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Executive Summary

In this report, several model identification techniques are developed to be used at run-time by a robot to identify
the dynamic and kinematic model of itself or other robots in Multi-Robot Systems (MRS). This reflects the
robot capabilities, which improves the transparency, i.e., what a robot can do. This deliverable will present a
comparison of different model identification techniques ranging from model-based approaches like those one
based on dynamic observers (EKF,UKF) or mathematical fitting (SWLS) to data-driven approaches (ELM,
OSELM). It should be noted that these techniques are to be integrated into Tasks 2.3 and 2.4, i.e., to estimate
the state of an MRS at run-time and generate and track feasible trajectories, respectively. As a result, for
instance, the robot mispositioning is avoided and, thus, the safety is not compromised.

The model identification methods are developed in a generic manner to be applicable to any dynamic system.
Furthermore, the developed methods range from model-based approaches to data-driven ones, considering the
different use-case partners with different practical restrictions. More importantly, the on/offline variations are
derived, considering various types of operations. Finally, the methods are numerically evaluated on a high-
fidelity Unmanned Aerial Vehicle (UAV) model with time-varying mass. Finally, the concluding remarks are
presented, addressing the applicability of this example to the other types of MRS operational scenarios.
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1 Introduction

1.1 Overview

In this report, we present and document several model identification techniques for run-time detection of dy-
namic and kinematic models of robots developed in the context of Task 2.2. The original purpose is to have
these methods documented and analyze different aspects, aiming for a wide range of applicability to differ-
ent use-case partners. More importantly, the developed methods are presented in a generic manner to cover
different robot models. Also, the methods are derived mathematically, and the implementation algorithms are
provided.

In terms of the technical development of the SESAME project each robot of a Multi-Robot Systems (MRS)
should be mathematically modeled with the coupled dynamics to tackle planning, tracking, and estimation
tasks. More importantly, considering the computational burden, the model must be as simple as possible, e.g.,
linear model. However, regardless of the inexpensive computational burden of simple models, this imposes
model uncertainty and mismatch in practice. Accordingly, “kinematics of the MRS given the robot types as
well as the dynamics of the robot, with identification of the model parameters” is needed. Furthermore, as
mentioned in the proposal, it is required to develop identification techniques, which can be used at run-time by
a robot to identify the dynamic and kinematic model of itself or other robots in the team, to reflect capabilities
and capture changes in the kinematic and dynamic systems while operating. Regarding the project objective,
we use a simple model that can be extended to a more complex one and focus on the higher-level task and
corresponding requirements.

1.2 Intentions

This document is intended to be used as a guideline for model identification of robotic systems. In the context
of the SESAME project, the document will contribute to the SESAME Knowledge Base to improve the ro-
bustness and the capabilities of the MRS. Proper identification of the robotic system will increase the system’s
safety and security. It will also improve the overall performance of the robot and its capabilities to work close
to its optimal point as a consequence of a better self-awareness. The model identification component will be
adequately integrated with the rest of the task within the WP2 to exploit this capability in real-time, but also
the rest of the components of SESAME could be fed with the model information if needed.

1.2.1 Benefits to the project

Model identification techniques are to be used by the MRS to identify the robot kinematics and dynamics, ei-
ther online or offline. The necessity of various methods to be developed stems from different use-case partners’
needs, with different robot types, to be carefully addressed. Accordingly, the versatile and generic presenta-
tion of the methods enables different partners to choose a suitable technique considering the corresponding
needs and limitations. More importantly, the mathematical derivation of each method makes any potential
modification an easy task.

We seek novel as well as practical model identification techniques to be used and implemented in real-time to
identify variable robot dynamics. This presents the dynamic model with reflecting changes in the model while
operating. For instance, this happens in the vineyard, and the battery innovation center SESAME use cases.
In both, the system changes its mass and consequently its dynamic characteristics when it is spraying the pes-
ticide (mass loss) or accomplishing manipulation activities (mass gain and loss), respectively. Furthermore,
model information is essential in cases where the model-based approaches are adopted, e.g., trajectory plan-
ning, control design and system monitoring. Therefore, this technique will, eventually, feed the model-based
trajectory planning and tracking and the joint sensor fusion developed along with the SESAME project.
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1.2.2 Benefits to the industry

The most significant benefit of the presented model identification techniques to the robotic industry can be
entitled as the “fast and accurate identification of the robot kinematics and dynamics, with time-varying pa-
rameters”. This, consequently, enhances the navigation performance, as it requires information on the model.
Moreover, accurate model identification guarantees reliable system monitoring schemes. This is needed be-
cause much control, navigation, monitoring, and operation methods are model-based. However, these methods
are usually designed based on the nominal model of robots and, thus, fail to function satisfactorily if the robot
model is time-varying. Therefore, the model is required to be identified constantly and precisely. For ex-
ample, consider a spraying UAV, whose mass is time-dependent and variable. On the other hand, the mass
considerably affects the dynamic model of UAVs. So, it is required to have the mass variation identified.

1.3 Outcome

Considering the SESAME objectives, the final outcomes that this report delivers are summarised below.

i) Generic model: This is used to let the designed methods be easily modifiable for different applications.

ii) Variety of methods: Different model identification methods are designed and compared, which might be
used in different scenarios.

iii) Mathematical derivation: The designed methods are derived mathematically, which eases the application
on different use cases.

iv) Algorithm: The model identification methods are presented in an algorithmic manner.

v) Case-study analysis: The methods are implemented numerically to a case-study application, and the re-
sults are analyzed. Also, the implementation codes are presented.

1.4 Deliverable structure

This report initially presents the rationale behind the need for model identification in Section 2. Moreover,
a brief taxonomy of model identification methods is given in Section 3. Accordingly, satiable model identi-
fication methods are derived, considering the generic system representation, in Section 4. On this basis, the
designed procedure is given for all the methods. Then, as a case of study, a UAV model is elaborated in Sec-
tion 5 with time-varying mass. It is aimed to estimate the mass variation using the presented methods. The
results are given and analyzed in Section 6 to investigate the accuracy of each model identification method and
its computational cost. Finally, the concluding remarks are summarized in Section 7.
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2 Rationale

In robotics, state-of-the-art controllers, trajectory planners, and sensor fusion techniques use the kinematic and
dynamic information of the robot to optimize its behavior and maximize its performance (see Figure 1). This
figure shows the classical model-based architecture used in a robotics. In which, the controller, the sensor
fusion and the trajectory planner consider the dynamic model of the system to optimize system performance.
This is a widely extended architecture, for instance, Model Predictive Control (MPC) has gained broad interest
in the robotics community as a tool for motion control of complex and dynamic systems. The ability to
deal with nonlinearities and constraints has popularized this technique for many robotic applications, such as
quadrotor control [3], [4], autonomous racing [5], and legged locomotion [6], [7], [8]. These strategies enable
the control action optimization for a given cost function over a time horizon. MPC approaches are usually
combined with a trajectory generation phase. In [9], the authors studied the problem of finding dynamically
feasible trajectories and controllers that drive a quadrotor to the desired state in state space. A similar problem
was reformulated in [10]. In this deliverable, the idea is to solve the control and the planning problems together
using the model information.

Figure 1: Model-based approach scheme.

However, although model-based techniques provide optimal results when the used model is accurate, those
techniques could be very unsafe, unstable, and, for sure, not optimal if the used model is not properly formu-
lated, or inaccurate. In more complex systems or system that changes their mass or topology in the middle
of the operation, such as the spraying drone of Aero41, a robotic arm when grasping or releasing an object, a
morphing robot or even an aerial manipulator, the kinematic and the dynamic characteristics could change dur-
ing the operation. In these cases, an online model identification that can capture those changes in the dynamic
model is needed to maintain operational safety.

In this deliverable, different model identification approaches have been adapted or reformulated to capture
this specific phenomenon. In order to generalize the different methodologies, it is essential to remark that
the presented techniques as comprehensive and generic as possible, considering a variety of dynamic systems.
The critical aspect is to identify which is the level of abstraction required for the specific use case. This will
mainly depend on the robotic system and the inputs/outputs available. In some cases, we could model the
system with differential equations, for instance, following the classical equations of a rigid solid, or assume
that the system can be modeled as a first-order system, a second-order system, or others. This concept allows
the generalization of the model identification component (see Figure 2).

Figure 2: Model-based approach scheme with the online model identification component.
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D2.2 Model Identification

This document evaluates different model identification techniques that have been adapted to capture changes
in the dynamics online, calculating their maximum errors and their computational costs at run-time. It aims
to be used as a guideline by the robotics owners of SESAME to improve operational safety without losing the
optimality of model-based approaches.
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3 Methodology

The problem of model identification can be stated as identifying unknown parameters of the system or the sys-
tem model, given several samples. When a priori knowledge on system characteristics is available, then the
identification procedure can be enhanced. This knowledge acts as a set of constraints of solution space, in
which the problem in this new space is more tractable. This approach is successfully applied to estimate alge-
braic and dynamic affine systems from noisy samples by using reasonable assumptions on the noise properties
and the sampling process.

Dynamic systems identification depends on techniques developed by mathematicians, considering the manda-
tory association of a unique model to every available dataset, contaminated by noise, by introducing additional
information unrelated to the data, i.e. of prejudices. While such prejudices can be convenient in some practical
cases, it is, of course, very important to evaluate the family of solutions that can be found without introducing
prejudices or, at least, by introducing only mild ones.

To tackle identification, we generally have two approaches, namely, model-based and data-driven approaches.
Model-based approaches can also be subdivided into two sub-categories. On the one hand, a nominal model
derived from physics equations could be assumed as the equations that govern the state of the system. On the
other hand, system engineers usually use simplified nominal models like a first or a second-order model with
a time delay to represent the system dynamics with a higher level of abstraction. In both cases, we can use the
assumed dynamic model to observe the dynamics of the system to infer the dynamic variables or use a classical
mathematical fitting technique.

Indeed, a perfect model identification technique does not exist. However, although there might be some dis-
crepancies between the identified model response and the actual one, these techniques will allow us to have a
preliminary mathematical nominal model that behaves similar to our system. The well-known approaches are
a step-response approximation, extended and unscented Kalman filter, and various least square methods [11].

In contrast, in data-driven approaches, such as those on the basis of machine learning algorithms, the men-
tioned issues are avoided, just using the measurement data and fitting a regression model. The corresponding
well-known methods include Auto-regressive Exogenous Input (ARX), Auto-Regressive Moving Average with
Exogenous Input (ARMAX) [12], and Frisch Scheme for noisy measurement [13]. These methods generally
utilize the least square minimization and involve the matrix inversion operation, which might be numerically
expensive for the system with a large number of states and measurements. Moreover, there have been some
novel algorithms developed in the last decade to identify highly nonlinear systems. For instance, Extreme
Learning Machine (ELM) [14] is an approach for real-time fast prototyping of dynamic systems. The speed
of identification is a main characteristic of this approach. However, it might suffer from a heavy computa-
tional burden. Furthermore, the training data is required to cover almost the whole operational region of the
system to have accurate identification. On the other hand, some other approaches, e.g., Fuzzy Takagi Sugano
[15] and Adaptive Neuro-Fuzzy Inference System (ANFIS) [16] have shown salient features. The complexity
of algorithms is one main drawback of these approaches.

To this end, in order to capture different solutions for use-cases with different requirements, we present several
approaches covering both model-based and data-driven ones for online system identification problems in a
generic way for a generic dynamic system. The results are compared on a case study, that is, the estimation
of the time-varying mass of a UAV. Finally, all the results are discussed according to the performance of the
different algorithms in each specific situation.
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4 Generic System Identification Theory

4.1 Notation

A generic system is usually be formulated with differential equations as:

ẋ = f (x, u, p) + nx (1)

The measured variables follow the equation as:

y = h (x) + ny (2)

In previous equations, x is the state vector, u is control input, p is an unknown time-varying parameter to be
identified, y is the measured variables, f represents the dynamic of the system, h is the observation model, and
nx and ny represent zero-mean Gaussian noise.

In general, f is a function of the kinematic and dynamic characteristics of the system. However, in (1), f is
evidently a function of the parameter p, which varies with time. This, in turn, makes the implementation of
the system dynamics (1) impossible. Consequently, the model-based techniques, e.g., controllers and planners,
require the information of the variation of p in their derivations to perform satisfactorily. Otherwise, in those
use-cases in which the system changes its dynamic properties while operating, the safety of the system could
be compromised, and the assumed optimal process will not be optimal at all.

4.2 Model identification techniques

This section presents the formulation of suitable model identification techniques, categorized in Figure 3.

Figure 3: Model identification techniques studied in this deliverable. EKF: Extended Kalman Fil-
ter; MSCKF: Multi-State Constraint Kalman Filter; UKF: Unscented Kalman Filter; SWLS: Sliding
Window Least Square method; ELM: Extreme Learning Machine; OSELM: Online Sequential Ex-
treme Learning Machine.

An Extended Kalman Filter (EKF), a Multi-State Constraint Kalman Filter (MSCKF), and an Unscented
Kalman Filter (UKF) have been implemented to evaluate how good are the classical observers capturing
changes in the dynamic. To do so, we have included the dynamic variables as unknowns in the state vec-
tor as indirectly observable variables. Furthermore, the sliding Window Least Square (SWLS) method has also
been adapted to evaluate the performance of this purely mathematical fitting method to capture changes in the
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dynamic variables. Last, two data-driven approaches (Extreme Learning Machine (ELM) and Online Sequen-
tial Extreme Learning Machine (OSELM)) have been trained with the same purpose. The final objective is to
benchmark them and evaluate how these techniques perform the model identification task in different contexts
to help future robotics owners and developers decide which techniques they should use depending on their use
case and the behavior expected in their robots.

4.2.1 Extended Kalman Filter (EKF)

In estimation theory, the Extended Kalman Filter (EKF) is the nonlinear version of the Kalman filter, which
linearizes about an estimate of the current mean and covariance. Kalman filtering is an algorithm that provides
estimates of some unknown variables given the measurements observed over time. It has been demonstrating
its usefulness in various applications. This filter has a relatively simple form and requires small computational
power.This filter can also indirectly estimate observable variables over time. The main advantage of this filter
is the minimization of uncertainty effects on the estimated variables.

This filter can be adapted to observe the dynamics of the system. To do so, we assume that we obtain the state
vector xk at the time k and the corresponding covariance Pk. In the state vector, we could include indirectly
observable variables like the mass to estimate their values.

In the standard estimation process, the Kalman Filter takes the sensor measurements and a motion model as
input to calculate the state of the system. In the EKF’s case, the process evaluates the variables in the model, so
the EKF takes the measurements and control actions as the input to predict the system’s behavior. In the next
step-time, the algorithm will compare the prediction with the real input to recalculate the dynamic variables
and their uncertainty. In this way, it is able to estimate the dynamic of the system online.

So, according to the control input uk and the assumed dynamic equations (1), we could get the state vector
xk+1 at the time k + 1 propagating the model as follows:

x← x+ ẋdt
xk+1 = xk + f (xk, uk) dt

(3)

Next, we need to derive the error state dynamic model:

J = ∂f/∂x
δẋ = Jδx

(4)

J is the jacobian matrix of f with respect to x. After obtaining the matrix J , we can predict the covariance
Pk+1 at the time k + 1:

F = exp (Jdt)
Pk+1 = FPkF

T +Qdt
(5)

Where, Q is the preset covariance of state noise.

Q =

 σ2
x0

. . .
σ2
xdim(x)−1

 (6)

The i-th element of the main diagonal corresponds to the noise variance of the i-th state. All non-diagonal
elements are 0.

After receiving the measurement, we need to update the state vector and covariance:
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ŷ = h (x)
H = ∂h/∂x
S = HPHT +R
K = PHTS−1

dx = K (y − ŷ)
x← x+ dx

P ← (I −KH)P (I −KH)T +KRKT

(7)

H is the jacobian matrix of h with respect to x. R is the preset covariance of measurement noise.

R =

 σ2
y0

. . .
σ2
ydim(y)−1

 (8)

The i-th element of the main diagonal corresponds to the noise variance of the i-th measurement. All non-
diagonal elements are 0.

4.2.2 Multi-State Constraint Kalman Filter: MSCKF

The idea of this part draws lessons from [17]. First, define the following state:

x =
(
xI xC

)
xC =

(
xc1 · · · xcN

) (9)

Where, xI represents the head state,N represents the window size. We get xci through the clone of xI at
different times when we get measurements, and the corresponding covariance is:

P =

(
PII PIC

P T
IC PCC

)
(10)

P is the covariance matrix of x. PII is the variance of xI . PCC is the variance of xC . PIC is the covariance
between xI and xC . How to get P will be further described below. Similar to EKF, according to the control
input uk and dynamic model, we can get the state vector xk+1 at the time k + 1:

xI ← xI + ẋIdt (11)

Covariance Pk+1 at the time k + 1 :

F = exp (Jdt)
PII ← FPIIF

T +Qdt

P ←
(

PII FPIC

P T
ICF

T PCC

) (12)

where, Q is the preset covariance of state noise. J and Q have the same meaning as in EKF (see Section 4.2.1).

When receiving the measurement, we can do state augmentation, and the covariance needs to change accord-
ingly:

P =

(
I
∂xc
∂x

)
P

(
I
∂xc
∂x

)T

(13)

Measurement update is similar to EKF, except that we need to select the measurement in the whole window.

ŷ = h (x)
H = ∂h/∂x
S = HPHT +R
K = PHTS−1

dx = K (y − ŷ)
x← x+ dx

P ← (I −KH)P (I −KH)T +KRKT

(14)
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where, R is the measurement noise covariance of the whole window. H and R have the same meaning as in
Section 4.2.1.

4.2.3 Unscented Kalman Filter: UKF

Here we refer to [18], [19]. We assume that the state vector, x at the initial time is µ and the corresponding
covariance is

∑
.

x =
(
µ µ+ γ

√∑
µ− γ

√∑ )
(15)

γ is the tuning parameter. According to the control input and dynamic model, we predict the state vector and
covariance:

xi ← xi + ẋidt

µ←
2l∑
i=0

wmxi∑
←

2l∑
i=0

(xi − µ)wc(xi − µ)T +Qdt

(16)

Subscript i indicates column number. wm and wc are the corresponding weights. l is the state dimension. And
Q is preset covariance of state noise. It has the same meaning as EKF part.

After receiving the measurement, state and covariance update are as follows:

x =
(
µ µ+ γ

√∑
µ− γ

√∑ )
ŷ = h (x)
µy = ŷwm

S =
2l∑
i=0

(ŷi − µy)wc(ŷi − µy)
T +R

K =

(
2l∑
i=0

(xi − µ)wc(ŷi − µy)
T

)
S−1

dµ = K (y − µy)
µ← µ+ dµ∑
←
∑
−KSKT

(17)

Where, R is the preset covariance of measurement noise. It has the same meaning as EKF part.

4.2.4 Sliding Window Least Square: SWLS

The method of least squares is a standard approach in regression analysis to approximate the solution of
over-determined systems by minimizing the sum of the squares of the residuals made in the results of each
individual equation. The most important application is in data fitting. Applied to the online identification
of dynamic systems, the algorithm should consider the input and the output of several step-times to avoid
generating outliers due to the noise or spontaneous bad measurements of the sensors. Ideally, the least square
method would use all the data collected during the system operation. However, in real-time applications this
might not be applicable for two reasons. First, the amount of data accumulated could saturate the computational
resources available in the robot. Second, if the system changes its dynamic variables online, the information
collected in the past might not represent the robot’s state in a specific step-time. For this reason, this time, we
applied the Sliding Window Least Square method, in which the LS algorithm is applied with the data of the
last n step-times. In this way, we create a sliding window of data that is used within the algorithm. Similar
approach was previously presented in [1], [20].

The optimization variables in the sliding window are defined as follows:

χ =
(
x0 x1 · · · xn

)
(18)
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Where, n is the size of the sliding window to be tuned offline according to the system. Between the two
states of the sliding window, we will integrate the control input to establish their constraints. In order to avoid
repeated integration during optimization iteration, we define some following pre-integration items, such as
αbk
bk+1

, βbk
bk+1

, and γbkbk+1
.

Where, k and k + 1 represent the timestamp of adjacent states in the sliding window. b represents the body
frame.

Next, we need to derive the error state dynamic model:

δz =
(
δα δβ δγ

)
δzbki+1 = Fδzbki +Gn

F = ∂zbki+1

/
∂zbki

G = ∂zbki+1

/
∂n

(19)

Then we can propagate the covariance of pre-integration measurement:

P bk
i+1 = FP bk

i F T +GQGT (20)

The final optimization problem is:

min
χ

{
∥rprior∥2 +

∑∥∥∥rkP (xk)
∥∥∥2
Wk

P

+
∑∥∥∥rkD ( xk xk+1

)∥∥∥2
Wk

D

}
(21)

Where, rprior represents the prior constraint, rkP (xk) represents measurement residual, rkD
(
xk xk+1

)
rep-

resents dynamic residual. W k
P and W k

D are weight matrix, which can be regarded as the inverse of covariance
matrix.

The expression of rkP (xk) is straightforward:

rkP (xk) = y − ŷ = y − h (xk) (22)

The expression of rkD
(
xk xk+1

)
is as follows:

rkD
(
xk xk+1

)
=

 αbk
bk+1
− α̂bk

bk+1

βbk
bk+1
− β̂bk

bk+1

γbkbk+1
− γ̂bkbk+1

 (23)

The least square optimization problem is solved by Ceres1.

4.2.5 Data Driven Approach

Belonging to data-driven approaches, feed-forward neural networks have shown significant potential in many
fields to approximate unknown nonlinear functions using samples and provide models for various dynamic
systems that are difficult to handle using classical parametric techniques. Mathematically speaking, research
on the approximation capabilities has been focused on two aspects, i.e., universal approximation on compact
input sets and, approximation in a finite set of training samples.

In real applications, the neural networks are trained in a finite training set. For function approximation in such
a set, it has been shown that a single-hidden layer feed-forward neural network with at most N hidden nodes
and any nonlinear activation function can exactly learn N distinct observations [14].

Traditionally, the parameters of networks need to be tuned, and, thus, there is a dependency between different
layers of parameters, i.e., weights and biases. For past decades, the gradient descent-based learning method
has been used in various networks. It has been shown that the learning speed of feed-forward neural networks
is generally slow, which causes a significant issue for practical application [21]. The reasons are

1http://ceres-solver.org/
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i) the slow gradient-based learning algorithms, and

ii) the parameters are tuned iteratively.

Therefore, it might take several hours, several days, and even more time to train neural networks using tradi-
tional methods. Moreover, the gradient-based learning method may converge to local minima, and different
steps may be required to resolve this issue. This further slows down the learning process.

Unlike these conventional approaches, ELM using single-hidden layer feed-forward neural networks chooses
the network parameters randomly and then analytically determines the output weights. This stems from some
simulation results on artificial and natural large applications in our work, i.e., it is not necessarily required to
adjust the input weights and biases initially in applications [21]. In [14], it has been shown that a network of
N hidden nodes with randomly selected input weights and biases can exactly learn N different samples if acti-
vation functions are infinitely differentiable. After the random selection of input weights and the hidden layer
biases, the network can be considered as a linear system and the output weights can be analytically determined
through a simple generalized inverse operation. Theoretically, ELM has superior generalization performance
(slightest training error) with fast learning speed. This provides the ability of fast online prototyping in terms
of online model identification.

4.2.5.1 Offline ELM To present the offline ELM structure, assume there are N arbitrary distinct samples
(xi, ti), for i = 1, ..., N , where xi = [xi1, . . . , xin]

T ∈ Rn is the available inputs vector, ti = [ti1, . . . , tim]T ∈
Rm is the target values vector. These samples are available offline for training the network. Also, the network
has Ñ nodes with activation function of g(.) : R → R which is infinitely differentiable. The ELM, modelled
as a single layer feed-forward network, is then constructed as

Ñ∑
i=1

βig(wi.xj + bi) = oj , (24)

for j = 1, ..., N , where wi = [wi1, . . . , win]
T ∈ Rn and βi = [βi1, . . . , βim]T ∈ Rm are the weight vectors,

connecting ith hidden node and input nodes. bi the bias of ith hidden node. wi.xj denotes the inner product of
wi and xj . Finally, oj is the output of the network. Theoretically, it is shown that there exist βi, wi and bi such

that
∑Ñ

i=1 βigi(wi.xj + bi) = tj , for j = 1, ..., N . These N equations can be encapsulated as

Hβ = T, (25)

where,

H(w1, . . . , wÑ , b1, . . . , bÑ , x1, . . . , xN ) =

 g(w1.x1 + b1) · · · (wÑ .x1 + bÑ )
...

. . .
...

g(w1.xN + b1) · · · (wÑ .xN + bÑ )


N×Ñ

,

β =

β
T
1
...

βT
Ñ


Ñ×m

,

T =

t
T
1
...
tTN


N×m

.

(26)

As g(.) is infinitely differentiable, it can be proven that required number of hidden nodes is Ñ ≤ N . then,
if we choose wi and bi are selected randomly for any intervals of Rn and R, respectively, according to any
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continuous probability distribution, then with the probability of one, the hidden layer output matrix H of the
network is invertible and ||Hβ − T || = 0. Also, given any small positive value ϵ, there exists Ñ ≤ N such
that for N arbitrary distinct samples (xi, ti), according to any continuous probability distribution, then with
probability one, ||HN×ÑβÑ×m − TN×m|| < ϵ [21]. Accordingly, the smallest norm least-squares solution of
ELM network, given N arbitrary distinct samples (xi, ti) for randomly generated wi and bi, is obtained as,

β̂ = H†T, (27)

where, H† = (HTH)−1HT is Moore–Penrose generalized inverse of matrix H . Therefore, the ELM algo-
rithm with offline training is presented in Algorithm 1.

Algorithm 1 Offline ELM
Require: Given a training set S = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, ..., N},

Step 1: Initialization
• Select activation function g(.), and hidden node number Ñ .
• Randomly assign wi and bi, for i = 1, ..., Ñ .

Step 2: Training
• Calculate the hidden layer output matrix H , using (26).
• Calculate the output weight β̂, using (27).

Step 3: Implementation
• Implement the obtained β̂ and selected wi and bi, for i = 1, ..., Ñ , online, using (25)

Since ELM adopts the square loss function in Algorithm 1, this means that it tends to force the margins of all the
training samples exactly equaling one from the perspective of margin learning theory, which is unreasonable
to some extent. Through solving a series of Regularized ELMs (RELMs). According to Bartlett’s conclusion
[22], the neural networks with the smaller norm of weights tend to suggest better generalization performance.
To realize the weight decay, based on Tikhonov regularization theory [23], the RELM is obtained as following
optimization problem [24].

argmin
β

1

2
||HN×ÑβÑ×m − TN×m||2 +

λ

2
||βÑ×m||

2, (28)

with scalar λ > 0 as the regularization parameter. The solution to the optimization problem (28) is obtained as

β̂ = (HTH + λIÑ )−1HTT. (29)

Therefore, in Algorithm 1, Step 2, instead of using (27), one can use (29).

4.2.5.2 Online Sequential ELM As it is obvious in Algorithm 1, the whole training data needs to be
available. However, in practice, this training data may be received gradually during the operation. Moreover,
there might be some situations that the user wants to retrain the network online. Therefore, it is reasonable to
modify this algorithm to be implementable online with the training process. As an alternative to Algorithm 1,
an Online Sequential ELM (OSELM) can learn data one-by-one or chunk-by-chunk, i.e., a block of data, with
fixed or varying chunk size, the output weights are analytically determined based on the sequentially arriving
data. furthermore, OSELM discards the data for which the training has already been done. This reduces the
chance of being over-fit to some data and, hence, improves the generalization.

Sequential learning algorithms have become popular for feed-forward networks nodes. Unlike other sequential
learning algorithms which have many control parameters to be tuned, OSELM only requires the number of
hidden nodes to be specified. Accordingly, OSELM is a versatile sequential learning algorithm in the following
sense.
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i) The training observations are sequentially (one-by-one or chunk-by-chunk with varying or fixed chunk
length) presented to the learning algorithm.

ii) At any time, only the newly arrived single or chunk of observations (instead of the entire past data) are
seen and learned.

iii) A single or a chunk of training observations is discarded as soon as the learning procedure for that partic-
ular (single or chunk of) observation(s) is completed.

iv) The learning algorithm has no prior knowledge as to how many training observations will be presented.

The batch ELM described previously assumes that all the training data (N samples) is available for training.
However, in real applications, the training data may arrive chunk-by-chunk or one-by-one (a special case of
chunk) and, hence, the batch ELM algorithm has to be modified for this case so as to make it online sequential.

Given a chunk of initial training set S0 = {(xi, ti) |xi ∈ Rn, ti ∈ Rm, i = 1, ..., N0} and N0 ≥ Ñ , if one
considers using the batch ELM algorithm, one can obtain the trained weight as

β̂0 = K−1
0 HT

0 T0, (30)

where,

K0 = HT
0 H0,

H0 =

 g (w1.x1 + b1) · · ·
(
wÑ .x1 + bÑ

)
...

. . .
...

g (w1.xN0 + b1) · · ·
(
wÑ .xN0 + bÑ

)

N0×Ñ

,

T0 =

 tT1
...

tTN0


N0×m

.

(31)

Suppose now that we are given another chunk of data S1 = {(xi, ti) |, i = N0 + 1, ..., N0 +N1} with N1

represents new measurements or observations. If we use the traditional ELM algorithm, we discard the β̂0 and
just find new weight β̂1, only using S1. In contrast, in the OSELM, we obtain β̂1 using both β̂0 and S1. This
can be formulated as

β̂1 = argmin
β

∥∥∥∥[H0

H1

]
β −

[
T0

T1

]∥∥∥∥ . (32)

H1 =

 g (w1.xN0+1 + b1) · · ·
(
wÑ .xN0+1 + bÑ

)
...

. . .
...

g (w1.xN0+N1 + b1) · · ·
(
wÑ .xN0+N1 + bÑ

)

N1×Ñ

,

T1 =

 tTN0+1
...

tTN0+N1


N1×m

.

The solution to this problem is

β̂1 = K−1
1

[
H0

H1

]T [
T0

T1

]
, (33)

with K1 =

[
H0

H1

]T [
H0

H1

]
. It is easy to show that

K1 = K0 +HT
1 H1,[

H0

H1

]T [
T0

T1

]
= K1β̂0 −HT

1 H1β̂0 +HT
1 T1.

(34)
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Accordingly,
β̂1 = β̂0 +K−1

1 HT
1

(
T1 −H1β̂0

)
. (35)

Following similar procedure, for (k + 1)th chunk of dataset, i.e. Sk+1 ={
(xi, ti) |, i =

∑k
j=0Nj + 1, ...,

∑k+1
j=0 Nj

}
, one can obtain that

Kk+1 = Kk +HT
k+1Hk+1,

β̂k+1 = β̂k +K−1
k+1H

T
k+1

(
Tk+1 −Hk+1β̂k

)
,

(36)

where,

Hk+1 =


g
(
w1.x∑k

j=0 Nj+1 + b1

)
· · ·

(
wÑ .x∑k

j=0 Nj+1 + bÑ

)
...

. . .
...

g
(
w1.x∑k+1

j=0 Nj
+ b1

)
· · ·

(
wÑ .x∑k+1

j=0 Nj
+ bÑ

)

Nk+1×Ñ

,

Tk+1 =


tT∑k

j=0 Nj+1

...
tT∑k+1

j=0 Nj


Nk+1×m

.

(37)

To avoid repetitive matrix inversion of K−1
k+1, by using Woodbury matrix identity we obtain K−1

k+1 =(
Kk +HT

k+1Hk+1

)−1
= K−1

k − K−1
k HT

k+1

(
INk+1

+Hk+1K
−1
k HT

k+1

)−1
Hk+1K

−1
k . By setting Pk+1 =

K−1
k+1,

Pk+1 = Pk − PkH
T
k+1

(
INk+1

+Hk+1PkH
T
k+1

)−1
Hk+1Pk,

β̂k+1 = β̂k + Pk+1H
T
k+1

(
Tk+1 −Hk+1β̂k

)
.

(38)

Now, the OSELM algorithm is obtained as follows.

Algorithm 2 OSELM
Require: dataset Sk, k = 0, 1, . . . , k̄, arrive sequentially. Step 1: Initialization

• Select activation function g(.), and hidden node number Ñ .
• Randomly assign wi and bi, for i = 1, ..., Ñ .

Step 2: Training
• For S0, compute the hidden layer output matrix H0, using (31).
• Compute β̂0 = P0H

T
0 T0 with P0 =

(
HT

0 H0

)−1.
• Use dataset Sk+1, k = 0, 1, . . . , k̄, and compute β̂k+1, using (38).

Step 3: Implementation
• Implement β̂k̄+1, and selected wi and bi for i = 0, 1, . . . , Ñ , online, using (25).
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5 System Identification Application: UAV simulation case

In order to compare the results of the presented model identification techniques, we will use a particular case
of study that aims to cover the SESAME use cases in a generic way. In this case, the proposed system is a UAV
that can be commanded in angular velocities and thrust independently (4 DoF). By default, this is the lower
control loop accessible in the well-known and widely used DJI drones, and it is also a flight mode present in
the standard open source autopilots, Arducopter and PX4. The mass of the system will not be constant during
the flight (as it happens in the pesticide spraying operation). Additionally, initial errors have been introduced
in the model to observe if the system is able to converge to the actual mass value. This system has been chosen
due to its simplicity and its unique dependency on mass and inertia. The dynamic associated with the inertia
can be omitted because we are taking the inputs prior to and after this dynamic.

First, the notation, the system’s dynamic model, and the dataset generated are presented. Later, the capability
to capture the changes and the result of each model identification technique are presented and discussed in
Section 6.

5.1 Notation

Hereinafter, we will express the vector from A to B as rAB . The coordinates of this vector in the coordinate
system C is expressed as CrAB . We use quaternions to represent the rotation of rigid bodies, which is a non-
singular expression. For the detailed introduction and properties of quaternion, we refer to [25]. qBA denote
the attitude of a coordinate frame B with respect to frame A. The corresponding rotation matrix is R (qBA).
The coordinate transformation is expressed as follows:

Br = R (qBA)Ar (39)

According to quaternion algebra, We need to pay special attention to the addition of quaternion, q+ δ, and the
subtraction between quaternion and quaternion q1 − q2, because they involve the operation between manifold
and tangent space. Exponential mapping exp (•) maps a vector in tangent space to quaternion. Logarithmic
mapping does the opposite.

q + δ := q ⊗ exp
(
δ
2

)
q1 − q2 := 2 log

(
q−1
2 ⊗ q1

) (40)

Here, δ is a vector in tangent space. ⊗ represents quaternion multiplication.

5.2 Nominal quadrotor dynamic model with variable mass

As was aforementioned, the dynamic system that we want to model is a UAV that can be commanded in angular
rates and thrust (4 DoF). It is assumed that the estimator can provide us with the robot’s full pose. There, let
us define the world coordinate system as W , the geometric centre coordinate system as B, the centroid system
as M , and the IMU coordinate system as I . Frame B, M and I are coincident. According to rigid body
dynamics, we can get:

W ṙWB = W vB
W v̇B = 1

mR (qWB)T + g
q̇WB = 1

2qWB ⊗ ω
(41)

Where, T represents the thrust on the frame B and ω represents the angular velocity on the frame B. We don’t
know how the mass changes, so we assume:

ṁ = 0 (42)
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Next, we define the following state vector x :

x =


q
r
v
m

 (43)

Where q, r and v represents the attitude, the position and the linear velocities of the system respectively.

In order to simplify the notation, we delete the subscript in the dynamic equations, which will not affect the
understanding. We can get the angular velocity ω directly from IMU. However, we cannot measure the real
thrust, so we use the thrust command T d instead of the measured thrust T , which means that we have the
following assumptions:

T d ≈ T (44)

Next, we define our control input u as:

u =

[
T d

ω

]
(45)

At the same time, it is assumed that we can obtain the following measurements from the state estimator:

y =

 q
r
v

 (46)

This is reasonable. For example, Visual-Inertial Odometry (VIO) system can output such high-frequency
measurements. Finally, we get the following system equation and measurement equation.

ẋ = f (x, u) + nx =


1
2q ⊗ ω

v
1
mR (q)T d + g

0

+ nx

y = h (x) + ny =

 q
r
v

+ ny

(47)

Where, nx and ny represent zero-mean Gaussian noise.
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5.3 Dataset

The idea in this part of the deliverable was to generate a populated dataset to assess the performance of the
different model identification techniques. Then, it was necessary to choose a control strategy to move the robot
following a specific path or trajectories. To do so, we will follow the work previously presented in [26], [4].
The dataset generation framework is, therefore, as the one presented in the Figure 4. We need to set the robot
dynamic model and reference trajectory with this architecture.

Figure 4: Dataset generation framework

The trajectory generation algorithm will further generate dynamically feasible trajectories according to the pre-
defined trajectory. An MPC control approach generates the optimal control input according to the hypothetical
dynamic model, measurement state and reference state. We use the actual dynamic model of the robot, the
current state and control input to obtain the subsequent state of the robot.

We simulated five quadrotor flight trajectories, namely "random", "loop", "lemniscate", "zigzag", and "square",
and five mass changes are simulated for each trajectory. To have a rich dataset, we have simulated each
trajectory 50 times, making a total of 1250 simulations.

The reference trajectory and mass change curve we designed are shown in Figure 5.

Figure 5: Left: Horizontal view (x-y) of the simulated trajectories; Right: Mass behaviour (y-axis)
during the time (x-axis) simulated for each trajectory
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Figure 6: Z direction of the simulated random trajectories

6 Results

6.1 Implementation details

These algorithm are implemented with C++. All the experiments are conducted on a laptop computer with an
Intel(R) Xeon(R) W-10855M CPU @ 2.80GHz, and 16 GB of RAM. Without any optimized acceleration.

6.2 Results of model-based methods

In order to compare the different techniques, We have calculated the mean value of the update time and the
Root Mean Square Percentage Error (RMSPE) of the different algorithms for each dataset for 10 randomly
selected experiments. RMSPE is defined as follows.

RMSPE =

√√√√ 1

n

(
n∑

i=1

(
ŷi − yi

yi

)2
)

(48)

Where ŷi is the estimated value and yi is the groundtruth value.

In the tables found at the bottom of Figures 7-11, the first column under the algorithm name represents the
update time in milliseconds, and the second column is RMSPE. Mass type 0-2 represent the mass change type
from left to right in the first row of the curve graph. Mass types 3-4 represent the mass change type from left
to right in the second row of the curve graph. Figure 7 to Figure 10 show the relevant results.

MSCKF particularization According to the formulation presented in Section 4.2.2 for MSCKF algo-
rithm, it is necessary to define the following state before applying the algorithm:

xI =
(
q r v m

)
xci =

(
qi ri vi

) (49)
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SWLS particularization For SWLS, the optimization variables in the sliding window are defined as fol-
lows:

xk =
(
qk rk vk mk

)
, k ∈ [0, n] (50)

Where, n is the size of the sliding window. We will integrate the control input between the two states of
the sliding window to establish their constraints. In order to avoid repeated integration during optimization
iteration, we define the following pre-integration items:

αbk
bk+1

=
∫ ∫ tk+1

tk
Rbk

bτ
Tdτ2

βbk
bk+1

=
∫ tk+1

tk
Rbk

bτ
Tdτ

γbkbk+1
=
∫ tk+1

tk
1
2q

bk
bτ
⊗ ωdτ

(51)

Where, tk and tk+1 represent the timestamp of adjacent states in the sliding window. b represents the body
frame.

The propagation process of the pre-integration items are as follows:

αbk
i+1 = αbk

i + βbk
i dt+ 1

2R
(
γbki

)
Tdt2

βbk
i+1 = βbk

i +R
(
γbki

)
Tdt

γbki+1 = γbki ⊗
(

1
1
2ωdt

) (52)

dt represents the time interval between two adjacent control input.

Next, we can derive the error state dynamic model by linearize pre-integration items:

δz =
(
δα δβ δγ δm

)
δzbki+1 = Fδzbki +Gn

F = ∂zbki+1

/
∂zbki

G = ∂zbki+1

/
∂n

(53)

The expression of rkD
(
xk xk+1

)
is as follows:

rkD
(
xk xk+1

)
=


αbk
bk+1
− α̂bk

bk+1

βbk
bk+1
− β̂bk

bk+1

γbkbk+1
− γ̂bkbk+1

mk+1 −mk


α̂bk
bk+1

= mk+1R
bk
w

(
pwbk+1

− pwbk − vwbkdt−
1
2gdt

2
)

β̂bk
bk+1

= mk+1R
bk
w

(
vwbk+1

− vwbk − gdt
)

γ̂bkbk+1
= qbkw ⊗ qwbk+1

(54)
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Loop trajectory Figure 7 shows the results obtained in the loop trajectory. These results show that all the
algorithms performed well enough and could identify the system changes fast and accurately. According to the
table, the faster algorithm is the EKF. This is an expected result because it is the lighter approach to compute.
For this operation, the best performance according to the RMSPE is the SWLS in most cases. However, it can
be observed how the EKF can overcome the SWLS method in the case in which the mass is decreasing and
growing multiple times. This is because the SWLS has a more significant delay in capturing this behaviour.

Figure 7: Mass estimation (y-axis [kg]) vs time (x-axis [s]) for loop trajectory
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Zig-zag trajectory Figure 8 presents the performance of the different algorithms during the zigzag trajec-
tory. The results are quite similar to the one obtained in the loop trajectories.Table results shows again that EKF
is the lighter and faster approach while the SWLS is the more accurate one in most cases. However, SWLS is
again unable to capture the behaviour of changing the mast abruptly several times and other approaches.

Figure 8: Mass estimation (y-axis [kg]) vs time (x-axis [s]) for zig-zag trajectory
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Square trajectory Figure 9 shows the results obtained during the square trajectory for the different mass
behaviours. These results are really interesting and promising because most drone-based applications of
SESAME will accomplish a square pattern. Again the EKF is the faster approach while the SWLS is the
more accurate.

Figure 9: Mass estimation (y-axis [kg]) vs time (x-axis [s]) for square trajectory
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Random trajectory Figure 10 presents the performance of the algorithm while following a random tra-
jectory. Although this part of the dataset was mainly created to enrich the training dataset of the data-driven
approaches, it can be observed that the model-based algorithm can adequately capture the changes introduced
in the dynamic of the system.

Figure 10: Mass estimation (y-axis [kg]) vs time (x-axis [s]) for random trajectory
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Lemniscate trajectory Figure 11 presents the results obtained during the lemniscate trajectory. Although
the results are quantitatively acceptable, the plots clearly show that the algorithms are not working as expected.
In this case, the main issue is due to the trajectory itself.

Figure 11: Mass estimation (y-axis [kg]) vs time (x-axis [s]) for lemniscate trajectory

The lemniscate trajectory demands many efforts from the control perspective, and the control actions are very
close to the limits of the robot. The trajectory is neither linear nor follows a constant rotational speed nor
linear speed. The control inputs are changing frequently and abruptly. The robotic system cannot follow
the references properly, and some of the required actions are not adequately followed by the controller. This
situation makes the model-based observers unable to accurately estimate the mass of the system. Figure 12
compares the control actions of a lemniscate trajectory with the ones of a loop trajectory. It can be observed
that the order of magnitude, the frequency and the smoothness of the input signals are very different in both
cases.
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Figure 12: Results for lemniscate trajectory

6.3 Results of offline ELM and OSELM

In this section, the results of offline ELM and OSELM are presented. The activation function is selected as
Sigmoid function, i.e., g(x) = 1/(1 + e−x). For offline training, we have randomly selected 5 datasets from
each trajectories and mass variation types. For different neurons number Ñ the results are presented. Also,
we have analysed different numbers of neurons and regularization parameter values of λ in Table 1. Also, the
effect of λ is analyzed in Table 2. Moreover, the different number of training datasets are considered in Table
3. Using these parameters, i.e., Ñ = 500 and λ = 0.00001, the results are illustrated in Figures 13-15 for
offline ELM and in Figures 16-17 for OSELM.

Evidently, both offline ELM and OSELM are able to estimate the mass variation accurately. This is obvious
considering the total RMSE. More importantly, a higher estimation variance is obvious using offline ELM. This
is because, in the offline ELM, the whole training dataset is used at once. Therefore, the training algorithm has
to minimize the error over a wider range of data. However, in OSELM, the dataset is fed sequentially, which
lets the training to learn the repetitive trends between the input data and the corresponding target values. It is
worth noting that, since the training of the network relies on the fact that there must be a meaningful relation
between the input and target datasets, offline ELM has poor performance for random trajectories, as illustrated
in Figure 14. This is even worse for OSELM and the estimation error is significantly high and, therefore,
the results are not presented here. As a result, the model-based approaches are recommended for the random
trajectories.
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Table 1: Offline ELM and RELM results for λ = 0.0000001 and 5 randomly selected datasets.
Training Time RMSE Norm of weights

RELM ELM RELM ELM RELM ELM
Ñ
50 3.0594 s 2.9783 s 5.6073% 5.5817% 6.4126×103 4.5661×104
100 2.9203 s 2.8903 s 3.6257% 3.4204% 2.3420×104 1.9392×104
300 3.1647 s 3.1154 s 2.3105% 2.0744% 2.6717×104 2.2691×105
500 3.4387 s 3.4709 s 2.2101% 1.8922% 2.6809×104 1.0978×106
1000 5.1501 s 5.2031 s 2.0948% 2.0035% 2.3237×104 8.9884×107

Table 2: RELM for various λ for Ñ = 500 and 5 randomly selected datasets.
λ Training Time RMSE Norm of weights
0.0000001 3.8071 s 2.1634 % 2.3441×104
0.00001 4.1647 s 2.5802 % 5.8101×103
0.001 4.1501 s 4.4006 % 1.0650×103
0.1 4.0520 s 6.8179 % 143.5273
0.3 3.9585 s 7.4042 % 100.8383
0.5 3.8273 s 7.8349 % 82.0590
0.8 4.0812 s 8.4250 % 64.8544
1.0 3.8565 s 8.5060 % 59.8437

Table 3: RELM for various number training datasets with Ñ = 500 and λ = 0.00001.
X (% of total datasets) Training Time RMSE Norm of weights
1 (2%) 0.6754 s 2.1162% 1.3895×104
3 (6%) 2.3554 s 2.1351% 2.1501×104
5 (10%) 3.5306 s 2.2240% 2.6017×104
7 (14%) 5.2201 s 2.1613% 2.7567×104
10 (20%) 7.6370 s 2.2374% 3.5137×104
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(a) (b)

(c) (d)

(e)

Figure 13: Offline ELM with lemniscate trajectory for (a) 1th, (b) 2nd, (c) 3rd, (d) 4th, and (e) 5th

type of mass variation. Vertical axis represents the mass variation in kilogram.
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(a) (b)

(c) (d)

(e)

Figure 14: Offline ELM with random trajectory for (a) 1th, (b) 2nd, (c) 3rd, (d) 4th, and (e) 5th type
of mass variation. Vertical axis represents the mass variation in kilogram.
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(a) (b)

(c) (d)

(e)

Figure 15: Offline ELM with zigzag trajectory for (a) 1th, (b) 2nd, (c) 3rd, (d) 4th, and (e) 5th type of
mass variation. Vertical axis represents the mass variation in kilogram.
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(a) (b)

(c) (d)

(e)

Figure 16: OSELM with lemniscate trajectory for (a) 1th, (b) 2nd, (c) 3rd, (d) 4th, and (e) 5th type of
mass variation. Vertical axis represents the mass variation in kilogram.
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(a) (b)

(c) (d)

(e)

Figure 17: OSELM with zigzag trajectory for (a) 1th, (b) 2nd, (c) 3rd, (d) 4th, and (e) 5th type of mass
variation. Vertical axis represents the mass variation in kilogram.
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7 Discussion

This deliverable has presented the work developed during the T2.2 of the WP2. This document aims to con-
tribute to the SESAME knowledge database showing how different model identification techniques can be
adapted to be executed in real-time and capture changes in the system dynamic.

As a final reflection and considering the presented results, we can conclude that selecting one model iden-
tification technique will depend on the robotic system and the specific operation. Quantitatively, the best
approaches have been the EKF, SWLS, and OSELM. Depending on the real-time requirements, the available
computational resources, the specific trajectories to be accomplished, and the possibility of having a previous
data-set, the robotic user could decide using this document as a technical guideline.

The model identification techniques presented along this task will be integrated with the rest of the components
developed in the WP2 to improve the safety and the security of a final multi-robot system. In this way, we aim
to adapt the collaborative trajectory planning and the trajectory tracking algorithms with model information
gathered and calculated in real-time. This will significantly improve the performance, robustness and reliability
of the overall system.

8 Supplementary Study on Environmental Interference

8.1 Introduction

The autonomous navigation of UAV in complex and unknown environment is crucial to expand the application
of UAV. And accurate system identification is the cornerstone of robust control and smooth planning of UAV.
We have introduced relevant online system identification techniques in the previous sections. However, these
techniques are only aimed at the model parameters of the UAV itself. Aerodynamic interference between UAV
and environment is ignored. During the mission, the UAV may fly through strong winds or have physical
interaction with the target (see Figure 18). Considering the external interference of UAV in the control and
planning framework of UAV will be helpful to achieve more robust control and safer planning [27, 28]. This
part will focus on the external force estimation of UAV.

Figure 18: Environmental interference, taken from [1].
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VIMO [29] is the first approach exploiting the external force within the framework of optimization based
visual inertial odometry (VIO) [20]. The thrust measurements are preintegrated as relative motion constraints
between key frames, refering to IMU preintegration [30]. However, the unknown external force is modeled
as a zero-mean Gaussian. So the estimator will be highly affected and even leads to failure of the system by
large or continuous external force. VID-Fusion [1] is an advanced version of VIMO. By exploiting the prior
knowledge of external force derived from IMU and thrust measurements, VID-Fusion achieve more accurate
external force estimation. However, the external force preintegration term between key frames is averaged to
approximate the force variable in the sliding window. This approximation introduces estimation error.

To accurately and efficiently estimate the external force, we adopt a Multi-State Constraint Kalman Filter
(MSCKF) [31] framework based on OpenVINS [32], a filter based VIO approach, which already shows supe-
rior computational efficiency compared with optimized based VIO approaches. Thrust and gyroscope measure-
ments are utilized to propagate the state variable. Accelerometer measurements and camera measurements are
used to update the state with respective frequency. The external force is updated with accelerometer frequency
without average approximation error. In the real-world experiments, the accuracy superiority of proposed ap-
proach would be demonstrated.

Key contributions of this work are summarized as:

• We propose an online external force estimator based on MSCKF, tightly fusing visual inertial measure-
ment and thrust measurement. To the best of our knowledge, we are the first to address this task using a
tightly coupled filter framework. In addition, our estimator does not depend on GPS data, which means
it can even be deployed in the exploration of extraterrestrial planets, such as Mars UAV [33, 34, 35].

• We evaluate the accuracy of the proposed algorithm with real-world datasets. Compared with the results
of SOTA [1], the accuracy of external force estimation has significant improvement. RMSE is decreased
over 50% for each sequence.

8.2 Problem Formulation

8.2.1 Notation

There, let us define the world coordinate system as W , the geometric centre coordinate system as B, the
centroid system as M , and the IMU coordinate system as I . Frame B, M and I are coincident. In the
following part, only I is used to refer to the body coordinate system of UAV.

Figure 19: Forces of UAV.

22 December 2021 Version 1.0
Confidentiality: Public Distribution

Page 33



D2.2 Model Identification

We use reference W (•) to represent a physical quantity in the coordinate system W . The position of the origin
of the coordinate system I in the coordinate system W is expressed as W pI . The velocity of the origin point
I in the coordinate system W is expressed as W vI . We use the unit quaternion to express the rotation of rigid
body [36]. I

W q represents the attitude of the coordinate system I with respect to the coordinate system W ,
and its corresponding rotation matrix is I

WR. [•]× is denoted as the skew symmetric matrix corresponding to a
three-dimensional vector. The transpose of a matrix is [•]T .

The force analysis of a UAV is shown in the Figure 19. The resultant force other than gravity and thrust is
named as external force. The mass normalized thrust and external force are denoted as Tm and Fext respec-
tively. These two forces are expressed in the body coordinate system.

8.2.2 State Vector

The MSCKF state vector includes the current robot state, N augmented historical pose clones and L augmented
features:

x =
[
xTI xTc xTf

]T
xI =

[
I
W qT W pTI

W vTI bTω bTa F T
ext

]T
xc=

[
xTc1 · · · xTcN

]T
xci =

[
Ii
W qT W pTIi

]T
xf=

[
W pTf1 · · · W pTfL

]T
(55)

Where xI is the current robot state, including the robot pose, velocity and the bias of IMU. xci is the augmented
robot pose, which is obtained by cloning the first two physical quantities xI at different camera times. N is
known as the sliding window size, a fixed parameter. The pose clones in the sliding window are used for the
triangulation of environmental feature points. W pfj is augmented feature, or SLAM feature [37, 38, 32].

8.2.3 Propagation

The nonlinear continuous-time process model of the system can be expressed as:

I
W q̇ =

1

2
Ω (ωm − bω)

I
W q

W ṗI = W vI
W v̇I = I

WRT (Tm + Fext) + g

ḃω = nbω

ḃa = nba

Ḟext = nF

(56)

Where,

Ω (ω) =

[
−[ω]× ω
−ωT 0

]
(57)

g is the local gravity vector. n[•] represents the zero mean Gaussian noise of [•]. xI is driven by angular
velocity measurement ωm and thrust measurement Tm.
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8.2.4 Accelerometer Update

Accelerometer measurement am can observe external force. The measurement equation is as follows:

am = Tm + Fext + ba (58)

Unlike VIMO and VID-Fusion, we update and optimize external force with accelerometer frequency.

8.2.5 Visual Measurement Update

We follow OpenVINS [32] for the technical details of visual update. Each time we receive a new image,
we first clone the latest robot pose and augment it into the state vector to track the camera pose. After the
state augmentation is completed, we check the sliding window size and marginalize the oldest clone state if it
exceeds N . The selected feature points are used to update the poses over the sliding window.

8.3 Real-world Experiments

To the best of our knowledge, in the UAV community, VID-Dataset [2] is the first and only dataset that contains
real-world visual-inertial measurement, thrust measurement, pose groundtruth and external force groundtruth.
We chose sequence 17 and 18, because only these two sequences have the groundtruth of external force. The
data collection platform is shown in the Figure 20. The external force of the UAV is dominated by the tension
force of the elastic rope, so the tension force measured by the force sensor can be regarded as the external force
of the UAV, namely Fext.

Figure 20: Left: Picture of experimental platform, taken from [2]; Right: Abstract diagram of exper-
imental platform.

The estimation results of Fext are shown in the Figure 21. The quantified RMSE results are shown in the Table
4. Compared with VID-Fusion, our method has significant accuracy improvement.

The trajectory estimation results are shown in the Figure 22. Our results are closer to the groundtruth. The
quantified absolute trajectory error (ATE) results are shown in the Table 5. Our method achieves better pose
estimation than VID-Fusion.
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Figure 21: Left: External force estimation results for sequence 17; Right: External force estimation
results for sequence 18.

Table 4: External force estimation RMSE (m/s2) of different algorithms (VID-Fusion, Ours) was
evaluated with different sequences of VID-Dataset.

Sequence VID-Fusion Ours Decrease
17 0.206 0.072 65.05%
18 0.160 0.074 53.75%

Figure 22: Left: Different views of the aligned trajectories for sequence 17; Right: Different views
of the aligned trajectories for sequence 18.

Table 5: ATE (m) of different algorithms (VID-Fusion, Ours) was evaluated with different sequences
of VID-Dataset.

Sequence VID-Fusion Ours Decrease
17 0.0456 0.0362 20.61%
18 0.0788 0.0499 36.68%
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8.4 Conclusion

In this work, a novel external force estimator for UAV is proposed to address the issue of unknown envi-
ronmental interference. Compared with SOTA, the estimation accuracy is significantly improved. Accurate
knowledge about external force would provide strong support for downstream applications, such as control and
planning [27, 28].
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