

Project Partners: Aero41, ATB, AVL, Bonn-Rhein-Sieg University, Cyprus Civil Defence, Domaine
Kox, FORTH, Fraunhofer IESE, KIOS, KUKA Assembly & Test, Locomotec,
Luxsense, The Open Group, Technology Transfer Systems, University of Hull,
University of Luxembourg, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SESAME Project Partners accept no liability for any error or omission in the same.

© 2023 Copyright in this document remains vested in the SESAME Project Partners.

Project Number 101017258

D5.5 Security Analysis of EDDIs

Version 1.0
5 July 2023

Final

Public Distribution

FORTH

D5.5 Security Analysis of EDDIs

Page ii Version 1.0 5 July 2023

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Aero41

Frédéric Hemmeler

Chemin de Mornex 3

1003 Lausanne

Switzerland

E-mail: frederic.hemmeler@aero41.ch

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

E-mail: scholze@atb-bremen.de

AVL

Martin Weinzerl

Hans-List-Platz 1

8020 Graz

Austria

E-mail: martin.weinzerl@avl.com

Bonn-Rhein-Sieg University

Nico Hochgeschwender

Grantham-Allee 20

53757 Sankt Augustin

Germany

E-mail: nico.hochgeschwender@h-brs.de

Cyprus Civil Defence

Eftychia Stokkou

Cyprus Ministry of Interior

1453 Lefkosia

Cyprus

E-mail: estokkou@cd.moi.gov.cy

Domaine Kox

Corinne Kox

6 Rue des Prés

5561 Remich

Luxembourg

E-mail: corinne@domainekox.lu

FORTH

Sotiris Ioannidis

N Plastira Str 100

70013 Heraklion

Greece

E-mail: sotiris@ics.forth.gr

Fraunhofer IESE

Daniel Schneider

Fraunhofer-Platz 1

67663 Kaiserslautern

Germany

E-mail: daniel.schneider@iese.fraunhofer.de

KIOS

Maria Michael

1 Panepistimiou Avenue

2109 Aglatzia, Nicosia

Cyprus

E-mail: mmichael@ucy.ac.cy

KUKA Assembly & Test

Michael Laackmann

Uhthoffstrasse 1

28757 Bremen

Germany

E-mail: michael.laackmann@kuka.com

Locomotec

Sebastian Blumenthal

Bergiusstrasse 15

86199 Augsburg

Germany

E-mail: blumenthal@locomotec.com

Luxsense

Gilles Rock

85-87 Parc d'Activités

8303 Luxembourg

Luxembourg

E-mail: gilles.rock@luxsense.lu

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

E-mail: s.hansen@opengroup.org

Technology Transfer Systems

Paolo Pedrazzoli

Via Francesco d'Ovidio, 3

20131 Milano

Italy

E-mail: pedrazzoli@ttsnetwork.com

University of Hull

Yiannis Papadopoulos

Cottingham Road

Hull HU6 7TQ

United Kingdom

E-mail: y.i.papadopoulos@hull.ac.uk

University of Luxembourg

Miguel Olivares Mendez

2 Avenue de l'Universite

4365 Esch-sur-Alzette

Luxembourg

E-mail: miguel.olivaresmendez@uni.lu

University of York

Simos Gerasimou & Nicholas Matragkas

Deramore Lane

York YO10 5GH

United Kingdom

E-mail: simos.gerasimou@york.ac.uk

 nicholas.matragkas@york.ac.uk

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Initial draft with outline and first content 13 May 2023

0.2 First draft 12 June 2023

0.3 Ready for internal review 28 June 2023

0.9 Updated version from internal reviews 4 July 2023

1.0 Final QA version 5 July 2023

D5.5 Security Analysis of EDDIs

Page iv Version 1.0 5 July 2023

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 7

1.1 Overview .. 7

1.2 Deliverable structure ... 7

2. Making executable files secure ... 8

2.1 Static code analysis ... 9

2.2 Hash verification ... 13

3. Security analysis of SESAME EDDIs .. 14

3.1 Tools usage and development .. 15
3.1.1 Static code analysis ... 15
3.1.2 Hash verification ... 27

4. Conclusions .. 34

5. References .. 35

TABLE OF FIGURES

Figure 1: Taxonomy tree of static code analysis tools [5] .. 11
Figure 2: The basic form of a hash function [9] ... 13
Figure 3: Installing CheckStyle-IDEA to IntelliJ ... 16
Figure 4: CheckStyle report for "severities.java" file ... 16
Figure 5: Report from the IntelliJ's native code analyzer (checkmarx) .. 17
Figure 6: Security warning from the IntelliJ's native code analyzer (checkmarx) .. 18
Figure 7: Configuration of the IntelliJ's native code analyzer (checkmarx) ... 19
Figure 8: Installation instructions for Qodana .. 20
Figure 9: Qodana web user interface .. 21
Figure 10: "public static" collection field "capecsIdentified" ", compromizsing security problem 22
Figure 11: SonarQube web available dashboard ... 23
Figure 12: SonarQube reported Bugs ... 24
Figure 13: SonarQube - "Where is the issue?" tab .. 25
Figure 14: SonarQube - "Why is this an issue?" tab ... 26
Figure 15: SonarQube - "More info" tab .. 26
Figure 16: Hash Verification tool in the EDDI workflow .. 28

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page v

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This deliverable describes the techniques and tools that are adopted towards securing

the EDDIS created in the context of the SESAME project. The executable nature of the

EDDIs makes them extra vulnerable forcing the adoption and development of dedicated

tools to ensure that no additional attack surfaces are created and no additional attack

types are utilized.

The document presents the state-of-the-art techniques and tools towards ensuring that

executable files stay secure. It focuses on static code analysis and hash verification

techniques, describing the most popular opensource tools and presenting custom

solutions, tailored to the project use cases.

The tools that are mentioned in this document are either opensource, with their code

publicly available in free repositories, or custom, which are going to become available

at the project‘s repository. A short description of each follows:

 CheckStyle: a static analysis tool for Java code that enforces coding

conventions, detects potential bugs.

 Checkmarx: a comprehensive application security testing platform that

identifies and remediates software vulnerabilities throughout the development

lifecycle.

 Qodana: an intelligent code quality and security analysis platform that provides

automated code inspections and identifies potential issues.

 SonarQube: an open-source platform for continuous code quality inspection

and static analysis, enabling developers to detect and resolve code issues, ensure

coding standards, and enhance overall code quality.

 Hash verification Python script: a script that calculates hash values for a

specified file using multiple hash algorithms and compares them with pre-

defined hash values for verification, providing information on whether the hash

values match or not.

D5.5 Security Analysis of EDDIs

Page vi Version 1.0 5 July 2023

Confidentiality: Public Distribution

LIST OF ABBREVIATIONS

CAPEC Common Attack Pattern Enumeration and Classification

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DoS Denial-of-Service

EDDI Executable Digital Dependability Identity

NVD National Vulnerability Database

IDE Integrated Development Environment

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 7

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OVERVIEW

Ensuring the security of an executable is critical since it can be an entry point for an

attacker that aims to compromise the security of the whole of our system. A malicious

executable could lead to malevolent actions such as malware propagation, unauthorized

system access, or compromising user privacy. A compromised system cannot protect

valuable data and assets from unauthorized access or theft and could lead to financial

loss, reputational damage, and legal consequences. A well-protected system contributes

to business continuity by minimizing disruptions, crashes, and performance issues, and

strengthens compliance with industry regulations and standards. Non-compliance can

result in penalties and legal consequences. Finally, demonstrating a commitment to

security, you build trust with users, customers, and partners, enhancing your reputation.

Executables differ from other assets in terms of security due to their active code

execution, privileged access requirements, complexity, distribution, and attractiveness

to attackers. Executables contain code that is actively executed on a system, interacting

with the underlying operating system and network, introducing a higher level of risk.

They often require elevated privileges and access to sensitive resources, making their

security crucial to prevent unauthorized activities. Moreover, they are depending on

external libraries and frameworks, increasing the attack surface and the number of

potential vulnerabilities. Additionally, executables are often distributed and executed on

multiple systems, making themselves vulnerable to tampering. Due to all of the above

reasons, executables are very popular targets for attackers that aim to gain control over

systems, compromise data, or propagate malware. Due to their potential impact and

wide distribution, executables are frequently targeted by attackers. Protecting

executables involves implementing specialized security measures such as code review,

digital signatures, encryption, and testing to mitigate these unique risks.

1.2 DELIVERABLE STRUCTURE

The rest of the deliverable is structured as follows. Section 2 cover techniques, tools,

and best practices related to guaranteeing that executable files remain secure. The focus

of the section is on the concepts of static code analysis and hash verification, both for

ensuring security in executable files. Regarding static security analysis, the concept is

explained and individual tools are described. As far as the hash verification is

concerned, once again the concept is explained, mentioning its role in verifying file

integrity, and how it can be used to detect tampering or unauthorized changes.

Section 3 delves deeper into the tools that have been adopted until now for making the

SESAME EDDIs secure. A set of chosen static analysis tools are described in details

with screenshots that show their functionalities are created reports. Moreover, listings

with Python scripts are presented, with our custom development of a hash verification

tool.

Finally, we present our concluding remarks in section 4.

D5.5 Security Analysis of EDDIs

Page 8 Version 1.0 5 July 2023

Confidentiality: Public Distribution

2. MAKING EXECUTABLE FILES SECURE

As it is already discussed, we need to focus on the security of executables due to their

active code execution, privileged access requirements, complexity, distribution, and the

fact that attackers seem to prefer them as targets. A number of different techniques that

can be utilized for securing executables are mentioned below:

Code review is a critical process for ensuring the security of an executable. It involves a

thorough inspection of the source code to identify security vulnerabilities, coding errors,

and potential risks. Common security issues that can be detected include injection

attacks, cross-site scripting, and insecure authentication mechanisms. Additionally, code

review helps improve overall code quality, identify bugs, encourages knowledge

sharing, and ensures adherence to coding standards. Code review can improve code

quality, enhance security practices, and reduce the likelihood of security breaches.

Digital signature is a cryptographic mechanism used to verify the authenticity, integrity,

and non-repudiation of digital content, such as executables. Using asymmetric

cryptography, a signer with their private key encrypts a hash value of the content,

creating a digital signature. The produced digital signature, along with the signer's

public key, are then attached to the content. Recipients can verify the signature using

the signer's public key to authentication, integrity, and non-repudiation, along with the

assurance that the content comes from a trusted source.

Antivirus software and malware scanning constitute another way to ensure the security

of executables. Antivirus programs use different processes to identify and mitigate

known and unknown threats, such as signature-based detection, heuristic analysis,

behaviour monitoring, and sandboxing. They compare file signatures, analyse code

behaviour, monitor system activity, and execute executables in isolated environments to

detect and block malware. Malware scanning takes advantage of some of the

aforementioned techniques to identify and remove malicious code. Antivirus software

and malware scanning are able to provide real-time protection and help prevent the

execution of malware.

Hash verification is a mechanism for checking the integrity of data using cryptographic

hash functions. A hash function takes input data and produces a fixed-size hash value or

checksum. The generated hash value is unique to the input data. By comparing the

computed hash value of the received data with the expected hash value, the integrity of

the data can be verified. In that way it is ensured that target data has not been altered or

corrupted during the time window between the generation of the two hash values, the

expected and the new one.

Security testing is a term that includes a number of techniques that can be used for

ensuring executable security, such as vulnerability identification, risk mitigation,

compliance with standards, penetration testing, and secure lifecycle development.

Security testing simulates real-world attacks to evaluate the effectiveness of security

controls and identify areas for improvement.

Our work in SESAME task T5.4 focuses on two of the techniques presented above,

code review and hash verification.

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 9

Confidentiality: Public Distribution

2.1 STATIC CODE ANALYSIS

It could be said that the history of the static code analysis tools starts with Lint, a tool

created by Stephen Johnson at the Bell Laboratories in the 1970s. The goal of Lint was

to scan C source programs with no compilation errors and identify unnoticed bugs. It

scanned the source code for matches without running the actual program. Tools with

that functionality are called static checkers. The dynamic way of checking for errors

includes running the program and compare the actual with the expected behaviour. The

facts that people tend to make the same mistakes over and over, and most errors belong

to known categories, makes it possible for static checkers to produce meaningful results.

There are two kinds of static code checkers: those that work on the source code directly

and those that work on the compiled bytecode, each with its own advantages and

disadvantages. The checkers that work on the source code directly search for matches at

the exact code that the programmer wrote. On the other hand, when a program is

compiled, the actual code is optimized at some degree and the produced bytecode might

not match the source. However, working on bytecode is much faster, a critical factor for

projects with a large volume of code lines. The way most code checkers work includes

the build of an abstract representation of the target program (model), and a data-flow

analysis to figure out the possible values that variables might have [1].

The static analysis tools that are mentioned by Bardas [2] are called source code

analyzers, which should spot code weaknesses, reporting their location and severity.

The weakness class should match a Common Weakness Enumeration (CWE) entry.

Additional information that could be reported include conditions that are necessary for

the weakness to be revealed, related data or control flow, fix suggestions, and a false

positive index.

Bardas mentions a number of static code analysis‘ advantages and disadvantages

compared with the dynamic analysis (testing):

 Static analysis can be performed only on specific modules or on code that is still

unfinished, even during the development process. Testing needs modules that can be

executed, test cases or input data, possibly supporting drivers, and auxiliary

components. Testing, due to its nature, can be conducted when the target program is

in a mature phase.

 Static analyzers consider code independently of any particular execution. Being able

to enumerate all possible interactions between the different modules and

components, they may reveal rare occurrences or hidden back doors. In case of

testing, establishing of initial conditions or artificial constrain to the system may

needed to produce a desired interaction.

 Static analyzers have to deal with the limitations of their reasoning sophistication. A

good analyzer should be able to identify a large range of weaknesses. For testing,

the same problem is addressed with the development of the corresponding tests that

can exercise a particular property or module.

 In case of the discovery of new attacks or failures, a static analyzer just needs to

update its vulnerability database. An analyzer with outdated database will miss the

new weakness in the analyzed code. Once the database is updated, the analyzer can

D5.5 Security Analysis of EDDIs

Page 10 Version 1.0 5 July 2023

Confidentiality: Public Distribution

start checking for matches to all target code with no limitations. On the other hand,

new tests need to be created for identification of new vulnerabilities. Although

updating of the vulnerability database is easier, there will be always complex

vulnerabilities that could not be detects by static analyzers, such as the lack of

auditing or encryption.

According to Gomes et al. [3], static code analysis is divided into i) Manual Review,

and ii) Usage of automated tools. The former consists of a series of phases including the

actual implementing of the code, the self-review, the walkthrough, the peer review, and

the inspection and audit. During self-review, the programmer tries to spot code errors on

its own. The walkthrough is the phase during which the programmer presents their code

to an audience. During peer review, a colleague of the programmer reviews the code.

Finally, a party of evaluators review the code during the inspecting and audit phase.

This way of code analysis is time-consuming, while it requires the reviewers to be

aware of the type of error they are going to try to find.

On the other hand, the usage of dedicated tools for the aforementioned task, can

produce results much faster, without the need for high level of expertise from the tool

operators. However, expertise is needed from the authors of the rules that are going to

be used by the automated tools for the security problem detection. A tool needs a set of

rules able to detect a large range of security problems to be considered effective.

Gomes et al. presents the advantages and disadvantages of the static code analysis

compared with the dynamic way of detecting code security problems. Results of

dynamic analysis cannot be generalized due to the set of inputs that were used for their

production. Used input most probably does not represent all possible program

executions. On the contrary, the results of a static analysis are able to describe in an

accurate way the target program‘s behaviour, since they are input- and execution

environment- agnostic. A very useful advantage of the static code analysis is that it can

be conducted in the very early stages of the code production, forcing it to be reliable and

lees prone to errors.

Authors in [4] provide a list of types of problems that static code analyzers can detect:

syntactic problems, unreachable source code, undeclared variables, non-initialized

variables, non-used functions and procedures, variables used before initialization,

nonuse of values from functions, wrong use of pointers.

A taxonomy of static code analysis tools is presented in [5]. The authors tried to classify

the available tools using a taxonomy tree. The categories of the tree where created based

on the input that the tools accept, the number of their releases per year, the supported

languages, the searching technologies, the set of supported rules, the tool

configurability, the rule extensibility, the tool availability, the user experience factor,

and finally, the way the search results are presented. The created taxonomy tree can be

seen in Figure 1.

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 11

Confidentiality: Public Distribution

Figure 1: Taxonomy tree of static code analysis tools [5]

Static code analysis tools seem a very promising solution that can support automatic

detection and being scalable at the same time. However, how effective are they? This is

the question that authors in [6] tried to answer. They present an empirical evaluation of

the ability of static code analysis tools to detect security vulnerabilities. The Juliet

benchmarking test suite was used for the evaluation of three commercial static code

analysis tools. Juliet test suite consists of many sets of synthetically generated test

cases; each set covers only one kind of flaw documented by the Common Weakness

Enumeration (CWE). The evaluation methodology included 6 steps and according to the

results, 27% of C/C++ vulnerabilities and 11% of Java vulnerabilities were missed by

all three tools. Some vulnerabilities were detected by only one or combination of two

tools; 41% of C/C++ and 21% of Java vulnerabilities were detected by all three tools.

This conclusion suggests that static code analysis could leave a number of

vulnerabilities undiscovered.

A comparison among three more static code analysis tools was conducted in [7]. Fortify

SCA, Splint, and Frama-C were compared by analyzing their performance when

checking a demonstration code. The demonstration code, was originally error free but

later some errors were introduced, with annotations. The introduced errors included

buffer overflow, memory handling, dereference errors, and control flow errors.

According to the results, Frama-C was able to discover all the errors, however, giving at

the same time many false positives. Splint missed some of the errors but was easier to

adopt. Finally, Fortify SCA missed at least one error, but produced no false positives.

Additional conclusions are that static code analyzers can be useful by removing errors

but their output needs be further analyzed and be understood by the tool users to avoid

unwanted consequences. tools based on annotations have good potential but demand

more of their users.

Six different static analysis tools are described and compared in [8]. The selection of the

tools has been made based on the familiarity of the authors with them and their

popularity and wide adoption. The selected tools are Better Code Hub, Checkstyle,

Coverity scan, FindBugs, PMD, and SonarQube. According to their findings, false

positives is the main issue of all participating tools. That affects the overall precision

that seems to range from 18% to 57%. Noticeable exemption is Checkstyle with

D5.5 Security Analysis of EDDIs

Page 12 Version 1.0 5 July 2023

Confidentiality: Public Distribution

precision 86%. However, the majority of the its rules are related with documentation

and not functional parts of the code. Moreover, it seems that the detection agreement

among the different tools is low. The highest percentage of agreement between two

tools is just 9.378% (FindBugs - PMD).

Better Code Hub was a well-known static analysis tool for code quality assessment.

However, it is not available any more. The analysis was done through the website‘s

API, which used to analyze the repository from GitHub and other popular version

control systems, based on ten guidelines. These guidelines were derived from industry

best practices and used to cover various aspects of code quality, including

maintainability, testability, simplicity, and modularity. The 10 Guidelines for Better

Code, upon which Better Code Hub was based, were: Write Short Units of Code, Write

Simple Units of Code, Write Code Once, Keep Unit Interfaces Small, Separate

Concerns in Modules, Couple Architecture Components Loosely, Keep Architecture

Components Balanced, Keep Your Codebase Small, Automate Tests, and Write Clean

Code. Each guideline used to correspond to a Better Code Hub rule. The rules were

grouped in 3 types: RefactoringFileCandidateWithLocationList;

RefactoringFileCandidate; and RefactoringFileCandidateWithCategory, and 3 severity

levels: Medium; High; Very High. The compliance with the above guidelines could be

measured on a scale from 1–10 based on the results. The overall analysis of the target

code was done against heuristics and popular coding conventions, providing a view of

the health of the code macroscopically.

Checkstyle is another popular static analyzer that evaluates Java code quality. Google

Java Style and Sun Java Style are two different configurations for code assessment

along with customized configuration files. It can be integrated with Ant or be used as a

command line tool. Additionally, Checkstyle can be integrated into popular integrated

development environments (IDEs) like Eclipse, IntelliJ IDEA, and others, providing

real-time feedback during development. The error detection is based on 173 rules

grouped in 14 types: Annotations, Block Checks, Class Design, Coding, Headers,

Imports, Javac Comments, Metrics, Miscellaneous, Modifiers, Naming Conventions,

Regexp, Size Violations, and Whitespace. Moreover, there is a categorization based on

the severity levels: Error, Ignore, Info, and rule.

Coverity scan is an open-source static analysis tool, developed by Synopsys. A public

API is used for submission of code builds to a server for assessment. The source code

can be written in various programming languages, including C, C++, C#, Java, and

JavaScript. The tool detects defects and vulnerabilities that are grouped by categories

such as: resource leaks, dereferences of NULL pointers, incorrect usage of APIs, use of

uninitialized data, memory corruptions, buffer overruns, control flow issues, error

handling issues, incorrect expressions, concurrency issues, insecure data handling,

unsafe use of signed values, and use of resources that have been freed. The analysis that

is conducted includes the examination of all the possible paths the program may take.

The classification of the rules is done in three levels: Low, Medium, and High.

FindBugs is another static analyzer for Java bytecode. A GUI is available for

conducting the analysis of the code, based on bug patterns. These patterns are the result

of the followings: difficult language features, misunderstood API features,

misunderstood invariants when code is modified during maintenance, and garden

variety mistakes. The bug patterns are classified under 9 different categories: bad

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 13

Confidentiality: Public Distribution

practice, correctness, experimental, internationalization, malicious code vulnerability,

multithreaded correctness, performance, security, and dodgy code. They are additionally

ranked from 1 to 20, in four groups; the scariest, scary, troubling, and concern group.

PMD is also a static analysis tool for mainly Java, JavaScript, and Salesforce Apex. It

uses a set of rules for code quality assessment according to objectives such as unused

variables, empty catch blocks, unnecessary object creation, and more. The utilized rules

are classified under 8 categories: best practices, code style, design, documentation, error

prone, multi-threading, performance, and security. The violation of the rules is ranked

from 1 to 5 with 1 being the most severe and 5 being the least. There is also the

alternative of custom-made rules.

SonarQube is one of the most well-known static analysis tools for quality assessment.

There are two usage options; as a service by the sonarcloud.io platform or downloaded

and executed locally. A centralized dashboard is provided that allows for measuring,

analyzing and improving code quality. SonarQube reports Bugs that are reliability

problems, Code smells that are related to maintainability, and Vulnerabilities that are

security related problems. 413 rules are utilized for the code assessment and are

categorized based on their severity into Blocker, Critical, Major, Minor, and Info.

2.2 HASH VERIFICATION

―A cryptographic hash function is a one-way function that converts input data to an

arbitrary length and produces an output with a fixed length [9][10][11]‖. The output is

called "hash value" (Figure 2).

Figure 2: The basic form of a hash function [9]

The five properties that a hash needs to fulfill include:

1. The input string can be of various sizes; however, the output has a fixed length.

2. Output must be efficiently computed for any given data.

3. Be deterministic, meaning same input produces same output.

4. Data can be generated and returned from a hash value.

5. Small changes in the input data greatly affect the output hash (no correlation

between old and new hashes after any change).

[9] used hash algorithms in verifying the integrity and authenticity of certificate

information. Some of the conclusions of the paper are that hash functions can be used to

D5.5 Security Analysis of EDDIs

Page 14 Version 1.0 5 July 2023

Confidentiality: Public Distribution

verify the integrity and authenticity of certificate information, index data in a hash table,

and securely authenticate users without storing passwords locally.

Authors in [12] focus on the difficulty of applications that need hash to be able to

localize image tampering. In such a case, hash should be small but, at the same time,

must incorporate large amount of information about the original image. The paper

presents an image hashing method that addresses this difficulty, managing to detect and

localize tampering using a small signature (< 1kB). An image hashing method consists

of hash generation and verification. Hash generation includes a set of features, is

extracted from the image and a function that maps them to a bit sequence. During the

verification, a query image is used, a hash is created and then compared with the

original one. The proposed method, according to the authors, combines the advantages

of an exhaustive search based hashing and robust representation-based hashing

methods.

A software verification primitive is introduced in [13]. It is called Oblivious Hashing

and allows implicit computation of a hash value based on the actual execution of the

code. The proposed primitive tries to tackle disadvantages of mainstream techniques for

software integrity verification, such as code checksum. To mention one, code checksum

is able to verify only the static shape of the code, doing nothing about run-time attacks.

According to their evaluation, Oblivious Hashing produces much lower overhead, since

it hashes only critical expressions and not intermediate computations.

There a plethora of security services that take advantage of cryptographic hash

functions, such as achieving integrity and authentication, are presented in [14].

Verification of the integrity and authenticity of information is a fundamental for

computer systems and networks. Communicating over an insecure channel needs a

validation of the authenticity of the participants and the unmodified nature of the

information shared. Hash functions are also used in the digital signatures‘ context.

Signing the hash of a message, rather than the entire message, computational overhead

is reduced significantly. Moreover, Hash functions find application in user

authentication. Passwords can be stored as hash values. Every time a user logs in a hash

is calculated based on their password and compared with the stored one. In that way no

one can access the passwords, nor even system administrators. Another application of

Hash functions is digital time stamping, following the same logic. In the context of

session keys, hash functions can generate a sequence of keys used to protect successive

communication sessions. Starting from a master key, the hash function can be

repeatedly applied to provide session keys. Some more applications of Hash functions

include constructing block ciphers, index data in hash tables, perform fingerprinting,

detect duplicate data or uniquely identify files, serve as checksums to detect accidental

data corruption, and even generate random numbers.

3. SECURITY ANALYSIS OF SESAME EDDIS

The Executable Digital Dependability Identity (EDDI), an extension of the DDI

concept, is a model-based artefact that contains all the required dependability

information about a given system or component — such as safety and security hazards,

their potential causes, effects, and possible corrective actions, as well as safety

argumentation and information about the system architecture itself (D4.2 and D5.2).

They should also support any relevant dependability activities, whether that be safety

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 15

Confidentiality: Public Distribution

analyses, allocation of requirements, or synthesis of safety argumentation. Moreover,

EDDIs are fully executable at runtime, capable of communicating and adapting to

changing circumstances to help ensure continued safe and security operation.

EDDIs being executables should be treated differently in terms of security. As it was

mentioned in the introduction of this document, the active code execution, privileged

access requirements, complexity, distribution, and attractiveness to attackers of

executable files create the need for hardening techniques that can guarantee that no new

attack surfaces are offered and no newly introduced attack attempts can be conducted.

3.1 TOOLS USAGE AND DEVELOPMENT

The work conducted in the context of T5.4 focuses mainly on two of the

aforementioned techniques for ensuring secure executables (EDDIs in our case): static

code analysis and hash verification. Static code analysis allows for the source code

examination towards identification of potential vulnerabilities, bugs, and security

loopholes. Deficiencies in the structure, syntax and logic of the produced code can lead

to weaknesses and attacks from adversaries.

Additionally, we utilize hash verification, the process that ensures the integrity and

authenticity of executables calculating and comparing cryptographic hash values. The

goal of using this technique is to detect any modifications or tampering in the

executable files, providing an added layer of security.

We have already mentioned in this document a number of different techniques for

ensuring that executable files do not impose an additional security burden on the

personnel responsible for the system's security. The goal of focusing on specific

techniques is to acquire targeted and in-depth security knowledge on them towards the

provision of effective protection. We are aware though that it's still crucial to have a

holistic understanding of the whole set of available techniques, and incorporate them

into the code development workflows for a comprehensive code verification. Most of

these techniques complement each other to improve code quality and eliminate chances

for bugs and vulnerabilities. In any case, combination of techniques should be based on

the specific security requirements of the target system, taking under consideration costs,

benefits, and trade-offs.

3.1.1 Static code analysis

Τhere is a big boom in the static code analysis field in recent years, with production of

various new tools, which focus on different programming languages, development

environments, and specific requirements. The fact that there are numerous static code

analysis tools available today, with a range of different features and capabilities, drove

us to incorporate not only one but a set of those in the proposed technique for securing

SESAME EDDIs. Testing more than one static code analyzers allowed us to evaluate

and compare their features, accuracy, and performance, and choose the most suitable

ones for each particular case. The tools that are presented here are CheckStyle, IntelliJ‘s

native analyzer (Checkmarx), Qodana, and SonarQube.

3.1.1.1 CheckStyle

CheckStyle was already described in 2.1 as a Java dedicated code quality analyser that

focuses mostly on documentation and not on functional parts of the code. One of its

D5.5 Security Analysis of EDDIs

Page 16 Version 1.0 5 July 2023

Confidentiality: Public Distribution

strengths though is the fact that can be integrated into Integrated Development

Environments (IDEs), providing feedback even during the development phase of the

code. Since the IDE that was used by FORTH during the development of code for

different tools used in the SESAME security methodology was IntelliJ IDEA, we tried

to integrate CheckStyle with it and get feedback. Towards that goal, the CheckStyle-

IDEA plugin should be installed in IntelliJ. Figure 3 depicts the list of installed and

enabled plugins in the IntelliJ instance, in FORTH‘s premises.

Figure 3: Installing CheckStyle-IDEA to IntelliJ

Figure 4: CheckStyle report for "severities.java" file

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 17

Confidentiality: Public Distribution

After installing the corresponding plugin, the IDE must be restarted. The next step is to

right-click on the name of the target project and choose ―Analyze‖  ―Inspect code‖.

As it is depicted in Figure 4, in the corresponding ―CheckStyle‖ tap, in the IntelliJ user

interface, error messages are presented for each individual file. In our specific example,

―severities.java‖ seems to be associated with 8 such errors. The name of the file does

not match the default type patterns, unnecessary tab characters are included in the file, a

Javadoc comment is missing in three different locations, and finally, three of the

corresponding Java class variables are characterized as public, although they should be

private. There is a large set of files that is mentioned in the CheckStyle‘s feedback.

However, the variety of the errors is not large. Same errors are mentioned in most of the

included files.

3.1.1.2 IntelliJ’s native code analyser

Since we started the description of the code analysers with those that can be integrated

with IDEs, we should continue with the native code analyser of IntelliJ. Asking for code

inspection of a project, a report is created in the corresponding ―Problems‖ tab. This

time the reported errors are not limited to documentation. As it can be seen in Figure 5,

a great number of errors, warnings, weak warnings, grammar errors, and typos are

mentioned. What is really interesting is the fact that some of them are related to known

vulnerabilities.

Figure 5: Report from the IntelliJ's native code analyzer (checkmarx)

D5.5 Security Analysis of EDDIs

Page 18 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 6: Security warning from the IntelliJ's native code analyzer (checkmarx)

This is the case for the ―security‖ group of warnings (32 warnings and 157 weak

warnings are mentioned there). Figure 6 dives into one of them, under the ―Vulnerable

imported dependency‖ categorization. It seems that one of the dependencies of our code

is ch.qos.logbacklogback-classic:1.2.3 which is characterized as vulnerable and is

associated with CVE-2021-42550 known vulnerability. According to the National

Vulnerability Database (NIST), ―In logback version 1.2.7 and prior versions, an attacker

with the required privileges to edit configurations files could craft a malicious

configuration allowing to execute arbitrary code loaded from LDAP servers‖.

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 19

Confidentiality: Public Distribution

Figure 7: Configuration of the IntelliJ's native code analyzer (checkmarx)

Figure 7 shows how the produced report can be configured, including or excluding

report categorization groups. Moreover, the scope of the scan can be decided, the

severity of the detected issues, and which of them should be highlighted in the editor.

3.1.1.3 Qodana

Qodana is a static code analysis tool developed by JetBrains, which leverages advanced

static analysis techniques to detect potential issues, bugs, vulnerabilities, and code

smells in various programming languages. Its techniques include pre-defined rules

along with machine learning algorithms.

The installation instructions for Windows are presented in Figure 8. Then installation is

done with Scoop. After downloading the code, the creation of the qodana.yaml

configuration file follows. The scan command starts the code analysis process.

D5.5 Security Analysis of EDDIs

Page 20 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 8: Installation instructions for Qodana

By the end of the code analysis process, a web user interface is made available (Figure

9). Under the ―Actual problems‖ tab the number of the identified problems is mentioned

along with a number of categorization names. In this specific example, the majority of

the reported problems are considered of high severity, with a large subset of them to be

categorised as security problems.

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 21

Confidentiality: Public Distribution

Figure 9: Qodana web user interface

Figure 10 presents the detailed report of one of the identified code problems. The

problem was detected in the ―SecurityComponentApplication.java‖ file, is called

"‘public static‘ collection field ‗capecsIdentified‘, compromizsing security‖, is

categorised as a security problem, and its type is ―‘public static‘ collection field‖.

According to the Common Weakness Enumerator and the CWE-582: Array Declared

Public, Final, and Static specific weakness, declaring an array public, final, and static, is

not sufficient to prevent the array's contents from being modified. Although the ―final‖

Java constraint requires that the array object itself is assigned only once, it cannot

guarantee that no changes will happen on the values of the array elements,

compromizing the integrity of the application data.

D5.5 Security Analysis of EDDIs

Page 22 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 10: "public static" collection field "capecsIdentified" ", compromizsing security problem

3.1.1.4 SonarQube

SonarQube is yet another static analysis tool that we chose to use mostly due to its

popularity and range of supported languages. SonarQube offers static code analysis

capabilities for various programming languages, including Python, and Python is the

language that is used for the development of safety related parts of EDDIs. Moreover,

another characteristic that we wanted to demonstrate is the fact that it can be connected

with GitHub and other code hosting platforms for collaboration and version control.

SESAME already uses GitHub as a repository for miscellaneous project related

information, including code. Putting the code of all the created EDDIs under an

organisation and linking that organisation with SonarQube, seems a relatively easy way

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 23

Confidentiality: Public Distribution

to perform remote static analysis to the executable dependability decryptions of the

SESAME use cases.

Figure 11: SonarQube web available dashboard

Figure 11 depicts the welcome page of the SonarQube dashboard. At the top left side of

the page we see that SonarQube is connected with the ―staticAnalysis‖ project and the

―master‖ branch. According to the overview that is depicted in this figure, the ―Quality

Gate Status‖ is marked as ―passed‖. Moreover, 2 Bugs, 570 Code Smells, 1

Vulnerability, and 5 Security Hotspots are detected.

Moving to the ―Issues‖ tab, we can see more details about all the reported problems. In

Figure 12, we have selected the Bugs from the left side menu. Details about the two

identified Bugs are presented in the right panel. The first one is located in the

―GreetingController.java‖ file and is associated with the ―FileWriter‖ object. The

second is located in the ―DomParserDemo.java‖ file and is associated with the catching

of the ―InterruptedException‖ exception.

D5.5 Security Analysis of EDDIs

Page 24 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 12: SonarQube reported Bugs

We click on the first one, trying to reveal more information about the Bug. Figure 13

shows the page we are driven to. What is clear now, is at which line of code this Bug is

detected, under the ―Where is the issue?‖ tab. The ―Why is this an issue?‖ tab, depicted

in Figure 14, has even more information regarding the issue itself. The issue in this

example is that we a ―FileWriter‖ object to read a file, but we never close it. In fact, the

―close‖ call is included in the code but not in a ―finally‖ block as SonarQube indicates.

Additional information is available regarding the consequences of such an issue. An

application that does not properly close resources, will cause a resource leak, making

the application itself and the corresponding host to struggle.

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 25

Confidentiality: Public Distribution

Figure 13: SonarQube - "Where is the issue?" tab

Finally, the ―More Info‖ tab show the resources of the information that we saw in the

previous tabs. What is very interesting here is that among the resources the Common

Weakness Enumeration is included, linking the reported issues with known weaknesses.

In our example, the code issue of the ―FileWriter‖ is associated with CWE-459 and

CWE-772. According to the description of the CWE-459: Incomplete Cleanup

weakness, an application may not remove temporary or supporting resources after they

have been used. This is a not language-specific weakness that could lead to overflow of

the number of temporary files and create a denial of service problem. As a detection

method, automated static analysis is mentioned with high effectiveness. The second

weakness, CWE-772: Missing Release of Resources after Effective Lifetime, is similar

to the first one. According to its description, the allocation of resources without

releasing them can allow attackers to cause denial of service.

D5.5 Security Analysis of EDDIs

Page 26 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 14: SonarQube - "Why is this an issue?" tab

Figure 15: SonarQube - "More info" tab

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 27

Confidentiality: Public Distribution

3.1.2 Hash verification

There is a great number of tools that allow for creating a hash value for a given file and

even compare hash values for integrity checking; CertUtil, HashCheck, GNU Core

Utilities, HashTab, OpenSSL, QuickHash, Hasher, HashMyFiles, WinHasher,

PapidCRC, HashCheckup, GtkHash, Hashdeep, OpenHashTab, and Hashrat just to

name a few. In this non-exhaustive list there are tools that i) offer just a command-line

interface or a user-friendly graphical interface; ii) are dedicated to a specific operating

system or offer cross-platform adoption; iii) focus on specific hash algorithms or

support a wide range of them; iv) can integrate their result in the file properties dialog

or not; and v) offer just hash values generation or additional features such as file

comparison and batch processing.

This plethora of hash verification tools offers many choices to the end users based on

concepts such as platform compatibility, UI preferences, tool functionality, tool

development communities, and sector specialization. Platform compatibility defines the

operating system a tool is created for. Users could choose a tool that is compatible with

their preferred operating system. UI preferences include choices such as command-line

for simplicity and flexibility and graphical interface for user-friendly experience. Tool

functionality allows focusing on specific tool features such as a wide range of hash

algorithms, recursive hashing of directories, or integration with file managers. Tool

development communities is another reason for choosing (or rejecting) a tool. An active

community could offer an up-to-date documentation of the tool or even online support

though forums and direct communication. Finally, sector specialization is another

characteristic that differentiates tools. In the case of hash verification, there are hash

verification tools tailored for digital forensics, software development, or cybersecurity

purposes.

Towards fulfilling SESAME needs for hash verification we tested some off-the-shelf

tools dedicated to different operating systems. However, we have taken the initiative to

develop our own version of a hash verification tool using Python. By doing so, we have

more control on the overall verification process and we are able to create a highly

customizable tool, which can be easily adopted from the individual SESAME use cases.

Moreover, creating our own tool, enhanced our understanding and familiarization with

the hash creation and verification process. Another reason for developing our own tool

is our intention to update and enhance it whenever it is necessary to keep up with

security standards and newly discovered software vulnerabilities.

Figure 16 presents how such a tool could be used in an EDDI development/deployment

workflow. The goal is the verification to be executed on the robot just before the

execution of an EDDI. In that way, we will be sure that the EDDI to be executed is not

tampered with in any way.

D5.5 Security Analysis of EDDIs

Page 28 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 16: Hash Verification tool in the EDDI workflow

Listing 1 below presents a Python script with a function that calculates a hash value for

a given file (calculate_hash), and a second one that compares pairs of hash values

deciding if they match or not (compare_hash). The ―calculate_hash()‖ function accepts

two parameters, a path to a target file and a list of hash algorithms. It reads the file in

binary code and in chunks to handle large files in an efficient way. The chunks are 4096

bytes in size. It then calculates a hash value for each of the given algorithms

(hash_object.update), retrieving the hexadecimal representation of it

(hash_object.hexdigest). At the last lines of the function, the hash values are stored in a

dictionary where keys are the algorithm names and values the calculated hash values.

The ―file_path‖ variable is used for defining the path of the file to be used for the

creation of the hash values, while the desired hash algorithms are mentioned in the

―hash_algorithms‖ list. According to the presented implementation, the desired hash

algorithms must be supported by the ―hashlib‖ module in Python, part of the Python

Standard Library. It provides various hash functions for calculating hash values for

string or binary data, such as MD5, SHA-1, and SHA-256. The functions that ―hashlib‖

module offers include ―new()‖ to create a hash object for a specific algorithm,

―update()‖ method to feed data into the created hash object, and ―hexdigest()‖ to

retrieve the hash value in a hexadecimal format, readable by humans. Moreover, these

―hashlib‖ functions are a consistent way to interact with the available hash algorithms,

independently of which algorithm you choose.

import hashlib

def calculate_hash(file_path, hash_algorithms):

 hash_values = {}

 # Read the file in binary mode

 with open(file_path, 'rb') as file:

 while True:

 # Read the file in chunks to handle large files efficiently

 chunk = file.read(4096)

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 29

Confidentiality: Public Distribution

 if not chunk:

 break

 # Calculate hash values for each specified algorithm

 for algorithm in hash_algorithms:

 # Create a hash object

 hash_object = hashlib.new(algorithm)

 hash_object.update(chunk)

 # Get the hexadecimal representation of the hash value

 hash_value = hash_object.hexdigest()

 # Store the hash value for the algorithm

 if algorithm not in hash_values:

 hash_values[algorithm] = hash_value

 else:

 hash_values[algorithm] += hash_value

 return hash_values

def compare_hash(hash_values, pre_calculated_values):

 for algorithm, hash_value in hash_values.items():

 if algorithm in pre_calculated_values:

 if hash_value == pre_calculated_values[algorithm]:

 print(f"{algorithm}: Hash value matches the pre-defined val-

ue.")

 else:

 print(f"{algorithm}: Hash value does not match the pre-

defined value.")

 else:

 print(f"{algorithm}: Pre-defined value not found for compari-

son.")

Specify the file path and hash algorithms to use

file_path = 'path/to/file.txt'

D5.5 Security Analysis of EDDIs

Page 30 Version 1.0 5 July 2023

Confidentiality: Public Distribution

hash_algorithms = ['md5', 'sha1', 'sha256']

Calculate the hash values for the file using the specified algorithms

hash_values = calculate_hash(file_path, hash_algorithms)

Define the pre-defined hash values for comparison

pre_calculated_values = {

 'md5': '...',

 'sha1': '...',

 'sha256': '...',

}

Compare the calculated hash values with the pre-defined values

compare_hash(hash_values, pre_calculated_values)

Listing 1: Hash verification program in Python

The ―compare_hash()‖ function takes the calculated hash values (hash_values) and a

dictionary of calculated at some point in the past hash values (pre_calculated_values) as

input. The ―pre_calculated_values‖ are hash values that have be produced for individual

files, most probably during their creation or after a formation of a new version of them.

These values correspond to hash values calculated during the creation of EDDIs, in the

context of SESAME. The ―compare_hash()‖ function compares each calculated hash

value with the corresponding pre-defined value and prints whether they match or not.

The ―pre_calculated_values‖ of Listing 1 were stored in a dictionary. However, the goal

is, values like these to be stored in a central location, and to be accessed every time the

―compare_hash‖ needs to be called. Listing 2 below, is a REST API in Python, which

reads hash values from an SQLite database and serves them. If the database does not

exist, it creates a new one.

The ―create_database()‖ function is responsible for creating a SQLite database and a

table within it. Inside the ―create_database()‖, the ―sqlite3.connect()‖ function

establishes a connection to the database. The ―DATABASE‖ variable defines the path

or the name of the database file. The ―sqlite3.connect()‖ function returns a connection

object (―conn‖). The next code line creates a cursor object that is used to execute SQL

statements and interact with the database.

An SQL element is then executed utilizing the cursor‘s ―execute()‖ method. The SQL

statement creates a table named "hashes" if it doesn't already exist. The table has two

columns: "algorithm" and "hash_value". The "algorithm" column is designated as the

primary key of the table.

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 31

Confidentiality: Public Distribution

What follows is calling of ―conn.commit()‖ method to commit the changes and save

them permanently in the database. The very last thing is to close the created connection

object (conn.close).

The ―populate_database()‖ function populates the SQLite database, created in the

―create_database()‖ function, with sample hash values. Once again, the

―sqlite3.connect()‖ function establishes a connection to the database, returning a

connection object. A cursor is also created.

After that, a dictionary named ―reference_hashes‖ is created. This dictionary includes

sample hash values for different algorithms. The algorithm names are the dictionary

keys and the hash values the corresponding dictionary values.

A loop follows then (―for‖ statement). This loop iterates over the items in the

reference_hashes dictionary using the items() method. The goal is to insert or replace

the hash values into the database. Inside the loop an SQL statement is executed with the

―execute()‖ method. The SQL statement uses the ―INSERT OR REPLACE INTO‖

syntax to insert a new row or replace an existing row in the "hashes" table. The

algorithm name and hash value are passed as parameters using placeholders (―?‖), and

the actual values are provided as a tuple ―(algorithm, hash_value)‖.

After the insertion of the hash values, the ―conn.commit()‖ is called to commit the

changes and save them permanently in the database. Finally, the code closes the

database connection using the conn.close() method.

from flask import Flask, jsonify

import sqlite3

app = Flask(__name__)

DATABASE = 'hashes.db'

def create_database():

 conn = sqlite3.connect(DATABASE)

 cursor = conn.cursor()

 # Create the table if it doesn't exist

 cursor.execute('''

 CREATE TABLE IF NOT EXISTS hashes (

 algorithm TEXT PRIMARY KEY,

 hash_value TEXT

)

 ''')

 conn.commit()

 conn.close()

def populate_database():

 conn = sqlite3.connect(DATABASE)

 cursor = conn.cursor()

D5.5 Security Analysis of EDDIs

Page 32 Version 1.0 5 July 2023

Confidentiality: Public Distribution

 # Sample reference hashes

 reference_hashes = {

 'md5': '...',

 'sha1': '...',

 'sha256': '...',

 'sha512':

'da6f853676df7c1713df62e155df594fe621033170f49bf9b0a64cecac89f3f0b99d6b345c6f

5da640471775847229373a2a5dfed322bf6e882011c062359746'

 }

 # Insert or replace the reference hashes in the database

 for algorithm, hash_value in reference_hashes.items():

 cursor.execute('INSERT OR REPLACE INTO hashes (algorithm, hash_value)

VALUES (?, ?)', (algorithm, hash_value))

 conn.commit()

 conn.close()

def get_connection():

 return sqlite3.connect(DATABASE)

def get_hashes():

 conn = get_connection()

 cursor = conn.cursor()

 cursor.execute('SELECT algorithm, hash_value FROM hashes')

 rows = cursor.fetchall()

 reference_hashes = {row[0]: row[1] for row in rows}

 conn.close()

 return reference_hashes

@app.route('/api/hashes', methods=['GET'])

def hashes_route():

 reference_hashes = get_hashes()

 return jsonify(reference_hashes)

if __name__ == '__main__':

 create_database()

 populate_database()

 app.run()

Listing 2: REST API in Python that reads Hash values from and serves them

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 33

Confidentiality: Public Distribution

Finally, the ―get_hashes()‖ function retrieves the hash values stored in the SQLite

database as a dictionary. Once more a connection to the database is established and a

cursor, from that connection, is created (―get_connection()‖, ―cursor‖).

Utilizing the ―execute()‖ method, an SQL statement is executed, which selects the

"algorithm" and "hash_value" columns from the "hashes" table in the database. The ―

fetchall()‖ method retrieves all the rows of the corresponding table. Each row represents

a reference hash, where the first item (―row[0]‖) is the algorithm name and the second

item (―row[1]‖) is the hash value.

What follows is the construction of a dictionary named ―reference_hashes‖. An iteration

over the rows obtained from the previous step and creates key-value pairs in the

dictionary, where the algorithm name is the key and the hash value is the value.

After the creation of the dictionary, the code closes the database connection using the

―conn.close()‖ method to release the resources. Finally, the ―reference_hashes‖

dictionary is returned, containing the retrieved reference hashes from the database.

D5.5 Security Analysis of EDDIs

Page 34 Version 1.0 5 July 2023

Confidentiality: Public Distribution

4. CONCLUSIONS

This deliverable presents to the reader the techniques and tools that are adopted for

ensuring that EDDIs remain secure despite their executable nature. A set of opensource

and custom tools is described, aiming to implement methodologies such as static code

analysis and hash verification.

Static code analysis allows for the source code examination towards identification of

potential vulnerabilities, bugs, and security loopholes. Hash verification is the process

that ensures the integrity and authenticity of executables calculating and comparing

cryptographic hash values. The goal of using this technique is to detect any

modifications or tampering in the executable files, providing an added layer of security.

We have adopted 5 individual static analysis tools, since each of them detects and

reports different types of issues. The combination of so heterogeneous tools allows for a

comprehensive solution that aims to improve code quality and eliminate chances for

bugs and vulnerabilities.

Regarding hash verification, we developed our own version of a hash verification tool

using Python. The goal was to create a customizable tool that could be easily adopted

by the different SESAME use cases.

 D5.5 Security Analysis of EDDIs

5 July 2023 Version 1.0 Page 35

Confidentiality: Public Distribution

5. REFERENCES

[1] Louridas, Panagiotis. Static code analysis. IEEE Software 23.4, pages 58-61, 2006.

[2] Bardas, Alexandru G. Static code analysis. Journal of Information Systems & Operations Management

4.2, pages 99-107, 2010.

[3] Gomes, Ivo, et al. An overview on the static code analysis approach in software development. Faculdade

de Engenharia da Universidade do Porto, Portugal, 2009.

[4] Brad Abrams Krzysztof Cwalina, Framework Design Guideline: Addison-Wesley, 2008.

[5] Novak, Jernej, and Andrej Krajnc. Taxonomy of static code analysis tools. The 33rd international conven-

tion MIPRO. IEEE, 2010.

[6] Goseva-Popstojanova, Katerina, and Andrei Perhinschi. On the capability of static code analysis to detect

security vulnerabilities. Information and Software Technology 68, pages 18-33, 2015.

[7] Mantere, Matti, Ilkka Uusitalo, and Juha Roning. Comparison of static code analysis tools. 2009 Third In-

ternational Conference on Emerging Security Information, Systems and Technologies. IEEE, 2009.

[8] Lenarduzzi, Valentina, et al. A critical comparison on six static analysis tools: Detection, agreement, and

precision. Journal of Systems and Software 198:111575, 2023.

[9] Anwar, Muhammad Rehan, Desy Apriani, and Irsa Rizkita Adianita. Hash Algorithm In Verification Of

Certificate Data Integrity And Security. Aptisi Transactions on Technopreneurship (ATT) 3.2: pages 181-

188, 2011.

[10] Goyal,V.,O'Neill,A.,&Rao,V. Correlated-input secure hash functions. In Theory of Cryptography Confer-

ence. Springer, Berlin, Heidelberg, pages 182-200, 2011.

[11] Lefebvre,F.,Czyz,J.,&Macq,B. A robust soft hash algorithm for digital images igntures. In Proceedings

2003 International Conference on Image Processing (Cat. No. 03CH37429), IEEE, 2003.

[12] Roy, Sujoy, and Qibin Sun. Robust hash for detecting and localizing image tampering. 2007 IEEE inter-

national conference on image processing. Vol. 6. IEEE, 2007.

[13] Chen, Yuqun, et al. Oblivious hashing: A stealthy software integrity verification primitive. Information

Hiding: 5th International Workshop, IH 2002 Noordwijkerhout, The Netherlands, October 7-9, 2002 Re-

vised Papers 5. Springer Berlin Heidelberg, 2003.

[14] Sobti, Rajeev, and Ganesan Geetha. Cryptographic hash functions: a review. International Journal of

Computer Science Issues (IJCSI) 9.2, 2012.

	1. Introduction
	1.1 Overview
	1.2 Deliverable structure

	2. Making executable files secure
	2.1 Static code analysis
	2.2 Hash verification

	3. Security analysis of SESAME EDDIs
	3.1 Tools usage and development
	3.1.1 Static code analysis
	3.1.1.1 CheckStyle
	3.1.1.2 IntelliJ’s native code analyser
	3.1.1.3 Qodana
	3.1.1.4 SonarQube

	3.1.2 Hash verification

	4. Conclusions
	5. References

