBasedTesting-tool’ workflow

In this workflow, the tool execution process begins with setting up Java. Subsequently,

we download the tool's assert zip file from the SimulationBasedTesting repository

release page (https://github.com/sesame-project/simulationBasedTesting/releases). The

next task involves unzipping the release file and running the Java application, resulting

in the creation of a new Java project named ‗standaloneGenTest‘ with generated Java

files for both the experiment runner and metrics. Finally, this project is uploaded as

artifacts for further model testing and validation.

Design-time EDDI Tools:

These tools are part of work package 7 and one can find the repository for these tools at

https://github.com/sesame-project/design_time_eddis. It comprises three distinct tools:

BayesianNetwork2EDDI, EDDI2BayesianNetwork, and eddis2consert. All these three

tools are integrated within our platform. A detailed usage instructions and technical

information provided into Section 6.9.

BayesianNetwork2EDDI

BayesianNetwork2EDDI is a versatile tool that facilitates the transformation of runtime

Bayesian network models (in ‗.xdsl‘ format) into EDDI representations of the model.

This enables the conversion of generated networks, be it through machine learning

algorithms or expert knowledge, into interchangeable EDDIs.

To streamline this process, we have developed a workflow, a segment of the workflow

is depicted in Figure 40. This workflow automatically triggers when users upload

Bayesian network models in the ‗.xdsl‘ format to the module ‗Design-Time EDDI Tool

Supports‘ of the project interested in employing this tool.

https://github.com/sesame-project/design_time_eddis

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 69

Confidentiality: Public Distribution

Figure 40: A segment of the ‘transform-bayesianNetwork-to-eddi’ workflow

The first transformation step involves checking out the latest version of the design-time-

eddis repository. Subsequently, the workflow configures the necessary Java and Python

environments. The next task involves the conversion of the Bayesian network into an

EDDI model. Finally, the workflow concludes by uploading the newly generated EDDI

model as an artifact, ready for further testing and utilization.

D8.9 Integration Platform – Final Version

Page 70 Version 1.0 30 December 2023

Confidentiality: Public Distribution

EDDI2BayesianNetwork

This tool allows the generation of runtime Bayesian network models for given an EDDI

representation of the model. The runtime representation is needed for a subsequent

generation of a Bayesian network runtime monitor.

The developed workflow for this transformation will automatically triggers when users

upload an EDDI model with the ‗BN‘ suffix in the model name and in either ‗.yml‘ or

‗.ddi‘ format to the ‗Design-Time EDDI Tool Supports‘ module for the project

interested in employing this tool. A segment of the workflow is depicted in Figure 41.

Figure 41: A segment of the ‘tranform-eddi-to-bayesianNetwork’ workflow

Similar to the BayesianNetwork2EDDI workflow, the first transformation step involves

checking out the latest version of the ‗design-time-eddis‘ repository. Subsequently, the

workflow configures the necessary Java environment, and the next task involves the

conversion of the EDDI into Bayesian network model. Finally, the workflow concludes

by uploading the newly generated Bayesian network model as an artifact, ready for

further testing and utilization.

eddis2consert

This tool enable a convenient transformation of an EDDI ‗.xml‘ to ConSert ‗.yml(s)‘.

The transformed ConSert model will be the runtime representation, which is needed for

a subsequent generation of a ConSert runtime monitor.

The workflow designed for this transformation will automatically activate when users

upload an EDDI model with the ‗consert‘ suffix in the model name, and the file is in

either ‗.yml‘ or ‗.ddi‘ format within the ‗Design-Time EDDI Tool Supports‘ module of

the project. A portion of this workflow is illustrated in Figure 42.

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 71

Confidentiality: Public Distribution

Figure 42: A segment of the ‘tranform-eddi-to-conSerts’ workflow

Here also, the transformation process starts with checking out the latest

‗design_time_eddis‘ repository version, configuring Java environments. Then

converting the EDDI model to a ConSert model, and concluding by uploading the

newly generated ConSert model as an artifact for further testing and use.

Runtime-time EDDI Tools:

This tool is part of workpackage 7, and its repository (https://github.com/sesame-

project/runtime_eddis) offers EDDI generation tools for Bayesian networks and

ConSerts models, along with a ROS wrapper for integrating EDDI monitors in a ROS

environment. Each model requires specific preparation steps, which are elaborated in

Section 6.9. Both models have been successfully integrated into our platform.

We have consolidated the EDDI runtime generation for these models into a single

workflow. In our platform, when users add or upload ‗.yml‘ or ‗.xdsl‘ models to the

‗Runtime EDDI Generation Tools‘ module within their project, the workflow is

automatically triggered. In addition, before uploading the model file, one need to ensure

that the configuration and processing files are uploaded first. The actions in this

workflow are tailored to the added model. A segment of this workflow is illustrated in

Figure 43.

D8.9 Integration Platform – Final Version

Page 72 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Figure 43: A segment of the ‘execute-code-generator-runtimeEDDI’ workflow

To execute the EDDI code generator, the first step is to check out the ‗runtime_eddis‘

repository and perform Python setup. For the ConSert model, two outputs are generated:

one for creating a wheel for the monitor and the other for generating ROS packages and

EDDI ROS nodes. To create the ConSert monitor, it is necessary to install Rust and

Maturin and generate the wheel, which is then uploaded for further testing. In the last

two tasks, the code generator creates ROS packages and EDDI ROS nodes for both

ConSert and Bayesian network models, with the generated output being uploaded for

further testing.

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 73

Confidentiality: Public Distribution

5. CONTINUOUS INTEGRATION & DEPLOYMENT PROCESS

To ensure fast, reliable and continuous delivery of the latest updates to teams involved

in testing and development of the SESAME tools, we designed and implemented a

versatile and modern continuous integration and deployment process which is based on

Github Actions
29

.

5.1 OVERVIEW

The whole procedure consists of 3 stages as show in Figure 44. Initially, a developer

pushes changes to the master branch of a SESAME Github repository. Our continuous

integration infrastructure detects these changes and triggers a validation process, in

order to confirm that everything works as expected without any issues. When validation

finishes, all appropriate users receive an automated email that informs them about the

validation result. The next action undertaken by the Continuous Integration

Infrastructure is to create new versions for each tool, by building them using the

updated source code.

Figure 44: SESAME CI/CD workflow

Every SESAME tool follows a slightly different approach regarding the continuous

integration and deployment process. However, for each tool the result will be a

deployable / installable tool. Exchange of data (e.g. models) will be realised through the

SESAME Integration Platform.

5.2 GITHUB INTEGRATION

Projects for the SESAME tools use GitHub repositories for the storage and versioning

purposes of their source code. Our Continuous Integration infrastructure must be able to

initiate the integration and deployment processes for each project as soon as any new

source code is pushed to the master branch of a project repository. This requirement is

fulfilled thanks to the GitHub web-hooks. They allow external services to be notified

when certain events, related to a GitHub project, happen. In this case, when a new

commit is pushed to the master branch, our Continuous Integration infrastructure

receives a call to a specific endpoint and triggers the appropriate process. As soon as

29

 https://docs.github.com/en/actions

1. push

2. Build and test 3. Build and Release

D8.9 Integration Platform – Final Version

Page 74 Version 1.0 30 December 2023

Confidentiality: Public Distribution

this process finishes, the corresponding project readme files are updated so that they

display the latest build status of the project.

6. INSTALLATION AND CONFIGURATION OF SESAME TOOLS

This section presents a quick start guide for the installation and configuration of the

SESAME components.

6.1 SESAME INTEGRATION PLATFORM

The SESAME Integration Platform serves as a web-based portal, encompasses a

collection of SESAME components from various work packages. In Section 4, we

showcase the functionality that has been implemented and seamlessly integrated into

this web-based platform. This platform is exclusively accessible within the scope of the

SESAME project, and you can access the repository for this platform via the following

link: https://github.com/sesame-project/integration-platform

For comprehensive installation instructions, please refer the README.md file located

within the integrated platform repository (Figure 45). The codebase is structured into

two main parts: the front-end (Angular) and the back-end (Express JS). As per the

provided instructions, users can initiate the backend server using the command ‗node

index.js‘, while the front-end Angular code can be launched with ‗ng serve‘. The

integrated platform can be accessed via port 4200.

Figure 45: A snapshot of the README.md file from the integrated platform code

As detailed in Section 4, the platform is interconnected with a GitHub repository, which

serves as its backend. This repository is also available within the SESAME project's

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 75

Confidentiality: Public Distribution

domain, and you can find the repository link as follows: https://github.com/sesame-

project/sesame-models-storage, Furthermore, the workflow for all the integrated tools

can be located within the same repository: https://github.com/sesame-project/sesame-

models-storage/tree/main/.github/workflows. One can make use of the integrated tools

by simply uploading the model files to the designated modules within the project. To

understand how to utilize these integrated tools within our platform in detailed, please

refer to the instructions provided in Section 4.3.

6.2 COLLABORATIVE SENSOR FUSION

Catkin repository to store ROS packages for the development environment of the

collaborative perception component.

Requirements

 Ubuntu 20.04 ROS Noetic

 Nvidia Jetson Xavier NX

 Intel RealSense D435i (Camera with IMU)

Dependencies

 External dependencies required.

 Install the YOLOv5, Open VINS, RealSense ROS and its dependencies from:

https://github.com/ultralytics/yolov5

https://github.com/rpng/open_vins

https://github.com/IntelRealSense/librealsense

https://github.com/IntelRealSense/realsense-ros

Installation

We assume users have the ROS workspace in the ~/catkin_ws folder link and you have

installed all the dependencies.

Software

Clone the repository:

 $ cd ~/catkin_ws/src

 $ git clone https://github.com/sesame-

project/collaborative_perception.git

Compile the sofware:

 $ cd ~/catkin_ws/src

https://github.com/ultralytics/yolov5
https://github.com/rpng/open_vins
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/realsense-ros

D8.9 Integration Platform – Final Version

Page 76 Version 1.0 30 December 2023

Confidentiality: Public Distribution

 $ catkin_make

Launch:

To launch the collaborative perception, users need two bash terminals.

In first terminal, launch the RealSense D435i Camera and IMU launch file:

 $ roslaunch realsense2_camera rs_d435_camera_with_imu.launch

In second terminal, launch collaborative perception file:

 $ roslaunch collaborative_perception sensor_fusion.launch

6.3 TRAJECTORY PLANNING AND TRACKING

This component is provided as an algorithm, which is coded and installed on either

onboard or offboard computers, given the information on

o information of the robot dynamics and kinematics and limitations (by BRSU)

o task plans (either as waypoints or higher-level tasks. in latter case, the higher level

planner breaks down the tasks into waypoints) (by BRSU)

o Sensing and perception information (by LU)

o Metrics (by FHF)

Then, the coded program runs at real time which provides the following:

o Planned trajectory

o Robot commands

The installation of these components is to install the required numerical solver (e.g. C++

or MATLAB) suitable for the given use-case with the supporting optimization packages

(e.g. ipopt or fmincon). Then the given inputs are fed into the components. Finally, the

expected outputs are sent out the corresponding component. In this case, the robot

commands are sent to the corresponding MRS member‘s actuators.

6.4 EXECUTABLE SCENARIOS WORKBENCH

6.4.1 Bdd-dsl

1. Clone the repository: https://github.com/hbrs-sesame/bdd-dsl

2. Install the Python dependencies:

pip install -r requirements.txt

3. Install the Python package:

https://github.com/hbrs-sesame/bdd-dsl

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 77

Confidentiality: Public Distribution

pip3 install -e .

6.4.2 Floor-Plan-DSL

The complete and up-to-date installation guide is available on the Github repository. A

short summary is as follows:

Installation through Docker

1. Install docker

2. In the root directory of the repo

docker build . --tag floorplan:latest

3. Run the container

docker run -v $<local output folder>:/usr/src/app/output \

 -v $<local input folder>:/usr/src/app/models -it floorplan:latest

bash

Native Installation

4. Install Blender v2.82a (preferably with apt-get)

5. Clone the repository: https://github.com/sesame-project/FloorPlan-DSL

6. Install the Python dependencies:

pip3 install -r requirements.txt

Usage

To generate the example model, from the root folder of the Floor Plan DSL, run the

command:

blender --background --python exsce_floorplan/exsce_floorplan.py --

python-use-system-env -- models/hospital.floorplan

6.4.3 kindyngen

The repositoryhttps://github.com/comp-rob2b/modelling-tools contains the concrete instructions

to install and execute the tools
30

. Here we provide a short summary:

1. Clone the repository: https://github.com/comp-rob2b/modelling-

toolshttps://github.com/comp-rob2b/kindynsynInstall the requirements: rdflib,

pySHACL, numpy

2. Install the Python package:

pip3 install -e .

30

 https://github.com/hbrs-sesame/kindyngen/blob/main/docs/installation.md

https://github.com/sesame-project/FloorPlan-DSL
https://docs.docker.com/engine/install/
https://www.blender.org/download/
https://github.com/sesame-project/FloorPlan-DSL
https://github.com/comp-rob2b/modelling-tools
https://github.com/comp-rob2b/modelling-tools
https://github.com/comp-rob2b/modelling-tools
https://github.com/RDFLib/rdflib
https://github.com/RDFLib/pySHACL
https://numpy.org/
https://github.com/hbrs-sesame/kindyngen/blob/main/docs/installation.md

D8.9 Integration Platform – Final Version

Page 78 Version 1.0 30 December 2023

Confidentiality: Public Distribution

6.5 EDDI-BASED SAFETY ANALYSIS TOOLS

6.5.1 Installation

6.5.1.1 HiP-HOPS

HiP-HOPS requires Microsoft Windows (Win 7 or higher; 64bit required) and Matlab

Simulink.

1. Obtain and install Matlab Simulink from the Mathworks website:

https://www.mathworks.com/products/simulink.html

2. Download HiP-HOPS from the Downloads section of the HiP-HOPS website:

https://hip-hops.co.uk/post/ Note that the most recent release is at the top. For

use with Simulink, either the Evaluation or Commercial versions are required.

The Evaluation version is free but limited to 10 components in the model; the

Commercial version requires a licence key.

3. Install HiP-HOPS using the downloaded installer (further instructions can be

found in section 3 of the manual). Make a note of the installation location for

step 4).

4. To run HiP-HOPS from within Matlab Simulink, add the HiP-HOPS failure

editor folder to the path by entering the Set Path menu (File Set Path).

5. With the path added, the HiP-HOPS interface can be launched by typing

"hiphops" into the Matlab command prompt. Again, further details are in

section 4 of the HiP-HOPS manual.

6.5.1.2 SafeTbox

Working with safeTbox requires using the Microsoft Windows operating system

(Windows 7 or later, Windows 10 recommended), .NET Framework v4.5 or higher,

Enterprise Architect version 13 to 15.1, and the latest Java Runtime Environment. It

is also required that the user has administrator rights for installation.

To start working with safeTbox, the user must:

1. Download and install Enterprise Architect; see their official website for e.g. version

15.1 (registration required). A 30-day trial license can be used with safeTbox.

2. Navigate to www.safetbox.de/registration and register.

3. Once registered, navigate to www.safetbox.de/downloads.

a. Download the current release.

b. Download a trial license.

4. Execute the release installer, follow instructions and install safeTbox.

https://www.mathworks.com/products/simulink.html
https://hip-hops.co.uk/post/
https://hip-hops.co.uk/manual/HiP-HOPS_Manual.pdf
http://www.safetbox.de/registration
http://www.safetbox.de/downloads

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 79

Confidentiality: Public Distribution

5. Launch Enterprise Architect and use the downloaded licence file to activate

safeTbox.

6. Further guidance is provided in the user manual; this is accessible both from the tool

itself and on the website at https://safetbox.de/docu-samples (an example model is

also available there).

6.5.1.3 BayesFusion GeNIe Modeler

To use GeNIe Modeler, the user must:

1. Install the respective version of GeNIe Modeler as described on the official

website
31

. Notice that you must decide between the business
32

 and the academic
33

version. So, navigate to https://www.bayesfusion.com/downloads/.

a. If an academic version is desired, navigate to

https://download.bayesfusion.com/files.html?category=Academia and

download Genie academic version (compatible with Windows, can be used

in MacOS and Linux with emulation software e.g. Wine)

b. The business version requires purchasing a license by contacting

Bayesfusion. 30-day trial versions are available at

https://download.bayesfusion.com/files.html?category=Business

2. Execute the installer (in the emulated environment, if applicable) and follow the

instructions to install Genie Modeller.

3. Launch Genie Modeller for the first time.

4. Get a license for your GeNIe Modeler version after launching the application for the

first time. For that, you just need to follow the dialog box that opened automatically.

a. In case of a business license, you must have the individual license file

provided by BayesFusion on hand.

5. Further guidance on creating BNs and using the Modeller can be found at

https://support.bayesfusion.com/docs/.

6.5.1.4 SafeML

The SafeML package is written in Python and can be found on Github at

https://github.com/ISorokos/SafeML. The following are the requirements for installing

the SafeML library.

 Python (tested on versions > 3.5)

 Anaconda package installer

 (optional) Hardware accelerators (such as CUDA
34

-enabled GPUs)

31

 https://www.bayesfusion.com/downloads/
32

 https://download.bayesfusion.com/files.html?category=Business
33

 https://download.bayesfusion.com/files.html?category=Academia

https://safetbox.de/docu-samples
https://www.bayesfusion.com/downloads/
https://download.bayesfusion.com/files.html?category=Academia
https://download.bayesfusion.com/files.html?category=Business
https://support.bayesfusion.com/docs/
https://www.bayesfusion.com/downloads/
https://download.bayesfusion.com/files.html?category=Business
https://download.bayesfusion.com/files.html?category=Academia

D8.9 Integration Platform – Final Version

Page 80 Version 1.0 30 December 2023

Confidentiality: Public Distribution

The other necessary libraries can be downloaded and installed using the environment

specification file. The library package is provided along with the .yml file that describes

the anaconda/python environment with all the libraries required to run all the functions.

Simply use

conda env create -f <environment file name>

conda activate <environment name>

Additionally, a distribution package can also be provided. For installing from

distribution package, simply use the pip tool of python:

pip install safeml

The public release of the package is currently planned. Once released, the package can

be directly installed from the pip library in python. In the meantime, the package can be

made available on request from Fraunhofer IESE and/or the University of Hull. An

older public version is available on Github
35

.

6.5.1.5 SafeDrones

The SafeDrones package is built in Python and can be found on Github at

https://github.com/Dependable-Intelligent-Systems-Lab/SafeDrones. The following are

the requirements for installing SafeDrones library.

 Python (tested on versions > 3.5)

 Anaconda package installer

The other necessary libraries can be downloaded and installed using the environment

specification file. The SafeDrone library is provided along with the .yml file that

describes the anaconda/python environment with all the libraries required to run all the

functions. Simply use

conda env create -f <environment file name>

conda activate <environment name>

6.5.2 Configuration

6.5.2.1 SafeTbox

To begin modelling a system, the user must:

1. Launch Enterprise Architect (EA).

2. See the safeTbox welcome screen (if not, try relaunching EA).

34

 GPU Accelerated Computing with Python | NVIDIA Developer
35

 https://github.com/ISorokos/SafeML/

https://developer.nvidia.com/how-to-cuda-python

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 81

Confidentiality: Public Distribution

3. On the left side of the application window, there should be a ‗Browse‘ panel entry.

Hover over it and once it opens, select ‗click to open new project‘.

Figure 46: Open a new project menu

4. In the dialog, select the dropdown Local File => New Project…

Figure 47: Select a new project menu

5. Select a file location and name for the new model file using the file dialog.

6. When ready, the Browser should feature a Model element.

Figure 48: Model in the browser

7. Selecting Model and pressing Ctrl + Space on the keyboard should activate the

context-sensitive safeTbox Smart Menu.

8. To create an architecture model, from the Smart Menu => Create => New

Architecture Model.

a. In the new diagram, use the toolbox to drag and drop elements or the Smart

Menu => Create (after clicking on the diagram) to create new elements on

the diagram. This logic applies to all other diagrams as well.

D8.9 Integration Platform – Final Version

Page 82 Version 1.0 30 December 2023

Confidentiality: Public Distribution

b. Selected element properties can be modified using Smart Menu => safeTbox

Properties, or double-clicking on the element. This brings up a dialog with

context-relevant properties. This applies to elements in other diagrams as

well.

Figure 49: Context relevant properties dialog

c. Use subcomponents to model lower-level system/components.

Subcomponents can be created by either making brand new components, or

re-using previously defined components. Note that recursive hierarchies are

not allowed (i.e. a chain of contained components cannot contain the same

component twice).

d. Use Input/Output Ports to model corresponding connections between your

component interface boundary and your component internal subcomponents.

e. Use connectors to link Input Ports to Output Ports. It is possible to select a

port, and use the Quicklinker (the arrow icon) to immediately drag and drop

a connector from the selected port to the target port.

Figure 50: Using connectors to link Input Ports to Output Ports

9. To create a HARA model, select the Model in the (project) Browser, and use the

Smart Menu => Create => New HARA Model. A spreadsheet editor should appear

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 83

Confidentiality: Public Distribution

in the main view. You can access the editor again by double-clicking on the HARA

element in the project browser.

a. Fill in the sheets of the spreadsheet sequentially, starting with the Functions

sheet. The previous sheets can be edited for documentation and information

purposes. Add Functions by right-clicking on the row margin of the

spreadsheet editor, or use the tab menu => safeTbox => Load existing

component types.

Figure 51: safeTbox spreadsheet editor (above) and tab menu (below)

b. In the FHA sheet, add entries by using the tab menu => safeTbox =>

Permutate functions with failure modes, selecting which keywords to

consider in the dialog that appears. Alternatively, right-clicking on the row

margin can also add entries manually. Hazards can also be added by right-

clicking on the column margin of the rightmost columns.

Figure 52: safeTbox menu tab

c. Right-click on the row margin or use the tab menu => safeTbox => Update

situations risk to automatically add new Hazardous Events in either

Situations sheet, based on the Hazards specified previously.

D8.9 Integration Platform – Final Version

Page 84 Version 1.0 30 December 2023

Confidentiality: Public Distribution

d. In the Risk Assessment sheet, use the tab menu => safeTbox => Update risk

assessment sheet to automatically collect the Hazardous Events specified in

the Situations sheets previously. Right-click under the Safety Goal columns

to add new Safety Goals for specific Hazardous Event entries. This also

applies for associating Assumptions.

10. To create a Component Fault Tree (CFT) for an existing component, select that

component => Smart Menu => Add Failure Model.

a. You can add Input/Output Failure modes to denote incoming/outgoing

failure propagation from the current component‘s CFT.

b. Logical Gates e.g. AND/OR represent how failure propagates.

c. Basic Events represent component-internal sources of failure.

d. CFTs of internal components can also be added, following the same

principles and restrictions as subcomponents listed above for architecture

models.

e. To analyse a CFT, select a relevant element within it (e.g. an Output Failure

Mode) => Smart Menu => Perform Analysis. Follow the dialog instructions

and reach the analysis dialog. Analysis results can be saved for review at the

bottom of the analysis dialog.

Figure 53: Analysis dialog

11. To create a GSN model, from the (Project) Browse panel => Smart Menu => Create

=> New Argumentation Module.

a. Goals, Strategies, Solutions, and other GSN elements can be created per the

GSN community standard
36

.

36

 https://scsc.uk/r141C:1

https://scsc.uk/r141C:1

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 85

Confidentiality: Public Distribution

b. Elements from foreign argument modules can be referenced as ‗Away‘

elements e.g. Away Goals can reference Goals in other Modules.

12. To create a ConSert model, both a Collaborative System Group, and a Collaborative

System must be created, also using the corresponding Smart Menu => Create

options. Further guidance on how to model ConSerts is found in D4.4.

a. Use Collaborative System Group => Smart Menu => Specify Service Types

to open a set of forms that allow specification of the domain-level services

possible.

b. Use Collaborative System => Smart Menu => Specify Configurations and

Services to open a set of forms that allow specification of a given system‘s

configurations and services.

c. Once the services have been specified for a Configuration, you can edit the

configuration‘s ConSert logic by double-clicking on the .cst element in the

(project) Browser, as seen in the example below (the bottom element seen in

the Figure 54).

Figure 54: project browser example

d. Use the Toolbox pane to drag and drop elements onto the ConSert model.

When dropping something other than an AND/OR gate, select the

corresponding services and service types you would like to map the dropped

element to, using the dialogs that appear.

D8.9 Integration Platform – Final Version

Page 86 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Figure 55: Toolbox pane to drag and drop elements onto the ConSert model

6.5.2.2 BayesFusion GeNIe Modeler

1. Install GeNIe Modeler as explained in Section 6.5.1.3. and launch GeNIe Modeler.

2. Now, GeNIe Modeler starts with an empty network like shown in Figure 56.

Figure 56: Initial screen of GeNIe Modeler

3. Now, you can start modeling a Bayesian network by adding nodes via the button in

the topbar that symbolizes a network node (as shown in Figure 57). Hint: You have

to click on the canvas after selecting the node button to create new nodes.

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 87

Confidentiality: Public Distribution

Figure 57: Button to select for creating new Bayesian network nodes

4. Similar, with the arc button (as shown in Figure 58), you can connect two nodes in

the canvas to model a causal relationship.

Figure 58: Button to select for creating new causal relationships between two nodes

5. In the ―Node properties‖ you can specify each node. You can open the ―Node prop-

erties‖ dialog window by double clicking on a node on the canvas.

a. In the ―Definition‖ tab, you can define the concrete states of that node. You

can rename them by double clicking on the node‘s states (left part in Figure

60). Via the buttons in the bar above (as shown in Figure 59), you can add or

remove states.

b. In the same ―Definition‖ tab, you can define the conditional probability dis-

tribution in form of a table for that specific node. This is the concrete param-

eterization for this specific node, thus, it decides the outcomes when the

Bayesian network is inferred given evidence. This table gives the probabili-

ties for each state of the node given a state permutation over all parents of

this node (as shown in Figure 60).

Figure 59: Buttons for adapting the number of states of a node

Figure 60: Conditional probability table for a node that has two parents in an example Bayesian net-

work

6. To test your Bayesian network, you can run inferences in GeNIe Modeler. The

lightning button in the top bar updates all nodes in the network at once (as shown in

Figure 61).

a. To easier observe the outcomes of the nodes, you can change the view op-

tion on the canvas to include the states with their probability distribution. For

this, mark all nodes and right click on them. Then, select the ―View As‖ –

―Bar Chart‖ option.

b. To set specific evidence for one node, you can simply double click on the re-

spective states when the ―Bar Chart‖ view option is active.

Figure 61: Update button to run an inference over the network

D8.9 Integration Platform – Final Version

Page 88 Version 1.0 30 December 2023

Confidentiality: Public Distribution

7. For more details and concrete questions, we refer to the official user handbook
37

 for

GeNIe Modeler.

6.5.2.3 SafeML

For using SafeML in existing codebases, simply import the distance metrics from the

library. An example is also available in the package provided. For importing the

functions, use:

from safeml.core.ecdf_distance_measures import KuiperDistance,

WassersteinDistance, KolmogorovSmirnovDistance,

CramerVonMisesDistance, AndersonDarlingDistance, DTSDistance

The distance metrics can be initialised using

metric = WassersteinDistance()

Each type of distance metric, also supports several ways of computation. If the

hardware accelerator is available, the corresponding function can be used.

pval, Dist = metric.measure_metric_p_value_gpu(X, Y)

Further information can be obtained from the docs folder provided with the package.

6.5.2.4 SafeDrones

The SafeDrones functions can be easily used by importing them from python. An

example is also available in the package provided. For importing SafeDrones, use:

from SafeDrones.core.SafeDrones import SafeDrones

After importing, the SafeDrone evaluator can be initialised using

eval = SafeDrones()

For evaluating different types of risk and predicting failure, the corresponding functions

can be used. For example, for motor failure risk prediction, the function:

Motor_Failure_Risk_Calc

can be used. The details of other functions can be obtained from the docs provided

with the package.

6.5.2.5 EDDI Editor

The EDDI Editor is a standalone executable; to launch, simply run the executable.

Windows 10 or above and an up-to-date .NET framework installation are required.

The main interface is displayed in Figure 62.

37

 https://support.bayesfusion.com/docs/GeNIe/

https://support.bayesfusion.com/docs/GeNIe/

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 89

Confidentiality: Public Distribution

Figure 62: EDDI Editor

Functionality includes:

 Import of HiP-HOPS models (either separate system architecture or analysis

models, or both combined) and conversion of them to ODE models;

 Import of Dymodia state machines and conversion of them to ODE models;

 Import of safeTbox EDDI models;

 Loading ODE models directly (e.g. system architectures, fault trees, FMEAs,

state machines);

 Simple editing of entity properties in each model (both before and after

conversion);

 Merging/combining of ODE models, e.g. by importing a model/subsystem

hierarchy to replace an existing (empty) placeholder system, or adding new

failure models etc;

Note that the EDDI Editor is not a modelling or analysis tool in itself: models must still

be created and/or analysed in an appropriate tool first, like HiP-HOPS or safeTbox.

Similarly, some degree of further post-processing (e.g. code generation) is necessary to

produce an actual runtime EDDI.

Further information on how to use the EDDI Editor can be found in D4.6 [4] or the

EDDI Editor user guide.

D8.9 Integration Platform – Final Version

Page 90 Version 1.0 30 December 2023

Confidentiality: Public Distribution

6.6 EDDI-BASED SECURITY ANALYSIS TOOLS

For a successful integration of the EDDI-based security analysis tools to the end user

target system two separate tools must be installed and configured, OpenVAS and

security EDDI tools (Snort, security EDDI). These tools need to be installed into the

target system to offer the functionality of definition of the system vulnerabilities,

detection of malicious packets transferred thought he network, and identification of the

attacker‘s goal.

6.6.1 Installation

 OpenVAS: The installation process for OpenVAS is carried out in accordance with

the instructions provided on the Greenbone website. The prerequisites for the

installation include having Oracle VirtualBox 6.1 or a higher version, a minimum of

2 CPUs, 5GB of RAM, and direct access to the Internet.

The installation involves using VirtualBox to create a new Virtual Machine (VM)

based on an OVA file provided by Greenbone Enterprise. This VM comes preloaded

with an installation of OpenVAS, which can be managed and used to conduct scans

on target networks through a web interface. To configure the basic settings of the

Greenbone OS, users can follow a Setup Wizard. This wizard facilitates the creation

of a web user, enabling the use of a web interface. Following the completion of the

wizard, a web browser can be employed to access and interact with this web

interface, providing a user-friendly way to manage and operate OpenVAS.

 security EDDI: All the components that are part of the security EDDI are

encapsulated in a containerized format. A Docker Compose YAML file, a tool for

specifying and managing multi-container Docker applications, has been generated

(Figure 63). In this setup, each component is presented as a service (ids_db, ids,

mqtt-broker, snort-publisher, and security-eddi).

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 91

Confidentiality: Public Distribution

Figure 63: Docker-compose YAML file for the deployment of security part of EDDI

The YAML file outlines attributes for each service, including the image used to

generate the corresponding container, the name of the container to be instantiated,

necessary environmental variables, volumes to be mounted from the host, ports to

be utilized, and more. Upon execution of the YAML file, a container is created for

each component, and various volumes are mounted. This includes essential elements

such as the Snort rules employed for each use case and the list of whitelisted IPs,

ensuring the seamless deployment and operation of the entire system.

6.6.2 Configuration

 OpenVAS: The configuration process involves creating a scan target and defining a

scan. To set up a scan target, users need to specify a list of hosts to be scanned,

D8.9 Integration Platform – Final Version

Page 92 Version 1.0 30 December 2023

Confidentiality: Public Distribution

along with a list of ports. For more advanced scans that require authentication,

credentials can also be provided. When creating a scan, users are prompted to fill

out a form that includes various attributes. These attributes encompass the minimum

Quality of Detection (QoD) percentage and the Scan config. The QoD percentage

reflects the reliability of the executed vulnerability detection. The Scan config

attribute provides options such as:

 Base

 Discovery

 Full and fast

 Host Discovery

 Log4Shell

 System Discovery

Additionally, the duration of a scan is influenced by the chosen scan configuration.

These configurations allow users to tailor the scanning process based on their

specific needs and the desired depth of analysis.

 security EDDI: The configuration process involves the creation of a file that defines

environmental variables and includes Docker Compose commands for building and

starting the service images outlined in the YAML file. Six environmental variables

are specified. The first three, namely IP (HOST_IP), network (HOST_NETWORK),

and network interface (HOST_INTERFACE), are crucial for Snort, the intrusion

detection system, to determine the network to monitor for malicious activity.

ROS_MASTER and ROS_SECURITY variables are utilized by the ROS node

generated when the security EDDI container is initiated. This node requires

information on how the ROS master communicates its messages and the name of the

topic to which the messages are published. Lastly, the EDDI variable defines the

Python code for the security EDDI that will be executed. The docker-compose build

command that follows searches for build instructions in the Docker Compose

YAML file and executes the build process for each service with a build

configuration. The build configuration typically includes details such as the build

context, build arguments, and other relevant settings. Finally, a docker-compose up

command is employed to start and initialize the services outlined in the Docker

Compose YAML file. This command creates and launches containers based on the

specified configurations, ensuring the seamless operation of the defined services.

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 93

Confidentiality: Public Distribution

6.7 SIMULATION-BASED TESTING OF EDDI TOOLS

6.7.1 Simulation-Based Testing Platform Tool

The SESAME Simulation-Based Testing infrastructure is implemented as a set of Java

projects and tooling integrated with Eclipse
38

, building upon open-source model-driven

engineering tools such as the Eclipse Modelling Framework
39

, Eclipse Epsilon
40

 and

Emfatic
41

. Additional standard Java technologies such as the Maven build tool
42

 are

used to recompile code components dynamically generated during the execution of the

experiments. Apache Kafka
43

 and Flink
44

 are used for message communications and

stream processing, in order to interconnect the MRS simulator, the individual test run-

ners, and the fuzzing engine that manages the experiments.

Dependencies for Linux - Ubuntu 18.04 and 20.04 tested

● Apache Kafka / Zookeeper

● ROS installation (either ROS Melodic or Noetic) - if using ROS use cases - with

rosbridge

● Eclipse and EMF modelling tools

When using the platform on Linux, it is possible to run all components natively, with no

additional operating system or container support required.

Additional dependencies for Windows - Windows 10 tested

● Eclipse and EMF modelling tools

● Docker Desktop - since Kafka uses Docker on Windows

● Apache Kafka / Zookeeper, OpenJDK8 and JDK11

● Administrator access

● Virtualisation enabled in the BIOS (may be defined as ``Hyper-V'')

When using the platform on Windows, Linux containers are required via Docker (using

the Windows Subsystem for Linux internally) to provide Kafka/Zookeeper, which the

simulation-testing platform uses for its message communication. Since the simulation-

testing platform requires these and a native Windows installation of Kafka/Zookeeper

does not have the necessary features, this additional operating system support (via

containers) is required. Using the platform on Windows is necessary when using

external applications such as Simit, for the KUKA use case.

6.7.1.1 Installation Instructions

The installation process for the platform in Linux is documented here.
45

. Separate instal-

lation instructions for Windows are available
46

. A user guide is also provided.
47

38

 https://www.eclipse.org/
39

 https://www.eclipse.org/modeling/emf
40

 https://www.eclipse.org/epsilon
41

 https://www.eclipse.org/emfatic
42

 https://maven.apache.org
43

 https://kafka.apache.org
44

 https://flink.apache.org
45

 https://github.com/sesame-project/simulationBasedTesting/blob/main/documentation/index.md

https://www.eclipse.org/
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/epsilon
https://www.eclipse.org/emfatic
https://maven.apache.org/
https://kafka.apache.org/
https://flink.apache.org/
https://github.com/sesame-project/simulationBasedTesting/blob/main/documentation/index.md

D8.9 Integration Platform – Final Version

Page 94 Version 1.0 30 December 2023

Confidentiality: Public Distribution

6.7.2 Methodology Execution Example

In this section, we present an example of the simulation-based testing methodology of

Figure 17, for testing a simplified model for the KUKA/TTS use case. This example in-

corporates a combination of three robots with sliding conveyors that interact to transport

the gearboxes between assembly robots, together with human workers surrounding the

assembly cell who assist with specific tasks requiring manual intervention. The ar-

rangement of the cell is depicted in Figure 52. The primary safety requirement is to en-

sure that robots do not collide with regions that could cause a hazard to the human oper-

ator or other workers (the green cuboids outside of the cell frame in Figure 52). Under

normal circumstances, motion trajectories are pre-planned to ensure conformity to this

safety requirement. However, runtime faults in communication, sensing or mo-

tor/interlock activation may lead to robots malfunctioning and entering these forbidden

areas.

Figure 52: an example use case for testing the TTS cell

In order to use the simulation-based testing platform on this use case, firstly, the user

should load Eclipse and then invoke a new Eclipse Application, by right-clicking upon

the newly imported project uk.ac.york.sesame.testing.generator and selecting ``Run As''

/ ``Eclipse Application''. This will launch a fresh Eclipse instance under which the

46

 https://github.com/sesame-project/simulationBasedTesting/blob/windows/README-

windows.md
47

 https://github.com/sesame-

project/simulationBasedTesting/blob/main/documentation/userguide.md

https://github.com/sesame-project/simulationBasedTesting/blob/windows/README-windows.md
https://github.com/sesame-project/simulationBasedTesting/blob/windows/README-windows.md
https://github.com/sesame-project/simulationBasedTesting/blob/main/documentation/userguide.md
https://github.com/sesame-project/simulationBasedTesting/blob/main/documentation/userguide.md

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 95

Confidentiality: Public Distribution

SESAME automated code generation plugins are available). Every project tested during

simulation-based testing should be instantiated in a new Java project - here, we

TTSTestProject. Create a folder ``models'' in it to store the models for the DSL.
48

Step 3.1: Having analysed the case study requirements, participating robots and the

necessary fuzzing operations, users will have specified the performance metrics and the

fuzzing operations for testing. Users should codify this in an instantiation of the

SESAME Testing DSL, specifying the structure of the testing space of possible opera-

tions and performance metrics. The DSL metamodel is specified in our deliverable D6.6

[14]. The Exceed editor provides a convenient visual editor to aid configuration of the

testing process.

An example for testing the KUKA/TTS example case study is presented in Figure 53

for the case study. This model includes two performance metrics for quantifying the

length of fuzzing used, and collisions with static safety zones. It also includes condition

metrics for defining the triggers for condition-based fuzzing and the selection of poten-

tial fuzzing operations upon different robots. In this case, the fuzzing operations intro-

duce distortion upon particular joints of robots R3200 and R270073. Further details on

this case study testing are presented in the case study in D6.6 [14].

Figure 53: example of the testing DSL model for the KUKA/TTS use case

Step 3.2: Code generation can be used to generate metric templates automatically, with-

in the newly generated project under the child Eclipse instance. The testing platform

provides a plugin consisting of a wizard with a single page, which can be accessed by

right-clicking on the user‘s newly generated project and selecting "Generate SESAME

Code" (Figure 54). The plugin provides an interface option to select the file containing

the user's populated model and associated settings (Figure 55). The annotations in red

upon the screenshot show the values selected for the text boxes. Here we choose the

model file and the locations of other items for the project.

48

 In order to generate a model for the first time in a newly created project, it is necessary to register the metamodels.

This can be done by activating the early stage of our wizard, by right-clicking on ``SESAME'' / ``Generate SESAME

Code'', as shown in Figure 53. Then, click Cancel on the dialog box that appears.

D8.9 Integration Platform – Final Version

Page 96 Version 1.0 30 December 2023

Confidentiality: Public Distribution

When this button is clicked, metric templates will be generated in the package met-

rics.generated. Experiment runners will also be generated based upon the experiment

name defined for the TestCampaigns in the model, e.g., ExptRunner_(name).java.

Figure 54: Plugin menu

Figure 55: Code generation wizard dialog

This step can also be performed using the integrated platform. The model file can be up-

loaded to the online platform, and using its code generation features, the experiment

runners and metric templates will be automatically generated and available for down-

load to implement (see section 4 for more details).

Step 3.3: The next step involves the user specifying scenario-specific performance met-

rics for the metrics generated in the model, in order to quantify violations of mission re-

quirements. In order to implement these metrics, the user first needs to copy these clas-

ses from package metrics.generated into a new package metrics.custom. Then, it is nec-

essary to implement the needed platform-specific metrics as Java code.

Figure 56 presents a fragment of the implementation of the collisionOccurrence metric,

used to quantify violations by tracking the number of intervals of collisions of the grip-

per safety zone with any exterior safety zone. The metric operates as follows:

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 97

Confidentiality: Public Distribution

If the region surrounding the robot gripper (green sphere) collides with these regions,

the collision detection logic in DDD Simulator will trigger a safety zone message,

which will be sent to the testing platform via the TTSSimulator custom API over gRPC.

As an inbound simulator event, these will then trigger execution of the processElement1

method of the metric. If the message inbound topic is a safety zone message of suffi-

cient depth and the timing is ready to trigger its logging, then the violationCount will be

incremented. This value is emitted as the output value. The final violationCount in the

course of the experiment will be logged as to the model file the output of this metric for

that test configuration.

Figure 56: Test Collision Metric code for detecting collisions during simulation

Step 3.4: The user should create an Eclipse Run Configuration for the ExptRun-

ner_(name).java for the experiment they would like to execute, and invoke this Run

Configuration in order to run the experiment. This runner will be configured with the

parameters chosen from the Testing DSL. If new experiments are specified in the test-

ing DSL, or if any details of the experiment configuration have been changed, it will be

necessary to again select the "Generate SESAME Code" plugin, and repeat this process

of code generation to regenerate the experiment runners.

The experiment runner will generate tests according to the strategy specified for the ex-

periment, for example, with NSGA. Its TestGenerationApproach selection allows the

user to specify the parameters for an experiment by setting one of several subclasses.

For example, including NSGAEvolutionaryAlgorithm allows an evolutionary experi-

ment with the NSGA-II algorithm, and contains specific parameters relevant to this ap-

proach, e.g., the number of iterations and the population size. We also provide a new

coverage-aware GA NSGACoverageWithCells, which seeks to improve coverage of the

space of potential fuzzing tests. Further, RepeatedRunner provides support for repeated

execution of a particular selected test a number of times. The utility of this is to allow

an interesting test with a high reality gap or other performance issues to be repeated and

the reasons for its behaviour investigated in depth.

Regardless of the test generation strategy selected, the performedTests attribute is popu-

lated during the execution of experiments, containing the particular Tests generated and

D8.9 Integration Platform – Final Version

Page 98 Version 1.0 30 December 2023

Confidentiality: Public Distribution

executed for that campaign. Each test is evaluated to quantify the impact of the fuzzing

test in terms of the performance metrics defined in Step 3.3. The resultSets attribute is

also populated as the experiments proceed and finalised upon their completion, contain-

ing references to the population of results upon a Pareto front. This enables keeping

track of the history of evolved tests during simulation-based testing.

6.7.3 Implementing a SimlogAPI interface

Depending on the underlying simulation engine, the implementation of the SimlogAPI

interface could require different levels of development efforts. Nevertheless, the follow-

ing guidelines provide a quick introduction to:

● the generation of the server and client stubs from the SimlogAPI.proto definition

● the main concepts related to the implementation of a testing client that would

like to exploit the interface once implemented at simulation side

6.7.3.1 Generating the stubs

A convenience maven project has been provided for the quick setup of Java stubs. Arti-

facts for other programming languages can be easily generated modifying the pom.xml

configuration file.

1. Download the maven project ZIP
49

2. Unpack the file

3. Use the favourite target IDE (IntelliJ IDEA, Netbeans, Eclipse) to import the

project

4. Build the project, the default compiling process will generate a shaded jar in the

target directory.

5. If stubs should be generated for a different target language than Java, refer to the

protobuf-maven-plugin documentation
50

 to correctly configure it in the pom.xml

6.7.3.2 Implementing a Java client

The concepts related to the development of a sample client for Java apply to other lan-

guages. In order to implement a client, it is important to complete the previous step,

generating the stubs. The following snippets of code provide examples on the basic op-

erations for subscribing to a simulation topic and receive notifications.

Opening a communication channel with simulation engine and subscribing:

String target = "localhost:8089";

String topicID = "R3200.Link1.R";

// 1-Open the channel on the desired URL/port

49

 https://github.com/sesame-project/SimulationTestingFramework/blob/main/SimlogAPI.zip
50

 https://www.xolstice.org/protobuf-maven-plugin/index.html

https://github.com/sesame-project/SimulationTestingFramework/blob/main/SimlogAPI.zip
https://www.xolstice.org/protobuf-maven-plugin/index.html

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 99

Confidentiality: Public Distribution

ManagedChannel channel = ManagedChannelBuild-

er.forTarget(target).usePlaintext().build();

try {

 // 2-Instantiate the client stub

 blockingStub = SimlogAPIGrpc.newBlockingStub(channel);

 asyncStub = SimlogAPIGrpc.newStub(channel);

 TopicDescriptor request =

 TopicDescriptor.newBuilder().setPath(path).build();

 // 3-Call the desired service function

 ROSObserver ro = new ROSObserver(topicID);

 asyncStub.subscribe(request, ro);

} catch (StatusRuntimeException e) {

 warning("RPC failed: {0}", e.getStatus());

} finally {

 channel.shutdownNow().awaitTermination(5, TimeUnit.SECONDS);

}

Implementing a stream observer to receive messages:

private static class ROSObserver implements StreamObserver<ROSMessage>

{

 private String path;

 public ROSObserver(String p) {

 this.path = p;

 }

 @Override

 public void onNext(ROSMessage m) {

 // Data notification method

 System.out.println(path + ":message received =" +

 m.getValue());

 }

 @Override

 public void onError(Throwable t) {

 System.err.println(path + ":failed: " +

 Status.fromThrowable(t));

 }

 @Override

 public void onCompleted() {

 System.out.println(path + ":finished");

 }

}

6.8 TESTING OF ML COMPONENTS TOOLS

6.8.1 DeepKnowledge configuration and usage

We developed DeepKnowledge as a Python package that facilitates effortless installa-

tion and is a pivotal endeavor to deploy our tool within different industrial partners' de-

D8.9 Integration Platform – Final Version

Page 100 Version 1.0 30 December 2023

Confidentiality: Public Distribution

velopment environments. This allow DeepKnowledge to be reproducible at very low ef-

fective cost.

DeepKnowledge has been updated since the last version described in deliverable D6.1

[16]. The new iteration has been deployed with an expanded scope, encompassing not

solely image recognition and classification (DKOX use case) but also extending its

functionality to object detection, i.e., YOLOv8 (KIOS and PAL use cases).

The package offer several advantages, including: simplified deployment, such that our

SESAME partners can effortlessly install and access our package without needing to

navigate complex dependencies; reusability; integration with dependency manage-

ment tools like pip, conda, and virtual environments, enhancing the overall develop-

ment and deployment experience.

To allow for reproducibility of our implementation, package, documentation and

metadata are available on Github at https://github.com/sesame-project/ML_Testing

6.8.1.1 Installation and configuration

The development of a DeepKnowledge Python package for testing deep learning mod-

els necessitates the incorporation of numerous libraries for several compelling reasons:

● Covering multiple Computer vision tasks including image classification and object

detection required different libraries for diverse deep learning models support, such

as ultralytics for YoloV8.

● Specialized Functionality: different Libraries are designed to provide specialized

functionality and tools tailored for specific tasks such as mathematical computations

or pre-processing and augmentation functions, loss functions, and evaluation met-

rics. We also needed different libraries for different coverage metrics.

After cloning the github repository, users should run the commands below to install the

libraries required by DeepKnowledge.

$ cd DIRECTORY/DeepKnw_pack/

$ pip install -r DeepKnowledgeRequirements.txt

$ python setup.py install

6.8.1.2 Running DeepKnowledge

Users can run DeepKnowledge using the example command below.

$ python

about:blank
about:blank
https://github.com/ultralytics/ultralytics/tree/main

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 101

Confidentiality: Public Distribution

####Example usage for DesignTime Deployment:

>> import DeepKnw_run as knw

>> COV=knw.DeepKnw(PATH_To_CONFIG_FILE)

>> test_path=PATH_To_Test_Data_Images

size=5000 (← EXPL)

>> test_loader = COV.getTestloader(test_path,size)

>> Deep-

Knowledge_Coverage=COV.estimate_coverage(test_loader)

####Example usage for RunTime Deployment:

>> import DeepKnw_run as knw

>> COV=knw.DeepKnw(PATH_To_CONFIG_FILE)

>>YOLOloader, model_features=COV.DesignDataAnalyzer()

>> Frames_path=PATH_To_RunTime_Data

>> Batch=5 (← EXPL)

>> Frame_Loader =

COV.getTestloader(Frames_path,Batch)

>> Deep-

knowledge_Uncertainty=COV.Runtime_Estimate(Frame_Load

er,YOLOloader)

6.8.2 GenRepair Tool Configuration and Usage

The GenRepair tool is developed as a set of Python scripts enabling the use and integra-

tion of the hardening and repairing tools easily and in a cost effective way.

The provided Python scripts can be run into Jupyter Notebook, or in an IDE. In addi-

tion, GenRepair scripts can be run in the command line using the command prompt or

PowerShell in Windows. In macOS or Linux, the test engineers can execute the tool al-

so using the terminal or xTerm.

D8.9 Integration Platform – Final Version

Page 102 Version 1.0 30 December 2023

Confidentiality: Public Distribution

Code, documentation and metadat are available on the Github repository

\https://github.com/sesame-project/MLTesting.

6.8.2.1 Installation and configuration

Similar to Deepknowledge, GenRepair requires a set of libraries that covers different

functionality including the StableDiffusion Library for semantically augmenting the da-

taset.

These libraries can be installed by running the following commands:

$ pip install -r GenRepair_requirements.txt

####We need to install the generative AI models Stable

Diffusion and Transformer from the huggingface platform

as fellow:

$ pip install

https://github.com/huggingface/diffusers/archive/main

.zip -qUU --ignore-installed

$ pip install transformers -q -UU ftfy gradio

6.8.2.2 Running GenRepair

The users needs to run the tool following the precise steps using the following com-

mand lines.

First a Coverage-Guided Fuzz Testing can be performed separately to reinforce the

safety assurance of the DNN component by running:

$ cd path/to/the/project/folder

$ Python3.8 fuzzing.py -method[0 or 1] -

fuzzer[type_of_fuzzing] -

repair[continuous_learning_paradigm] -

it[nbre_of_iteration] -model

[path_to_keras_model_file] -dataset [dataset_name] -

approach [coverage_criteria] -logfile

[path_to_log_file]

https://github.com/sesame-project/MLTesting

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 103

Confidentiality: Public Distribution

Then, based on the results and on the testing engineers judgement a continuous model

repairing can be performed by running repairing.py script using the shell commands:

$ cd path/to/the/project/folder

$ Python3.8 repairing.py -method[0 or 1] -

fuzzer[type_of_fuzzing] -

repair[continuous_learning_paradigm] -

it[nbre_of_iteration] -model

[path_to_keras_model_file] -dataset [dataset_name] -

approach [coverage_criteria] -logfile

[path_to_log_file]

6.8.2.3 GenRepair Parameters

-method : an integer took 0 for fuzzing operation and 1

for repairing.

-fuzzer : the name of the selected fuzzer. Our platform

provides 5 strategies, with the possibility of choosing a

combination of different testing criteria as guidance.

These fuzzers are:

 Random Noise testing (RN). This combines random sam-

pling as seed selection strategy and Gaussian Noise for

data augmentation

 Random Inpainting (RInp). This fuzzer uses random sam-

pling strategy and test-guided Stable Diffusion Inpaint-

ing as data augmentation.

 Random Semantic Occlusion (SemOcc). This fuzzer uses

D8.9 Integration Platform – Final Version

Page 104 Version 1.0 30 December 2023

Confidentiality: Public Distribution

random sampling strategy with Semantic occlusion (both

random erasing and synthetic occlusion similarly) to

augment each input seed.

 DeepKnowledge Inpainting (KnwInp). Different from RInp,

this strategy guides testing using DeepKnowledge coverage

criteria as feedback. An input seed is put to the seed

queue if it improves the Deepknowledge coverage.

-repair : this the selected paradigm for continuous

learning. We can select :

CLTask : Task incremental learning

CLClass : Class incremental learning

CL : Continuous learning of known classes

-it : number of iterations for data augmentation within

the fuzzing process. We advise to select an integer be-

tween 2 an 10.

-app: for approach. The approach for coverage estimation.

The selected coverage is used as guidance in each itera-

tion to pick the augmented seed as new test. Our current

implementation supports DeepKnowledge (Knw), DeepIm-

portance (idc),(nc),(kmnc),(nbc),(snac),(tknc),(ssc),

(lsa), and (dsa).

-model : the name of the Keras model file. The trained

keras model is saved as .hdf5 file or the architecture

can be saved as JSON and the weights saved separately as

an .h5 file. All the trained model are saved under the

folder `Networks’. Our implementation provides three

trained DNN models including Allconvnet.h5, LeNet5.h5,

and Vgg19.h5.

-dataset : name of the dataset to be used. Current imple-

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 105

Confidentiality: Public Distribution

mentation supports Cifar-10 (cifar) COCO (coco) and grape

leaves (grape). Our platform is extensible and other da-

taset can be added by modifying `Dataprocessing.py’ and

`Data_Augment.py’ scripts.

-layer : The subject layer’s index for approaches includ-

ing ‘idc’,‘tknc’, ‘lsa’. Note that only trainable layers

can be selected.

- logfile : The name of the file that the results are to

be saved.

6.9 RUNTIME EDDI GENERATION TOOLS

6.9.1 Runtime EDDI Generator Tools

The ROS configuration file is described in YAML format. It consists of four main

sections:

Model: In the Model section of the YAML file, basic information is provided. The

standard fields are id, type, frequency and parameters. These correspond to the model

name, the model type (ConSert, Bayesian Network, SafeML) and the frequency of the

ROS main loop. The parameters field describes model specific information, as

explained in the corresponding sections below.

SimulatorOutputs: In this section, values from an existing ROS network are described.

These values might be used to create input values for the EDDI monitor. Each of these

values have a name (id), a data type (type) and the topic (topic) within the ROS

network. The ROS node will subscribe to the topic and propagate the received message

for further processing

EDDIInputs: Here, a list of all input parameters of the EDDI monitor are described.

Each of them has a name (id), a data type (type), a default value (default) and a field

requires. The requires field describes a list of ids which are matched to the ids of the

SimulatorOutputs values. An EDDI input parameter might depend on one or more

existing messages.

EDDIOutputs: In this section, the output of the EDDI monitor is specified. The ROS

node will publish the message under the specified topic. Additionally, a name (id) field

is set.

The main purpose of the configuration file is to link ROS messages within an existing

ROS network to input parameters of the respective model. Therefore, the

SimulatorOutputs are defined and linked within the EDDIInput section to the related

D8.9 Integration Platform – Final Version

Page 106 Version 1.0 30 December 2023

Confidentiality: Public Distribution

input parameters. Also, it is specified how the results of the EDDI monitor are

published within the ROS network. Further, the configuration file is used to specify the

general properties of the ROS node and package such as the name, frequency and type.

This file is required as an input to the ROS wrapper generator explained in the

upcoming sections.

A generic Python script consumes the ROS configuration file mentioned above and

allows each of the EDDI runtime components described below to be generated.

6.9.2 ConSerts

The ROS configuration file specifies the ConSert guarantees within the parameter

section. The name of demands, runtime evidence and guarantees must match between

the config file and the EDDI ConSert description.

In order to generate a ConSert monitor ROS node, the first step derives the ConSert

described in the XML EDDI model and creates a ConSert description as a YAML file.

java -jar egl.jar -e <egl_script> -m <ecore model_file> -x <xml_file>

The next step generates the ConSert monitor in Rust. Therefore, the consert-rs tool is

used. It transforms the ConSert defined in a YAML into rust code. The ―--py‖ argument

results in annotated rust code which is required in the next step.

conserts.exe compile --py -I <consert_name.yml>

Afterwards, the wheel files are created using maturin
51

. Therefore, ensure maturin is

installed. Otherwise,

pip install maturin

In the same directory as the generated rust file are located, the wheel files are generated

with:

maturin build

The resulting .whls files are then installed with

pip install consert_<consert_name>.whl

Now the corresponding dependencies can be imported in any python script. The next

step requires an already existing catkin_ws directory. If no such directory exists, create

at least

catkin_ws/src

The workspace can then also be initiated with

catkin init

51

 https://pypi.org/project/maturin/

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 107

Confidentiality: Public Distribution

Now with

python generator.py -w <catkin_ws> -c <config.yml> -m <consert.yml>

where the catkin_ws path, the ROS configuration file path and the path of the ConSert

specification YAML are given as arguments.

This will create the ROS packages: eddi_monitor, eddi_messages and

eddi_monitor_launcher if those do not already exist. Additionally, a ROS package is

created for the specified ConSert which contains the script to run the ConSert as a ROS

node. Before the ROS node can be executed, some small manual coding is required.

Within the EDDIInput.py script, for each input specified in the configuration file, a

processing method was created which must be implemented. The goal here is to process

the required ROS messages to a proper EDDI input value. In Figure 64 the function

―process_RtE_A_E0(..)‖ must be implemented by assigning the field ―RtE_A_E0‖

depending on the input parameter ―RtE_E0‖.

Figure 64 Generated example EDDI Input script

In order to run the ROS node now use

chmod +x src/eddi_monitor/<consert_name>/scripts/RosNode.py

dos2unix src/eddi_monitor/<consert_name>/scripts/RosNode.py % (if

generated on Windows and executed now on Linux)

source catkin_ws/devel/setup.bash

catkin_make

roscore & % (if not already started)

roslaunch eddi_monitor_launcher eddi.launch &

All EDDI ROS nodes created accordingly with the generator script are then started.

6.9.3 Bayesian Networks

For generating a Bayesian network monitor ROS node, several parts are required:

1. A ROS configuration is needed that is tailored to the concrete Bayesian network

model and ROS runtime environment.

2. An EDDI representing the Bayesian network is needed.

3. The generator and transformation scripts must be available.

D8.9 Integration Platform – Final Version

Page 108 Version 1.0 30 December 2023

Confidentiality: Public Distribution

The ROS configuration file (YAML format) for the Bayesian network monitor

comprises just the generic parts, like the concrete inputs, as explained in the previous

sections.

Second, an EDDI model (XML-based format) representing the Bayesian network is a

prerequisite. This model is then translated into a specific runtime representation (.xdsl /

.xmlbif format) of the Bayesian network using the Epsilon Generation Language (EGL)

and Python.

1. Translate the EDDI model to a .xdsl representation of the Bayesian network

using (EGL):

java -jar egl.jar -e <egl_script> -m <ecore model_file> -x <xml_file>

a. With the ―egl_script‖ being the concrete ―ddi_bn_to_xdsl.egl‖ script.

b. With ―ecore_model_file‖ being the concrete metamodel representation of

the Bayesian network: ―bayesianNetwork.ecore‖

c. With ―xml_file‖ being the concrete input DDI model file.

2. Then, the .xdsl Bayesian network representation is automatically translated into

the .xmlbif Bayesian network format for runtime inference. This is done in

Python and happens automatically when generating the Python Bayesian

network monitor, respectively, the ROS Bayesian network monitor, using the

provided Python scripts as explained below.

Now, when having the runtime representation of the Bayesian network as a .xdsl file,

there are two options. Either a Python Bayesian network monitor or a ROS Bayesian

network monitor can be generated. For both a Python script for the code generation is

provided.

1. The Python Bayesian network monitor can be generated with the

―bn_monitor_generator.py‖ script by providing the previously generated .xdsl

runtime representation of the Bayesian network as an input:

python3 -m BayesianNetwork.bn_monitor_generator -bn <bayesianNetwork>

a. With ―bayesianNetwork‖ being the name of your .xdsl file which must be

located in the same directory as the ―bn_monitor_generator.py‖ script.

b. The generated Python package will be located in the ―out/bn_monitor/‖

directory that will be generated automatically.

2. The ROS Bayesian network monitor can be generated with the ―generator.py‖

script by providing the aforementioned ROS configuration YAML file:

python3 generator.py -w <catkin_ws> -c <config.yml> -m

<bayesianNetwork.xdsl>

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 109

Confidentiality: Public Distribution

a. With ―catkin_ws‖ being the path to your catkin workspace for whose src

directory the ROS Bayesian network monitor shall be generated and

stored at.

b. With ―config.yml‖ being the aforementioned ROS configuration file.

c. With ―bayesianNetwork.xdsl‖ being the runtime Bayesian network model

file as generated before with the EGL script based on the EDDI model.

In both cases, you must manually adapt the Bayesian network configuration to your

needs (output nodes and concrete discretization for the Bayesian network). This

configuration Python script ―bayesian_network_config.py‖ is located in the generated

code under ―files/bayesianNetworkName/‖, respectively, under

―catkin_ws/src/bayesianNetworkName/scripts/files/bayesianNetworkName/‖.

Also, in case of the ROS Bayesian network monitor you must adapt / implement the

concrete data translations, i.e., the mapping between the ROS topic data inputs and the

concrete inputs for the Bayesian network monitor. This shall be done in the generated

―EDDIInput.py‖ Python script that is located in

―catkin_ws/src/bayesianNetworkName/scripts/‖.

Finally, you can run the generated Bayesian network monitor:

1. The Python Bayesian network monitor runs by the generated ―bn_monitor.py‖

script that comprises the interface for the monitor.

2. The ROS Bayesian network monitor can run in the ROS environment that is

described in the ROS YAML configuration. For details on the required steps, the

ROS package structure, and so on, we refer to the ConSerts section above (see

Section 6.9.2 ConSerts) in which the ROS steps are explained in depth (the steps

for the Bayesian network monitor are similar to the ones from the ConSert

monitor).

Important: For running the Bayesian network monitor, you must install the pgmpy

library
52

 using Python‘s pip in your runtime Python environment:

python3 -m pip install pgmpy

6.9.4 SafeML as ROS Monitoring Component

The SafeML monitor requires:

1. Input model, used for detection

2. Feature extraction method

3. Model weights used

52

 https://pgmpy.org/

https://pgmpy.org/

D8.9 Integration Platform – Final Version

Page 110 Version 1.0 30 December 2023

Confidentiality: Public Distribution

4. Design-time SafeML measures

Hence, this requires a tailored solution for specific use case. The SafeML monitor tool,

and the tailored files for the use-cases it was involved in can be found on the SESAME

GitHub (runtime_eddis/SafeML at master · sesame-project/runtime_eddis

(github.com)). For generating SafeML ROS monitoring component, preferred method is

by using dockers. For SafeML, the base image used is 'opendr/opendr-

toolkit:cpu_nightly_300823‘. The base image used is Open Deep Robotics (OpenDR)

image, that uses YOLO for object detection, classification and tracking for robotics. It

also has ROS integration. For this project, we only considered detection.

The SafeML monitor assets can be compiled first, by using the various data required.

The model agnostic nature of SafeML allows use of any input model. However, as it

increases the complexity, it works best with the model that allow the intermediate

feature extraction, enabling dimensionality reduction. The feature extraction techniques

can be model specific. And should be consistent during design time and runtime usage

of SafeML. During design time, these techniques allow users to extract the important

relevant information (such as accuracy, statistical distance, features, etc). These

extracted features can then be used at runtime to obtain a SafeML monitor node. A

sample Dockerfile to generate SafeML monitor node is as follows.

FROM opendr/opendr-toolkit:cpu_nightly_300823

RUN rm /bin/sh && ln -s /bin/bash /bin/sh

WORKDIR /opendr/

#RUN /bin/bash -c 'source /opendr/bin/activate.sh'

RUN source bin/activate.sh

WORKDIR /opendr/projects/

RUN mkdir WS

COPY safeml_scue/ /opendr/projects/WS/safeml_scue/

RUN apt-get update

RUN python3 -m pip install --upgrade pip

RUN cp /opendr/projects/WS/safeml_scue/YOLOv8_node.py

/opendr/projects/opendr_ws/src/opendr_perception/scripts/

RUN cp -r /opendr/projects/WS/safeml_scue/yolov8_mod/

/opendr/projects/opendr_ws/src/opendr_perception/scripts/

RUN cp -r /opendr/projects/WS/safeml_scue/scue/

/opendr/projects/opendr_ws/src/opendr_perception/scripts/

RUN cp /opendr/projects/WS/safeml_scue/safeml.py

/opendr/projects/opendr_ws/src/opendr_perception/scripts/

RUN /opendr/venv/bin/pip install -r

/opendr/projects/WS/safeml_scue/requirements.txt

RUN source /opt/ros/noetic/setup.bash

WORKDIR /opendr/projects/opendr_ws

RUN /bin/bash -c '. /opt/ros/noetic/setup.bash; cd

/opendr/projects/opendr_ws; catkin_make'

RUN echo "source /opendr/projects/opendr_ws/devel/setup.bash" >>

~/.bashrc

RUN chmod +x src/opendr_perception/scripts/YOLOv8_node.py

https://github.com/sesame-project/runtime_eddis/tree/master/SafeML
https://github.com/sesame-project/runtime_eddis/tree/master/SafeML

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 111

Confidentiality: Public Distribution

With the help of above dockerfile, the SafeML monitor docker can be run using

docker build -t safeml:0.1.1 .

The monitor can then be ran using

docker run --gpus all --net=host --rm -it safeml:0.1.1 bash

This will start a docker, which will wait and listen for the ROS master to output the

image topics. Activate the appropriate environment

The SafeML monitor can then be started, by giving the topic name it should listen to for

the image, and the topic name it should send the output of SafeML to. A sample run is

as follows:

rosrun opendr_perception YOLOv8_node.py -i /topic/name/for/input/image

-m /path/to/model/weights

6.10 MULTI-AGENT SYSTEM FOR SECURITY AND SAFETY MANAGEMENT

For ROS systems, EDDIs can be deployed using our generator.py script. Therefore, a

catkin workspace must exist. Alternatively, a catkin_ws/src folder must be created. For

each EDDI model file e.g., a ConSert model, a configuration file must be created that

links the relevant messages of the ROS network to the inputs of the EDDI and on the

other hand defines the topics and format of the EDDI outputs. These configuration files

are mandatory to deploy the EDDIs. Then, the ROS nodes can be generated by

executing:

generator.py -w <catkin_workspace> -m <model_file> -c <config_file>

The catkin workspace now contains the ROS nodes for each EDDI. Next, each

RosNode.py within the catkin_ws/src/eddi_monitor/<node>/scripts/ must be made

executable:

chmod +x RosNode.py

In order to run the ROS nodes, the EDDIs (ConSerts) must be build first. The ConSerts

are built with conserts-rs. Choose the binary that supports the target system and call:

Conserts compile -i <model_file> --py

Within the target folder, navigate within the generated ConSert package and call:

maturin build

A new target folder is created that contains a wheel file within the wheels directory. The

wheel must be installed with:

pip3 install <wheel>

After the new ROS files are added to the directory, the workspace must be rebuild.

D8.9 Integration Platform – Final Version

Page 112 Version 1.0 30 December 2023

Confidentiality: Public Distribution

In non-ROS systems, EDDIs can be deployed using Docker
53

and Docker Compose
54

technologies. This approach is used in the KUKA use case (see D8.14), where ROS is

not available. The approach re-uses the generated EDDI code (specifically ConSerts).

The code is used by a Python runner component which supports a multitude of web-

based APIs (MQTT
55

, RESTful HTML, ActiveMQ
56

and gRPC
57

). The user can deploy

the runner component in standalone or server mode. Standalone mode runs a single

EDDI (ConSert), whereas server mode starts a server which awaits RESTful HTTP

requests. Upon receiving a request, the server initiates a ConSert (from the ones

installed and available) using the specified configuration and API.

The requirements for building EDDI (ConSerts) code apply here as well. Python 3.8 is

supported, but newer versions may also be compatible. Additional dependencies for the

runner component can be installed using the following (from the runner component

directory).

pip3 install –r ./requirements.txt

The runner is setup by copying the generated EDDI (ConSert) Python wheel files under

the ‗consert_wheels‘ directory in the runner component‘s directory. The user should

then install the wheel files into the Python interpreter environment using

pip3 install <path to ConSert .whl file>

In standalone mode, the runner component is deployed using

python3 ./main.py [rest|mqtt|activemq|grpc]

In server mode, the runner component is deployed using

python3 ./main.py --offline=False

The –h flag can be used to view additional configuration options for both modes and for

each API mode.

To build a reusable Docker image, the following command can be invoked from the

runner component root directory

docker build --build-arg CONSERT_WHEEL_RPATH=<filename of ConSert .whl

file> -t <name of docker image> .

Docker Compose can be used to automatically raise and manage several runner

services. This approach requires the definition of a .yml file for Docker Compose (see

example in runner component root directory). Once that has been created, the user can

use the following command to start the EDDI (ConSert) MAS

docker compose up –d

53

 https://docs.docker.com/get-docker/
54

 https://docs.docker.com/compose/
55

 https://mqtt.org/
56

 https://activemq.apache.org/
57

 https://grpc.io/

https://docs.docker.com/get-docker/
https://docs.docker.com/compose/
https://mqtt.org/
https://activemq.apache.org/
https://grpc.io/

 D8.9 Integrated Platform – Final Version

30 December 2023 Version 1.0 Page 113

Confidentiality: Public Distribution

7. CONCLUSIONS

Following the plan for delivering the SESAME technologies, and the selected Adaptive

Project Management approach, the Incremental Integration Strategy (IIS), and the

planned features of the initial (M18) and final (M30) versions of the SESAME platform,

this deliverable includes the integrated versions of the SESAME solutions, reports on

features and installation/customization guidelines. The report itself documents the

integration for the final versions of the SESAME tools and modules. A detailed

description of all components in the final version of the SESAME solutions is provided,

as well as the basic workflow of the SESAME tools and components (which is

customisable for the different use cases), and the description of the SESAME integrated

platform. The continuous integration and deployment process, which was followed

throughout the project, is highlighted as well.

The report provides a guide for the installation and configuration of the SESAME

components. The objective was to provide modelling and tooling that are robot

operating system agnostic and therefore able to support multiple industrial robotics

platform. Aiming at high flexibility and easy adaptation to diverse robotic applications

and starting from the five different use cases in the project, the solutions were designed

to be loosely coupled.

Furthermore, the requirements upon the SESAME components were extracted from

deliverable D1.1 SESAME Project Requirements [23] and analysed in detail.

The integrated platform and SESAME components have throughout the project

addressed the issues that have risen during development and accommodated any new

technical requirements or changes in the selected technologies. The feedback from the

use case partners, obtained within the testing of the SESAME solution, as well as from

the reviewers, was strongly taken into account in the updates of the integrated platform

and the corresponding documentations/guidelines.

D8.9 Integration Platform – Final Version

Page 114 Version 1.0 30 December 2023

Confidentiality: Public Distribution

8. REFERENCES

[1] SESAME consortium, ―D8.3 Integrated Platform - Initial Version,‖ 2022.

[2] SESAME consortium, ―D8.1 Architectural Guidelines,‖ 2021.

[3] SESAME consortium, ―D4.2/D5.2 Safety/Security-Targeted ODE and EDDI specification,‖ 2022.

[4] SESAME consortium, ―D4.6 Tools for Automated Safety Analysis of EDDIs (final version),‖ 2023.

[5] B. Kaiser, P. Liggesmeyer and O. Mäckel, ―A new component concept for fault trees,‖ Proceedings of the 8th

Australian workshop on Safety Critical Systems and Software, vol. 33, pp. 37-46, 2003.

[6] T. Kelly, ―A Systematic Approach to Safety Case Management,‖ SAE Transactions, vol. 113, pp. 257-266, 2004.

[7] D. Schneider and M. Trapp, ―Conditional safety certification of open adaptive systems.,‖ ACM Transactions on

Autonomous and Adaptive Systems (TAAS), vol. 8, no. 2, pp. 1-20, 2013.

[8] Y. Papadopoulos, I. Sorokos, J. Reich and R. Wei, ―Engineering tools for creation, integration and maintenance of

DDIs V2,‖ DEIS Project, 2019.

[9] SESAME consortium, ―D7.1 Runtime Safety and Security Concept - EDDI Runtime Model Specification,‖ 2022.

[10] SESAME consortium, ―D7.2 Tools for Generation of Runtime EDDIs,‖ 2022.

[11] SESAME consortium, ―D5.6 Tools for Automated Security Analysis of MRS and for Production of EDDIs (Final

Version),‖ 2023.

[12] SESAME consortium, ―D6.6 Multi-Stage Quality Assurance Methodology for EDDI-Supported MRS,‖ 2023.

[13] SESAME consortium, ―D3.2 Executable Scenarios Workbench (Initial Version),‖ 2022.

[14] S. Urolagin, P. KV and N. Reddy, ―Generalization capability of artificial neural network incorporated with pruning

method,‖ in Advanced Computing, Networking and Security: International Conference, ADCONS, Surathkal,

India, , December 16-18 2011.

[15] S. Gerasimou, H. F. Eniser, A. Sen and A. Cakan, ―Importance-Driven Deep Learn-ing System Testing.,‖ in 2020

IEEE/ACM 42nd International Conference on Software Engineering (ICSE), 2020.

[16] SESAME consortium, ―D6.1 Assurance of Data Driven and Learning Components of EDDIs,‖ 2022.

[17] SESAME consortium, ―D6.4 Recommendations for EDDI Repair and Hardening,‖ 2023.

[18] A. Schmidt, J. Reich and I. Sorokos, ―Live In ConSerts: Model-Driven Runtime Safety Assurance on

Microcontrollers, Edge, and Cloud,‖ 17th European Dependable Computing Conference (EDCC), pp. 61-66, 2021.

[19] S. Kabir and Y. Papadopoulos, ―Applications of Bayesian Networks and Petri Nets in Safety, Reliability, and Risk

Assessments: A Review,‖ Safety Science, vol. 115, pp. 154-175, 2019.

[20] S. Kabir, I. Sorokos, K. Aslansefat, Y. Papadoulos, Y. Gheraibia, J. Reich, M. Saimler and R. Wei, ―A runtime

safety analysis concept for open adaptive systems,‖ International Symposium on Model-Based Safety and

Assessment, pp. 332-346, 2019.

[21] SESAME consortium, ―D5.4 Tailorability of EDDIs,‖ 2022.

[22] D. Bozhinoski, M. Oviedo, N. Garcia, H. Deshpande, G. van der Hoorn, J. Tjerngren, A. Wasowski and C.

Corbato, ―MROS: runtime adaptation for robot control architectures,‖ Advanced Robotics, vol. 36, no. 11, pp. 502-

518, 2022.

[23] SESAME consortium, ―D1.1 Project Requirements,‖ 2021.

	1. Introduction
	1.1 Document Structure
	1.2 Relationship to other deliverables

	2. Integrated Platform Architecture
	2.1 Components Overview
	2.1.1 Collaborative Sensor Fusion
	2.1.2 Trajectory Planning and Tracking
	2.1.3 Executable Scenarios Workbench
	2.1.4 EDDI-based Safety Analysis Tools
	2.1.4.1 SafeTbox
	2.1.4.2 BayesFusion GeNIe Modeler
	2.1.4.3 HiP-HOPS
	2.1.4.4 Tool Adapter & EDDI Editor
	2.1.4.5 Requirements status

	2.1.5 EDDI-based Security Analysis Tools
	2.1.5.1 Security

	2.1.6 Simulation-Based Testing of EDDI Tools
	2.1.6.1 Overview of WP6 Simulation-Based Testing and Multi-Stage MRS Testing Methodology
	2.1.6.2 SESAME Simulation-Based Testing Methodology
	2.1.6.3 Testing tool and simulation platforms interfaces for KUKA Use Case
	2.1.6.4 The TTS SimlogAPI V2
	The SimServerAPI
	The SimlogAPI
	Proof of concept Deployment Scenario

	2.1.6.5 Requirements status

	2.1.7 Testing of ML Components Tools
	2.1.7.1 DeepKnowledge: A white-Box Testing Approach for Data-Driven Components
	Analyse Knowledge Abstraction
	Estimate Knowledge Coverage

	2.1.7.2 GenRepair: A Coverage-guided hardening and Repairing Approach for Data-Driven Components
	Augment Dataset with Synthetic Inputs and Estimate their Fidelity
	Coverage Tracing and Continuous Learning

	2.1.7.3 Requirements status

	2.1.8 Runtime EDDI Components and Generation Tools
	2.1.8.1 Conditional Safety Certificates (ConSerts) ROS Component
	2.1.8.2 Bayesian Network ROS Component
	2.1.8.3 SafeML ROS Component
	2.1.8.4 EDDI Tailorability Support Tool for ROS Platform
	2.1.8.5 Requirements status

	2.1.9 Multi-Agent System for Security and Safety Management

	3. Workflows
	4. SESAME Integration Platform
	4.1 Tools and Technologies
	4.2 Implementations
	4.3 Integration of tools

	5. Continuous Integration & Deployment Process
	5.1 Overview
	5.2 GitHub Integration

	6. Installation and Configuration of SESAME Tools
	6.1 SESAME Integration Platform
	6.2 Collaborative Sensor Fusion
	6.3 Trajectory Planning and Tracking
	6.4 Executable Scenarios Workbench
	6.4.1 Bdd-dsl
	6.4.2 Floor-Plan-DSL
	6.4.3 kindyngen

	6.5 EDDI-based Safety Analysis Tools
	6.5.1 Installation
	6.5.1.1 HiP-HOPS
	6.5.1.2 SafeTbox
	6.5.1.3 BayesFusion GeNIe Modeler
	6.5.1.4 SafeML
	6.5.1.5 SafeDrones

	6.5.2 Configuration
	6.5.2.1 SafeTbox
	6.5.2.2 BayesFusion GeNIe Modeler
	6.5.2.3 SafeML
	6.5.2.4 SafeDrones
	6.5.2.5 EDDI Editor

	6.6 EDDI-based Security Analysis Tools
	6.6.1 Installation
	6.6.2 Configuration

	6.7 Simulation-Based Testing of EDDI Tools
	6.7.1 Simulation-Based Testing Platform Tool
	6.7.1.1 Installation Instructions

	6.7.2 Methodology Execution Example
	6.7.3 Implementing a SimlogAPI interface
	6.7.3.1 Generating the stubs
	6.7.3.2 Implementing a Java client

	6.8 Testing of ML Components Tools
	6.8.1 DeepKnowledge configuration and usage
	6.8.1.1 Installation and configuration
	6.8.1.2 Running DeepKnowledge

	6.8.2 GenRepair Tool Configuration and Usage
	6.8.2.1 Installation and configuration
	6.8.2.2 Running GenRepair
	6.8.2.3 GenRepair Parameters

	6.9 Runtime EDDI Generation Tools
	6.9.1 Runtime EDDI Generator Tools
	6.9.2 ConSerts
	6.9.3 Bayesian Networks
	6.9.4 SafeML as ROS Monitoring Component

	6.10 Multi-Agent System for Security and Safety Management

	7. Conclusions
	8. References

