
Project Number 101017258

D6.7 Tools for Automated Quality Assurance of
EDDI-Supported MRS (Final Version)

Version 1.0
7 July 2023

Final

Public Distribution

University of York

Project Partners: Aero41, ATB, AVL, Bonn-Rhein-Sieg University, Cyprus Civil Defence, Domaine
Kox, FORTH, Fraunhofer IESE, KIOS, KUKA Assembly & Test, Locomotec,
Luxsense, The Open Group, Technology Transfer Systems, University of Hull,
University of Luxembourg, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
SESAME Project Partners accept no liability for any error or omission in the same.

© 2023 Copyright in this document remains vested in the SESAME Project Partners.

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Project Partner Contact Information
Aero41 ATB
Frédéric Hemmeler Sebastian Scholze
Chemin de Mornex 3 Wiener Strasse 1
1003 Lausanne 28359 Bremen
Switzerland Germany
E-mail: frederic.hemmeler@aero41.ch E-mail: scholze@atb-bremen.de
AVL Bonn-Rhein-Sieg University
Martin Weinzerl Nico Hochgeschwender
Hans-List-Platz 1 Grantham-Allee 20
8020 Graz 53757 Sankt Augustin
Austria Germany
E-mail: martin.weinzerl@avl.com E-mail: nico.hochgeschwender@h-brs.de
Cyprus Civil Defence Domaine Kox
Eftychia Stokkou Corinne Kox
Cyprus Ministry of Interior 6 Rue des Prés
1453 Lefkosia 5561 Remich
Cyprus Luxembourg
E-mail: estokkou@cd.moi.gov.cy E-mail: corinne@domainekox.lu
FORTH Fraunhofer IESE
Sotiris Ioannidis Daniel Schneider
N Plastira Str 100 Fraunhofer-Platz 1
70013 Heraklion 67663 Kaiserslautern
Greece Germany
E-mail: sotiris@ics.forth.gr E-mail: daniel.schneider@iese.fraunhofer.de
KIOS KUKA Assembly & Test
Panayiotis Kolios Michael Laackmann
1 Panepistimiou Avenue Uhthoffstrasse 1
2109 Aglatzia, Nicosia 28757 Bremen
Cyprus Germany
E-mail: kolios.panayiotis@ucy.ac.cy E-mail: michael.laackmann@kuka.com
Locomotec Luxsense
Sebastian Blumenthal Gilles Rock
Bergiusstrasse 15 85-87 Parc d’Activités
86199 Augsburg 8303 Luxembourg
Germany Luxembourg
E-mail: blumenthal@locomotec.com E-mail: gilles.rock@luxsense.lu
The Open Group Technology Transfer Systems
Scott Hansen Paolo Pedrazzoli
Rond Point Schuman 6, 5th Floor Via Francesco d’Ovidio, 3
1040 Brussels 20131 Milano
Belgium Italy
E-mail: s.hansen@opengroup.org E-mail: pedrazzoli@ttsnetwork.com
University of Hull University of Luxembourg
Yiannis Papadopoulos Miguel Olivares Mendez
Cottingham Road 2 Avenue de l’Universite
Hull HU6 7TQ 4365 Esch-sur-Alzette
United Kingdom Luxembourg
E-mail: y.i.papadopoulos@hull.ac.uk E-mail: miguel.olivaresmendez@uni.lu
University of York
Simos Gerasimou & Nicholas Matragkas
Deramore Lane
York YO10 5GH
United Kingdom
E-mail: simos.gerasimou@york.ac.uk

nicholas.matragkas@york.ac.uk

Page ii Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Document Control
Version Status Date

0.1 Document outline 2 May 2023
0.2 First draft 2 June 2023
0.3 Completed draft 20 June 2023
0.8 Final draft after review 29 June 2023
1.0 Completed QA version 7 July 2023

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page iii

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Table of Contents

1 Introduction 1

2 Simulation-Based Testing 2

2.1 Scope Of Simulation-Based Testing . 2

2.2 Architecture of Integrated Testing . 2

2.2.1 Testing Platform Interfaces . 3

2.2.2 DSL Definition for MRS . 4

2.2.3 Simulator-Specific Interfaces . 6

2.2.4 EDDI Runtime Interfacing. 9

2.2.5 New Package Structure and Custom Performance Metrics 9

2.2.6 Test Generation and GA Execution . 9

2.2.7 Simulation Results and Traces . 9

2.2.8 Subset Selection . 10

2.3 User Guide . 10

2.3.1 Setting Up The Environment - Required Libraries . 10

2.3.2 Installation Instructions . 11

2.3.3 User Guide . 11

2.4 Simulation-Based Testing Execution Example . 11

3 Hardening and Repairing of Deep Learning Components 18

3.1 Scope Of Hardening and Repairing Recommendations . 18

3.1.1 GENERATIVEREPAIR Tool . 18

3.2 GENERATIVEREPAIR Architecture . 19

3.3 User Guide . 20

3.3.1 Setting Up the Environment: Required Libraries . 23

3.3.2 Running the GENERATIVEREPAIR Tool . 23

3.4 GENERATIVEREPAIR Execution Example . 24

4 Conclusion 29

Page iv Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

List of Figures

1 Multi-Stage Quality Assurance Methodology developed for Task 6.5 3

2 Package diagram showing dependencies between packages 5

3 Package diagram showing dependencies between packages 5

4 Simulation interfacing for remapping in ROS. Circles illustrate the simulator components, the
cut rectangles illustrate the simulator variables, and the pentagon the added simulation-based
testing infrastructure . 7

5 KUKA interfacing with the physical simulation . 8

6 Evolution results, both final and intermediate following GA evaluation (stored in the Cam-
paignResultSets class) . 10

7 Generation steps for the SESAME simulation-based framework 12

8 Simulation-based testing methodology . 13

9 Testing Space Model for KUKA/TTS example . 13

10 Code generation by activating SESAME wizard . 14

11 The metric implementation for collision occurrence . 15

12 Example result sets for example experiment . 16

13 Extracting the model contents from the result set to process 17

14 SubsetSelection notebook which allows setting parameters, executing and visualising the sub-
set selection, and listing the chosen configurations . 17

15 Overview of the Hardening and Repairing Methodology @DesignTime 19

16 Class diagram for GENERATIVEREPAIR showing dependencies between components. 22

17 Parameters for configuring GENERATIVEREPAIR . 25

18 Examples of the repairing outputs. A set of synthetic images generated using Ran-
dom+Inpainting fuzzer. All these images are augmented using the same input seed. 26

19 Shell command to execute “repairing.py” script- 1 . 27

20 Shell command to execute “repairing.py” script- 2 . 27

21 Shell command to execute “repairing.py” script- 3 . 28

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page v

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Executive Summary

This document supports the prototype tools developed in Tasks 6.3 – 6.5 and provides information on the
tools developed. The prototype tools implement the requirements, principles, and architecture described in
deliverables D6.4 and D6.6. To this end, D6.7 reports on the interfaces and connectivities of the tools, and how
they fit into the associated methodologies.

The simulation-based testing section summarises the simulation-based testing process, and provides informa-
tion on the structure of the code. We describe the simulation-based testing toolkit, presenting the integrated
methodology, interfaces of various components, and a usage example.

Similarly, the section on repairing deep learning components, summarises the GENERATIVEREPAIR and de-
scribes the architecture of the developed tool. Furthermore, a usage example using the Grape Leaves dataset is
provided.

The document provides links to information for installing the developed prototype tools and information on
using these tools, complementing the information provided on the tools Github repositories.

Page vi Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

1 Introduction

This deliverable provides the final version of the quality assurance toolset, including quality assurance tools for
data-driven learning components, simulation-based testing tools for EDDIs, EDDI debugging and hardening
tools, and a digital twins technology. This toolset has been developed in the context of Tasks 6.1-6.6 and the
technological and scientific innovations have been presented in the other WP6 deliverables.

The simulation-based testing toolset is described in Section 2, which implements the methodologies and ar-
chitectures (presented in Deliverable D6.6 [14]) for integrated testing, beginning with simulation-based testing
and managing the transition between simulation-based testing and lab experimentation. Following a specifi-
cation of the scenario requirements, custom performance metrics and an EDDI, the chosen scenario can be
explored with simulation-based testing. We use a DSL to allow test engineers and system integrators to de-
fine the space of operations, and the parameters of the experiments to be performed. Our tool incorporates an
evolutionary experiment runner procedure that dynamically synthesises and executes experiments, performing
dynamically generated test campaigns, quantified with scenario-specific performance metrics. Following this,
we present a tool to select a subset of the output configurations discovered in evolution for physical testing.

The quality assurance tool for Data-Driven and Learning components is described in Section 3, which im-
plements the methodologies and architectures presented in deliverable D6.4 [18] (1) GENERATIVEFUZZER, a
coverage-guided fuzzing technique for test case generation; and (2) SAFETYREPAIR, a continual learning tech-
nique for repairing Deep Learning systems. Both tools are implemented and integrated into a self-contained
fuzz testing and repairing framework named GENERATIVEREPAIR.

GENERATIVEREPAIR is an extensible framework, implemented as a set of Python components. These com-
ponents allow test engineers and system integrators to customise the testing and repairing operations and pass
in parameters from the command line. Our quality assurance tool improves the robustness of Data-Driven and
Learning components, i.e., Deep Learning-based systems, through semantic data augmentation methods that
represent natural environmental patterns. In the following, we provide a comprehensive presentation of our
tools and give step-by-step usage examples.

This document is structured as follows:

• Section 2 describes the simulation-based testing toolkit, presenting the integrated methodology, the
interfaces of the testing toolkit, installation requirements, and a usage example

• Section 3 describes the hardening and repairing framework, its architecture, a detailed user guide, in-
stallation requirements, and a full execution example.

• Section 4 concludes this deliverable.

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 1

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

2 Simulation-Based Testing

2.1 Scope Of Simulation-Based Testing

This section presents an overview of the tools for the simulation-based testing components of SESAME, and
a brief description of the SESAME testing methodology together with a description of the interfaces provided
and usage information. The information provided in this section complements deliverable D6.6 [14].

Simulation-based testing enables investigating the capacity of a multi-robot system (MRS) to operate depend-
ably using a virtual environment [2, 3, 7, 19, 21]. Simulated MRS systems can be subject to reality gaps, being
significantly different in terms of physical features, modelling assumptions and response to transient faults or
interference [4, 20].

The requirements for the simulation-based testing are:

• Allow users to characterise the performance of the MRS in a flexible way, according to scenario-specific
metrics

• Inform the automated discovery of faults according to an algorithm that permits incremental improve-
ment of discovered configurations

• Devise a structured process to transition from simulation-based testing to physical testing

These requirements have been implemented in a toolset for simulation-based testing, which consists of a num-
ber of Eclipse-based projects and associated analysis tools that discover faults by simulation and select config-
urations for physical testing. The outputs of the toolset are result sets showing the most useful detected faults
according to the defined performance requirements, and configurations that can be passed through to physical
testing in order to determine any reality gaps between the lab system and performance testing.

2.2 Architecture of Integrated Testing

The overall methodology for the transition from simulation to physical testing is illustrated in Figure 1, which
comprises six distinct stages. The human symbol indicates those stages which involve the use of human
assessment or intervention (e.g., robotics and software engineers), and the gear symbol indicates automated
processing or code execution. The robotic arm symbol indicates the stages in the methodology which require
access to a lab environment and implementation of the robotic scenario in order to execute and assess it (which
are also emphasised with a blue background). The underlying conceptual and algorithmic details of these
stages are detailed in the appropriate sections in our deliverable D6.6 [14]. The technical implementation and
interfacing for each of the stages of the methodology are described below:

Step 1 Scenario Definition: Receives information from the scenario requirements, the EDDI specification and
ExSce. Provides a concrete set of quantitative metrics for performance monitoring in terms of metric
definitions, which will be fed into Steps 2 and 3. The fuzzing operations to be used in the testing of the
scenario will be selected here, and any operations that require custom operations will be setup in Step 3

Step 2 Preparatory testing: Uses gathered data from the system and the scenario-specific interface for the
simulator. During this step, the testing platform is used in passive monitoring mode. It will be necessary
to perform Step 3.3 on metric definition in order to setup the performance metrics. (If using the “Known
Fuzzing Tests” of Step 2, (documented in D6.6 [14]) it will be necessary to define these initial fuzzing
operations in order to test the system).

Step 3 Simulation-based testing: The evolutionary algorithms documented in D6.6 [14] are used to evolve
a population of tests. This uses the interfaces described in Section 2.2.1, namely the definition of
the performance metrics, the GA specification, and a concrete specification of the MRS (defined in
Section 2.2.2)

Page 2 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Figure 1: Multi-Stage Quality Assurance Methodology developed for Task 6.5

Step 4 Subset Selection: Provides the selection of the subset of scenarios explored under Step 3 for physical
testing. Uses the results stored in the output model file from the previous stage, with conversion by Java
into a CSV file. Subset selection is implemented in Python and provided as a Jupyter notebook, which
reads the CSV file and provides an interface to set the optimisation parameters (such as λ and maximum
cost). The notebook also provides visualisation of the chosen configurations in parameter space. Further
details of this process are given in Section 2.2.8

Step 5 Physical/Lab Testing: The testing platform will be used with the appropriate scenario-specific inter-
face to connect to the physical scenario. The testing platform will apply fuzzing and collect physical
performance metrics, using the set of configurations selected in Step 4. The output results of physical
testing (final metric values and metric traces) will be recorded by the platform, stored in the model in
order to support the comparison between simulation and physical testing in Step 6

Step 6 Reality Gap Assessment: Human assessment of metric results in the output model (containing the
experimental results). Recorded performance metrics values and metric traces generated in Steps 3 and
5 may also be used in low-level analysis of reality gaps. (The low-level analysis of reality gaps here
refers to analysing the time series of simulator variable or metric values in an attempt to discover the
causes of discrepancies between simulation and reality, in a similar manner to [4])

2.2.1 Testing Platform Interfaces

This section presents an overview of the implementation of the testing platform, its interfaces available for
connection to external components, and the structure of the DSLs used in interfacing to define the simu-
lation scenarios. The testing DSL is specified in D6.6 [14]. The code for the testing platform is avail-
able as open-source project, and is currently available at https://github.com/sesame-project/
simulationBasedTesting. The platform will be used in simulation testing mode in Steps 2 and 3, and
in physical testing interfacing in Step 5.

The simulation-based testing infrastructure is implemented as a set of Java projects and tooling integrated
with Eclipse, building upon open-source and widely-used model-driven engineering tools such as the Eclipse

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 3

https://github.com/sesame-project/simulationBasedTesting
https://github.com/sesame-project/simulationBasedTesting

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Modelling Framework1, Epsilon2 and Emfatic3. Apache Kafka4 and Flink5 are used to interconnect the MRS
simulator, the individual test runners, and the experiment runner that manages the experiments. Flink and
Kafka were selected as they provide a standardised and mature framework for stream processing, permitting
functional and stateful message transformations to implement fuzzing operations.

The simulation-based testing implementation currently supports Linux and Windows operating systems. On
Linux, shell scripts incorporating the Maven build tool 6 are used to recompile code components dynamically
generated during the execution of the experiments. Kafka provides the message bus support. On Windows,
Cygwin is used to provide a virtual Linux environment for the execution of the associated shell scripts, and the
Kafka environment is provided using a Docker container, as recommended for its execution on Windows.

The simulation-based testing implementation carried out so far is structured as several interdependent Eclipse
projects. All projects (except for the generator project) are Maven based, allowing their dependencies to be
automatically downloaded. A package diagram showing the dependencies between these projects is presented
in Figure 2. The purpose and structure of some of the important simulator-independent system projects is
summarised below:

uk.ac.york.sesame.testing.architecture: This project contains the ISimulator interface, which the users must
implement in order to interconnect an MRS simulator to the testing framework. This package is stored
under the package uk.ac.york.sesame.testing.architecture. In addition, it includes
several key data types for system generic events (EventMessage, MetricMessage and ControlMessage)
together with the associated serialisation and deserialisation code.

uk.ac.york.sesame.testing.dsl: We store the models of the simulation-based testing DSL involved in the
project. The current version of the Testing DSL described in deliverable D6.6 [14] is stored in the
Emfatic representation (under TestingMM.emf). The MRS DSL is contained in the package MRS under
this file. From this Java code representations of the associated classes can be generated by transform-
ing this to an Ecore file and using Testing.genModel. This allows Java code to manipulate the models
dynamically for new test generation and results processing

uk.ac.york.sesame.testing.generator This is an Eclipse plugin project which supports the generation of the
necessary code for SESAME experiments. Several code generators (implemented in Epsilon Generation
Language; EGL) are contained which produce Java code for launching test campaigns, together with
EGL generators for TTS and ROS middlewares for test execution, and generators for the implemented
fuzzing operations

uk.york.sesame.testing.evolutionary This package provides support for evolutionary experiments using the
JMetal framework [13], supporting population generation, mutation and crossover operators and inter-
facing with the testing model, adding the newly generated Tests to the model. When condition based
fuzzing is used, it also depends on support for JGEA [1]. This package stores the metrics communi-
cated back from the model-generated test runners back into the model under the relevant tests. It also
stores code for exporting the model information to be processed in the subset selection phase described
in Section 2.2.8.

2.2.2 DSL Definition for MRS

The information in the ExSce is used to define an MRS model that serves as an input to the testing platform.
A UML diagram of the MRS model is provided in Figure 3. The information in this is used to control the sub-

1https://www.eclipse.org/modeling/emf
2https://www.eclipse.org/epsilon
3https://www.eclipse.org/emfatic
4https://kafka.apache.org
5https://flink.apache.org
6https://maven.apache.org

Page 4 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Figure 2: Package diagram showing dependencies between packages

Figure 3: Package diagram showing dependencies between packages

scriptions to simulator variables, by specifying information about their data types and the logical structure of
the system in terms of transmitting and receiving nodes. The selected type of information and parsing method
also alters the internal operation of several fuzzing operations; for example, selecting the JSON ParsingMethod
when using ROS allows the use of structured variables, while within raw variables, the STRING parsing
method should be used. These MRS variables are referenced when specifying the testing model as defined
in D6.6 [14] (e.g., fuzzing operations are selected to operate upon a particular variable). Further information
about the MRS model structure and examples for KUKA- and ROS-based projects are presented in the User
Guide online at: https://github.com/sesame-project/simulationBasedTesting/blob/
main/documentation/userguide.md.

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 5

https://github.com/sesame-project/simulationBasedTesting/blob/main/documentation/userguide.md
https://github.com/sesame-project/simulationBasedTesting/blob/main/documentation/userguide.md

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

2.2.3 Simulator-Specific Interfaces

The SESAME testing platform provides an extensible interface for implementing new simula-
tor interfaces, allowing the simulation-based testing platform to be expanded to interface with
other MRS simulators. The architecture presents a Java interface, ISimulator.java in package
uk.ac.york.sesame.testing.architecture, which users must implement to connect their sim-
ulator with the provided infrastructure. Key methods related to MRS communications that must implement
this interface are presented below:

public Object connect(ConnectionProperties params) This method provides the code for connecting the mid-
dleware to the MRS simulator (e.g., for ROS, making a connection to the simulator via rosbridge). The sup-
plied parameters are used to configure the connection, for example, supplying the hostname and port for the
MRS connection. These parameters are configured in the MRS model definition in Section 2.2.2 (Figure 3).

public void consumeFromVariable(String varName, String varType, Boolean publishToKafka, String
kafkaTopic,. . .) The implementation of this method provides a mechanism for consuming the variables of
the robotic system by the testing platform. The first parameter is the name of the variable in the robotic system
that we need to consume, the second is its type. The third is used to define if incoming messages should be redi-
rected to Kafka (it should always be true in practical use, as Kafka is used internally for message processing).
The last parameter declares the name of the Kafka topic to receive the message.

public void publishToVariable(String varName, String varType, String message) The implementation of this
method provides the mechanism to publish a message back to a variable of the robotic system. The parameters
specify the variable name, its type and the message itself (as a String).

public void updateTime() In the testing platform, the only concept of time used is always the MRS simulator
time. Wall-clock time is only used in debugging and internal monitoring of latency during communication.
This allows the MRS simulation to potentially run at a higher speed than wall-clock time, if permitted by per-
formance constraints and configuration of the underlying MRS simulator. By implementing this method, users
provide the mechanism to update the timestamps in the architecture by collecting them from the underlying
mechanism of the MRS (e.g., for ROS, by monitoring the /clock topic).

public void stepSimulator() This method is available on an experiment branch of the repository “stepping-tts-
interface” for increasing determinism during repeated runs of the same configuration. It supports an alternative
approach in which simulation time can be advanced under testing platform control, in order to avoid timing
issues potentially caused by the MRS simulator operating independently of the testing platform. The step size
is set by providing a STEP_SIZE parameter during connection setup. Whenever stepSimulator() is called,
the simulation will advance by the given timestep. Further details are provided in the consideration of the TTS
simulator interface.

Runtime Simulator Interfacing On startup, the middleware configured for a particular test will make sub-
scriptions to the simulator (e.g., to obtain the topics selected for fuzzing and perform the man-in-the-middle
(MITM) approach for variable modification, and any information relevant to monitoring performance met-
rics to observe safety violations). This information is placed into an Apache Kafka queue named IN, and
stream transformations are applied to achieve the fuzzing modifications. The middleware also generates code
to receive from a Kafka OUTPUT queue, which transmits potentially modified messages back to the MRS
simulator.

ROS interface The ROS simulator models the system components as a graph of interacting nodes. Nodes
can publish and subscribe to topics in order to communicate with other robotic components. In the ROS
implementation, the term topic is used to denote a simulator variable as described in our DSL model. When a
test runner aims to manipulate the MRS internal state, the message flow between source and destination must
be intercepted. For example, when a subscription is made to variables published by simulator component A,
the simulation configuration must be modified to ensure that the original destination component B only listens
to alternative variables with OUT appended to their names. The middleware MITM mechanism will listen
to the original variable X, transform the messages according to the given fuzzing operation(s), and republish

Page 6 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

A BX

(a) Normal flow of information between components A and B
via variable X

A BX-OUTM/FEX

(b) Interfacing via the middleware for simulation-based test-
ing (OUTBOUND)

Figure 4: Simulation interfacing for remapping in ROS. Circles illustrate the simulator components,
the cut rectangles illustrate the simulator variables, and the pentagon the added simulation-based
testing infrastructure

the modified values as X-OUT. This is illustrated in Figure 4b. In order to support this remapping, system
testers must provide modified ROS launch scripts ahead of MRS execution, which have been altered in order
to contain the remapped names.

The SESAME simulation-based testing platform attempts to always use standardised interfaces wherever pos-
sible. On the MRS side, a ROS node must be present in the simulator for rosbridge7, which serves as the logical
interfacing module between the simulation-based testing platform and the MRS. Through rosbridge, the plat-
form can subscribe to ROS topic updates, triggering notifications when these subscribed topics are updated,
and publish new or edit existing topics.

The package uk.ac.york.sesame.testing.architecture.ros contains an interface to
ROS/Gazebo simulations (ROSSimulator), which implements ISimulator. Its simulation interface uses jros-
bridge, which provides a Java interface using the standard package ROSbridge upon the MRS side. Although
this ROS simulation interface via jrosbridge currently supports ROS1, jrosbridge has been tested internally
using ROS2, with successful receipt of messages8.

KUKA Interfacing. The TTS simulator-side interface for simulation-based testing is implemented as a gRPC
protocol server [8] to which our simulation-based testing middleware can connect. The gRPC server-side in-
terface hides the internal implementation of TTS simulator state, providing a message abstraction, so the simu-
lator side can receive standardised ROS-like messages. A protobuf protocol definition (SimLogAPI.proto) 9 is
provided in our SESAME repositories which can be converted into a Java API by the protobuf-maven-plugin.
This allows the protocol Java API to be updated dynamically whenever the protocol is updated, which sup-
ports convenient development, responding to changes made and ensuring the Java-side interface is consistent
with the protocol used by TTS.

In our KUKA use case, a heterogeneous topology is employed (Figure 5) in which the TTS simulator and other
components such as either Simit or PLC (programmable logic controller) are interconnected and communicate
at runtime. During simulation, Simit is used to implement the scenario logic, controlling the robotic joints
and actuators and reading sensor status to trigger actions. During physical testing, the PLC controls the real
robots in the scenario and handles responses to sensor events. Even in the physical implementation, the TTS
simulator is still required, since it may be necessary to perform computations for the performance metrics (such
as detection of collision events by 3D intersection), that cannot be assessed by physical sensors.

7http://wiki.ros.org/rosbridge_suite
8Note that as this is still a development version some issues with ROS2 interfacing may exist that could require

changes for message formatting for Stamped messages in order to successfully interface with ROS2; see https://
github.com/rctoris/jrosbridge/issues/33

9https://github.com/sesame-project/simulationBasedTesting/blob/main/uk.ac.
york.sesame.testing.architecture.tts/src/main/proto/SimlogAPI.proto

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 7

http://wiki.ros.org/rosbridge_suite
https://github.com/rctoris/jrosbridge/issues/33
https://github.com/rctoris/jrosbridge/issues/33
https://github.com/sesame-project/simulationBasedTesting/blob/main/uk.ac.york.sesame.testing.architecture.tts/src/main/proto/SimlogAPI.proto
https://github.com/sesame-project/simulationBasedTesting/blob/main/uk.ac.york.sesame.testing.architecture.tts/src/main/proto/SimlogAPI.proto

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Figure 5: KUKA interfacing with the physical simulation

In order to support the heterogeneous topology without requiring a distributed architecture (which would
present challenges, potentially, error-prone and unstable locking and update protocols), a single shared mem-
ory component has been developed. This component acts as a central point for state storage, and a single point
of connection for both the SESAME simulation-based testing platform and the EDDI.

On the testing framework side, a class TTSSimulator has been developed, as an implementation of the ISimu-
lator interface. Its connect method makes a connection to the simulator over a gRPC channel, creating block-
ing and non-blocking gRPC-Java stubs. The consumeFromVariable function creates a custom ROSObserver,
which subscribes and is notified when messages arrive from the channel. This ROSObserver connects to the
Apache Kafka internal input stream for the middleware, and pushes messages received there into this stream for
processing. The publishToTopic function creates a new PubRequest, and sets it to contain the given message,
before handing it off to be transmitted by the non-blocking stub.

The code for the TTS interface is available in uk.ac.york.sesame.testing.architecture.tts,
with the majority of code in this package being auto-generated from the gRPC protocol definition on instal-
lation. The TTS interface is currently being extended with a new stepping mechanism (in the “stepping-tts-
interface” Github branch) which can provide increased determinism. When this stepping interface is enabled,
configuration options should be set to activate the TTS simulation in a paused state, and simulation time will
only advance under the control of the testing platform. The middleware event processing loop ensures that
time is only advanced in discrete steps when the Kakfa OUT queue is empty, which ensures that all messages
sent over the man-in-the-middle (MITM) and due to be handled by the simulator have been processed before
advancing time. This avoids potential non-determinism caused by timing offsets between the testing platform
and MRS code execution (such as joint updates at critical points in path planning).

Other Simulator Interfaces. In simulators that provide external interfaces (such as over TCP/IP or message
bus protocols, or a plugin API) that allows runtime message monitoring/modification, it may be possible to in-
clude standardised interfacing component/plugins and modify the simulation configuration in order to deliver
messages over this MITM. If standardised interfacing protocols are not supported but source code is avail-
able, a custom connection endpoint can be implemented in the source code to which the testing platform can
connect (the latter is an approach used with the MOOS-IvP simulator, adding an ATLASDBInterface compo-
nent in our previous ATLAS project [9]). Attention must be paid to hardcoded variable names used throughout
the codebase, since it is important to ensure that recipient components use the fuzzed value received over the
MITM, not the original one. Regardless of the approach selected, it is then necessary to provide an implemen-
tation of the ISimulator interface. This will establish a connection to the simulator logical interface and define
functions to consume and publish messages over the defined custom protocol.

Page 8 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

2.2.4 EDDI Runtime Interfacing.

The EDDI acts as a runtime monitor above the safety concept, considering whether the MRS and associated
sensors can still guarantee that safety concept assumptions hold. The EDDI runs as a separate process and is
interconnected using the same mechanism of the underlying MRS. For example, in ROS, the EDDI would be
implemented as a ROS node, subscribing to topics for its input variables, and publishing back its decisions
on safety guarantees. In the KUKA case study, the EDDI is interconnected directly over gRPC to the shared-
memory interfacing component (Figure 5), subscribing to selected input variables and publishing back its
decision as a Boolean EDDI_SAFE variable. This common interface allows the testing platform to fuzz the
inputs to the EDDI, examining how its decision(s) may be impacted or distorted due to the fuzzing information
provided. The simulation-based testing platform can also be used to assess if the runtime EDDI is correctly
acting as a reliable runtime monitor, identifying the violations of the safety or security conditions it is intended
to detect.

2.2.5 New Package Structure and Custom Performance Metrics

The user is expected to invoke a new Eclipse Application, under the project uk.ac.york.sesame.testi
ng.generator. This will launch a fresh Eclipse instance, under which they can create a new project. Within
this project, users provide an instance of the SESAME Testing DSL, specifying the structure of the testing
space, as defined in D6.6 [14]. During simulation-based testing, metric templates and experiment runners
are automatically generated within this plugin project. The testing framework provides a plugin consisting of
a wizard with a single page, which can be accessed by right-clicking on the user’s newly generated project
and selecting “Generate SESAME Code”. The plugin provides the option to select the instance of the testing
DSL. The metric template consists of numerous method hooks the user can implement to define the metric
initialisation and processing in response to events. In order to implement these metrics, the user first needs to
copy these classes into a new package metrics.custom. Then, it is necessary to implement the needed
platform-specific metrics. System testers will implement the processElement1 method, which provides the
interface to specify the performance metric.

2.2.6 Test Generation and GA Execution

Both genetic algorithm implementations, the conventional and the new coverage tracking GA, are implemented
using JMetal, with the standard class available in NSGAII_ResultLogging and the coverage tracking/boosting
in NSGAII_ResultLogging_Coverage. These classes provide a slightly modified version of the conventional
NSGA-II [5, 13] algorithm modified for logging of intermediate state and debugging. When the new coverage-
tracking GA is specified, the nd4j library is used to track the percentage of implemented cells. Coverage
boosting can be activated by selecting a specific parameter in the Testing DSL under the NSGAIICoverage-
WithCells, useMutationEnhancingCoverage, that specifies a custom mutation operation.

2.2.7 Simulation Results and Traces

During the simulation-based testing with GA evolution, the output results (both the full population and non-
dominated results on the Pareto front) are stored under the campaign being executed. Instances of the Cam-
paignResultSet class of the DSL (illustrated in the Methodology section of D6.6 [14]) represent either the final
outcome of a particular campaign, or partial intermediate results obtained during its execution. This allows
the progress of the evolution to be examined as it is ongoing, as well as on completion. An enumeration (Re-
sultSetStatus) which is set to either FINAL or INTERMEDIATE, determines the status of a result set. For
example, in an evolutionary experiment, the set of Tests for a final result set, containing the name string NON-
DOM would contain the output Pareto front obtained during an experiment. These results can be browsed and
examined using the Exceed editor for the output model (Figure 6).

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 9

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Figure 6: Evolution results, both final and intermediate following GA evaluation (stored in the Cam-
paignResultSets class)

Result sets contain references to particular tests that comprise the results. Each test contains metric instances
that give the final values for the metrics defined in that testing campaign. The Exceed editor allows the output
metric results to be inspected. For additional convenience, an EGL script (files/resultsAnalysis/resultsAnaly-
sis.egl) is provided under the package uk.ac.york.sesame.testing.generator which can analyse
all the tests and produce a summary of results to the console. In addition to the final results, it may also be
useful to consider the time series of results, which may be useful, for example, when debugging or inspecting
non-determinism, or isolating reality gaps from these low-level time-series properties. The DSL definition al-
lows a FileResult to be added for a particular metric, which will then be automatically logged with the time
and metric value upon every update during simulation.

2.2.8 Subset Selection

The subset selection implementation is provided in Python, using among others the libraries networkx (for
storing the relationships between configurations as a graph) and matplotlib (for rendering). After select-
ing the model file and an executed test campaign, the model is processed to perform the dimensionality re-
duction and write out raw dimensional values to a CSV file. From this, a Jupyter notebook (available at
<GITHUB_ROOT>/notebooks/phytesting/SubsetSelection.ipynb) can be loaded which reads this information
and implements the subset selection algorithm described in D6.6 [14]. This allows interactively setting param-
eters such as λ and examining/visualising configurations selected for physical execution.

2.3 User Guide

2.3.1 Setting Up The Environment - Required Libraries

Dependencies for Linux

• Tested under Ubuntu Linux 18.04 (although later versions should work too)
• Apache Kafka / Zookeeper
• ROS installation (tested with ROS Melodic) - if using ROS interface - with rosbridge

Dependencies for Windows

Page 10 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

• Tested under Windows 10 - (It may be possible to run on Windows 7, although Windows 10 was used
for internal testing)

• Install Docker Desktop - since Kafka uses Docker on Windows
• Apache Kafka, Docker, JDK8 and JDK11
• Administrator access is needed
• Virtualisation enabled in the BIOS (may be defined as “Hyper-V”)

2.3.2 Installation Instructions

The installation instructions for Linux are located at the following location: https://github.com/
sesame-project/simulationBasedTesting/blob/main/documentation/INSTALL-
linux.md

The installation instructions for Windows are located at the following location: https://github.com/
sesame-project/simulationBasedTesting/blob/windows/README-windows.md

2.3.3 User Guide

The user guide is available at: https://github.com/sesame-project/
simulationBasedTesting/blob/main/documentation/userguide.md

2.4 Simulation-Based Testing Execution Example

Creating a New Project
In order to use the simulation-based testing platform, firstly, the user should load Eclipse
and then invoke a new Eclipse Application, by right-clicking upon the newly imported project
uk.ac.york.sesame.testing.generator and selecting “Run As” / “Eclipse Application”. This
will launch a fresh Eclipse instance under which the SESAME automated code generation plugins are avail-
able (Figure 7a) 10. There may be a delay on the first invocation of this.

Create a new Java project - here, we use TTSTestProject. Create a folder “models” in it. When creating the
project, turn off “Create module-info.java” at the bottom of the project dialog.

In order to generate a model for the first time in a newly created project, it is necessary to register the metamod-
els. This can be done by activating the early stage of our wizard, by right-clicking on “SESAME” / “Generate
SESAME Code”, as shown in Figure 10a. Then, click Cancel on the dialog box that appears.

Next, create an instance of the testing metamodel. To do this, right click on the folder “models” and select
“New” / “Other” / “Epsilon” / “EMF Model” and set up the parameters as shown in Figure 7b. Use “Browse”
to find “TestingMM” as the metamodel URI. The model filename can be chosen to fit the scenario that the
users are setting up.

Now users can complete the steps specified in the SESAME simulation-based testing methodology. When the
model is completed, or when there are any changes to the experiments, right click on the project, and select
“SESAME” / “Generate SESAME Code” to regenerate code for metric templates and experiment runners
based on it (Figure 10).

After the code generation is performed for the first time, the project structure must be changed to a Maven
project. Users should right-click on the project, select “Configure” / “Convert to Maven Project”. Then the
user should right-click and select “Maven” / “Update Project” to ensure all the dependencies are updated.

10If there is a problem flagged regarding “javax.xml.bind”, please ignore it

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 11

https://github.com/sesame-project/simulationBasedTesting/blob/main/documentation/INSTALL-linux.md
https://github.com/sesame-project/simulationBasedTesting/blob/main/documentation/INSTALL-linux.md
https://github.com/sesame-project/simulationBasedTesting/blob/main/documentation/INSTALL-linux.md
https://github.com/sesame-project/simulationBasedTesting/blob/windows/README-windows.md
https://github.com/sesame-project/simulationBasedTesting/blob/windows/README-windows.md
https://github.com/sesame-project/simulationBasedTesting/blob/main/documentation/userguide.md
https://github.com/sesame-project/simulationBasedTesting/blob/main/documentation/userguide.md

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

(a) Run generator project (b) New model generation

Figure 7: Generation steps for the SESAME simulation-based framework

An example for the next stage is now given, for setting up an instantiation of the model model for the KUKA
case study.

Testing Methodology Example For KUKA
We apply the methodology presented in Figure 8 (for more details, see “Simulation-Based Testing Process” in
D6.6 [14]).

Step 3.1: Having analysed the case study requirements, participating robots and the necessary fuzzing opera-
tions, users will determine their performance metrics and the fuzzing operations that would like to use. Within
the wider integrated methodology of Figure 1, users should provide an instantiation of the SESAME Testing
DSL, specifying the structure of the testing space for the example case study. The DSL metamodel is speci-
fied in our deliverable D6.6 [14]. The Exceed editor provides a convenient visual editor in order to assist the
configuration of the testing process. An example for testing the KUKA example case study is presented in
Figure 9. This model includes metrics for quantifying the requirements for testing the particular robots, condi-
tion metrics for defining the triggers for condition-based fuzzing and the selection potential fuzzing operations
upon different robots. Further details are presented in the case study section of D6.6[14]. An example model
file (including later execution results) is presented here 11.

Step 3.2: Code generation can be used to generate metric templates automatically, within the newly generated
project under the child Eclipse instance. The testing platform provides a plugin consisting of a wizard with
a single page, which can be accessed by right-clicking on the user’s newly generated project and selecting
"Generate SESAME Code" (Figure 10a). The plugin provides an interface option to select the file containing
the user’s populated model and associated settings (Figure 10b). The annotations in red upon the screenshot
show the values selected for the text boxes. Here we choose the model file and the locations of other items for
the project:

11https://github.com/sesame-project/simulationBasedTesting/blob/main/runtime-
EclipseApplication/TTSTestProject/models/example/testingTTS_Kuka_phytesting_
coverageGA_example.model

Page 12 Version 1.0
Confidentiality: Public Distribution

7 July 2023

https://github.com/sesame-project/simulationBasedTesting/blob/main/runtime-EclipseApplication/TTSTestProject/models/example/testingTTS_Kuka_phytesting_coverageGA_example.model
https://github.com/sesame-project/simulationBasedTesting/blob/main/runtime-EclipseApplication/TTSTestProject/models/example/testingTTS_Kuka_phytesting_coverageGA_example.model
https://github.com/sesame-project/simulationBasedTesting/blob/main/runtime-EclipseApplication/TTSTestProject/models/example/testingTTS_Kuka_phytesting_coverageGA_example.model

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Figure 8: Simulation-based testing methodology

Figure 9: Testing Space Model for KUKA/TTS example

When this button is clicked, metric templates will be generated in the package metrics.generated. Ex-
periment runners will also be generated based upon the experiment name defined for the TestCampaigns in the
model, e.g., ‘ExptRunner_name.java’.

Step 3.3: The next step involves the user specifying scenario-specific performance metrics for the metrics
generated in the model, in order to quantify violations of mission requirements. In order to implement
these metrics, the user first needs to copy these classes from metrics.generated into a new package
metrics.custom. Then, it is necessary to implement the needed platform-specific metrics as Java code.

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 13

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

(a) SESAME Wizard activation

(b) SESAME Wizard model file selection

Figure 10: Code generation by activating SESAME wizard

Figure 11 presents a fragment of the implementation of the collisionOccurrence metric used to quantify vio-
lations by tracking the number of intervals in which collisions of the gripper safety zone with any safety zone.
The metric operates as follows:

If the region surrounding the robot gripper (green sphere) collides with these regions, the collision detection
logic will trigger a safety zone message which will be sent to the testing platform via the TTSSimulator custom
API over gRPC. As an inbound simulator event, these will then trigger the processElement1 method of the
metric. If the message inbound topic is a safety zone message of sufficient depth, then the violationCount

Page 14 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

1 public void processElement1(EventMessage msg, Context ctx , Collector <Double> out) {
2 String completionTopicName = "safetyzone";
3 String topic = msg.getTopic () ;
4 if (topic . contains (completionTopicName) && topicMatches(topic)) {
5 if (msg.getValue() instanceof String) {
6 String s = (String) msg.getValue() ;
7 Optional<ROSMessage> rosmsg_o = ROSMessageConversion.fromJsonString(s);
8 if (rosmsg_o. isPresent ()) {
9 ROSMessage rosmsg = rosmsg_o.get();

10 SafetyZone sv = rosmsg.getSafetyZone () ;
11 float level = sv. getLevel () ;
12

13 if (violationCount . value () == null) {
14 violationCount .update(0L);
15 }
16

17 if (level < getLevelThreshold () && isReadyToLogNow()) {
18 violationCount .update(violationCount . value () + 1) ;
19 out . collect (Double.valueOf(violationCount . value ())) ;
20 }
21 }
22 }
23 }
24 }

Figure 11: The metric implementation for collision occurrence

variable will be incremented. This value is emitted as the output value. The final violationCount value will
be logged as the output of the metric.

Step 3.4: The user should create an Eclipse Run Configuration for the class ExptRunner_name.java for
the name of the experiment they would like to execute, and invoke this Run Configuration in order to run
the experiment. This runner will be configured with the parameters chosen from the Testing DSL. If any
parameters of the experiment in the model are changed, users should rerun “Generate SESAME Code” in Step
3.2, to ensure this experiment runner is updated.

The experiment runner will generate tests according to the strategy specified for the experiement’s test cam-
paign. Its TestGenerationApproach selection allows the user to specify the parameters for an experiment by
setting one of several subclasses. For example, including NSGAEvolutionaryAlgorithm allows an evolution-
ary experiment with the NSGA-II algorithm [5], and contains specific parameters relevant to this approach, e.g.,
the number of iterations and the population size. We also provide a new coverage-aware GA NSGACoverage-
WithCells, which seeks to improve coverage of the space of potential fuzzing tests. Further, RepeatedRunner
provides support for repeated execution of a particular selected test a number of times. The utility of this is to
allow an interesting test with a high reality gap or other performance issues to be repeated and the reasons for
its behaviour to be investigated in depth.

Regardless of the test generation strategy selected, the performedTests attribute is populated during the exe-
cution of experiments, containing the particular Tests generated and executed for that campaign. Each test is
evaluated by first dynamically generating a specialised test runner which acts as a middleware interfacing with
the low-level MRS simulation and modifying its internal messages, using any custom-supplied metric defini-
tions provided in Step 3.3 to quantify the impact of the fuzzing test. The resultSets attribute is also populated
as the experiments proceed and finalised upon their completion, containing references to the population of re-
sults upon a Pareto front. This is an important feature that enables keeping track of the history of evolved tests
during simulation-based testing.

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 15

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Figure 12: Example result sets for example experiment

A fragment of the output result is shown in Figure 12, showing some result sets from the experiment, with
the population of a front at an intermediate generation. The results in the result set are shown here. Us-
ing the Exceed editor the tests comprising the result set are shown. Using a provided EGL script under
uk.ac.york.sesame.testing.generator at files/resultsAnalysis/resultsAnalysis.egl allows the
results and output metrics to be listed in the Eclipse console window.

Step 4 of Integrated Methodology: In order to perform subset selection for physical testing, a CSV file
should be extracted from the model information, to pass to the notebook. A Java executable class is im-
plemented under project uk.ac.york.sesame.testing.evolutionary, at phytestingselection/run-
ner/PhyTestingSubsetSelectionRunner, which extracts the obtained results to a CSV file (Figure 13). Parame-
ters can be set to choose the model file, and to choose the particular result sets to be extracted to CSV. The CSV
file name produced will be based upon the model name, but with values appended giving the chosen result set.

Then, the Jupyter notebook can be loaded by changing to the directory
"<GITHUB_ROOT>WP6/notebooks/phytesting/" and executing “jupyter notebook SubsetSelection.ipynb”
from a terminal. A fragment of the notebook can be seen in Figure 14. The topmost cell enables providing
user-defined parameters (including the CSV input file location), the maximum cost of configurations (which
gives the size of subsets selected), and the λ value. The middle cell displayed will execute the subset selection
algorithm and visualise the result, and the bottom cell lists the selected configurations for physical execution.
The corresponding tests can be looked up in the model and their metrics examined.

Steps 5 and 6 of the Integrated Methodology: The selected tests for physical testing shown in the notebook
can be looked up in the model results, and copied from the model to create new configurations with the
RepeatedRunner test generation strategy. This will allow them to be tested in physical testing. Physical testing
will allow the results to be obtained, potentially repeating the results, and comparing them with simulated
execution, to investigate the reality gap. Further details on these steps are given in D6.6 [14] on Steps 5 and 6.

Page 16 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Figure 13: Extracting the model contents from the result set to process

Figure 14: SubsetSelection notebook which allows setting parameters, executing and visualising the
subset selection, and listing the chosen configurations

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 17

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

3 Hardening and Repairing of Deep Learning Components

This section reports on the developed tool for Hardening and Repairing Deep Learning components as a part
of the automated quality assurance of Executable Digital Dependability Identities (EDDI) supported MRS. As
such, it describes the realization and usage of the developed technical components and serves as a manual for
their use. The information provided in this section complements deliverable D6.4 [18].

3.1 Scope Of Hardening and Repairing Recommendations

Robots while operating in production environments, experience non-stationary changing data distributions. In
such scenarios, the trained Deep Learning models (i.e., Deep Neural Networks - DNNs) cannot generalise the
learned knowledge (during the training phase) correctly to the operational domain, which results in potential
misclassification and prediction errors.

The safety assurance process of Data-Driven and Learning components of EDDIs, introduced in Task 6.1,
enables the identification of a set of potential threats to the DNN correctness. Using DEEPKNOWLEDGE’s test
adequacy criterion proposed in deliverable D6.1 [17], we are able to identify if a new test triggers a novel and
potentially erroneous, behaviour of the target DNN model. As a consequence, we are able to assess the DNN’s
performance in any data domain.

While DEEPKNOWLEDGE and SAFEML [10] can accurately characterize the extent to which a DNN can
operate outside of a bounded data domain, new techniques are needed to repair and harden (i.e., improve
the quality assurance and testing process) the model when it encounters data shift or concept drift situations
(as these situations can lead to making incorrect predictions). To this end, we have identified the following
requirements for assuring the safety and correctness of the EDDI-enabled Deep Learning components:

1. Continuously modeling the expected operational domain. To achieve a high standard of testing the
tester needs to generate, and execute a large number of tests that conceptually capture and simulate the
variations in the real-world environment that causes the model’s errors.

2. Continuously adapting the trained model to non-stationary environments.

These requirements have been implemented in a prototype tool for hardening and repairing Deep Learning
components. Overall, our tool realises a coverage-guided fuzz testing and repairing technology that can effec-
tively address fundamental problems in DL-based software quality assurance:

1. the Oracle problem and the automated test-case-generation problem. The main difference between
GENERATIVEREPAIR and other testing techniques is that the former focuses on the semantic mutation
to simulate the operational environment, and the verification of each individual output of the software
under test.

2. the correct classification of unseen scenes, which is highly critical for MRS when navigating in a non-
stationary environment. GENERATIVEREPAIR is an effective tool for continuous repairing of the DL-
based system. An interpretable and explainable incremental learning algorithm has been implemented
that allows the detection and learning of unseen scenes without the need for external supervision.

3.1.1 GENERATIVEREPAIR Tool

We implemented the GENERATIVEREPAIR prototype as a self-contained fuzz testing and repairing tool in
Python based on the Deep Learning framework Keras (ver.2.1.3) with TensorFlow (ver.2.0) backend. We paid

Page 18 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

special attention to developing our tool in a robust multi-paradigm technology using a set of Python compo-
nents (scripts). Since the EDDI framework is built on top of Python, and the ConSert Monitor is created as a
Python WHL binary, then importing Python modules inside the EDDI is a simple process. Python scripts al-
low flexibility to integrate the tool as a design-time EDDI artifact, which can be deployed into any platform for
robotic applications (e.g., ROS). Alongside SafeML, this tool will be integrated into a perception uncertainty
monitor fully based on design-time EDDI artifacts.

Our GENERATIVEREPAIR tool is platform-independent, which makes the testing and quality assurance process
of any Deep Learning-based system faster and cleaner. Furthermore, GENERATIVEREPAIR is underpinned by
a component-based architecture that makes it easily extensible with additional coverage criteria and augmen-
tation techniques.

The underlying conceptual and algorithmic details of this methodology are detailed in deliverable D6.4 [18].
The technical implementation that supports our methodology is described in the following sections.

3.2 GENERATIVEREPAIR Architecture

The general structure of our GENERATIVEREPAIR hardening and repairing technology is illustrated in Fig-
ure 15, where two separate but complementary tool-based technologies are collaboratively integrated with
other SESAME components to increase the overall MRS performance.

GenerativeFuzzer :

Test cases generation

SafetyRepair: Coverage-guided Repair

Safety assurance:

Coverage-Guided Data
Augmentation

Robust
Performance?

Coverage
Tracing

Continuous
drop?

Data Splitting

No

yes

Test cases

yes

sequential
sampling

T1 T2 … T3

Data subsets

EDDI Specifications
DeepKnowledge Adequacy Criteria

Prediction

Continuous
Learning

Incremental
Re-training

W1 W2 … W3

DNN weights
update

1

3

2

EDDI DL Components

Dataset
Trained
model

Fine-tuned DNN

Test cases

H
ardening and R

epairing Toolsets

Figure 15: Overview of the Hardening and Repairing Methodology @DesignTime

As illustrated in Figure 15, the hardening and repairing process is based on the safety assurance output results
(Step 1). These outputs are automatically analysed and serve as feedback to guide the next steps. GENERA-

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 19

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

TIVEREPAIR iterates between the two main components test case samples generation (GENERATIVEFUZZER),
and model repair (SAFETYREPAIR) until it terminates after a fixed number of repair steps. The human icon
indicates the need for human assessment or intervention to trigger the next step.

Step1: Safety Assurance. At this step, DL-based software is systematically tested before deployment.
The systematic testing of the underlying DNN model helps identify its potential defects and vulnerabilities at
an early stage. The safety assurance process provides a concrete set of quantitative metrics for performance
assessment.

Performance assessment. At this stage, the quantitative results of safety assurance are statistically anal-
ysed. For instance, if the results indicate a high vulnerability to adversarial attacks, and/or insufficient semantic
diversity in the test dataset, then the fuzzing operations will be selected and the hyperparameters for the hard-
ening and repairing process will be set up.

Step2: Fuzzing. This step is an automatic test generation process. GENERATIVEFUZZER is a coverage-
guided fuzzing component that takes a set of initial seeds and a DNN as the input. It maintains a seed queue and
generates passing tests that maximize the coverage criteria, and failing tests that are unsuccessful in activating
any of the Transfer-Knowledge Neurons (cf. DEEPKNOWLEDGE approach in D6.1 [17] for more details.).
The effectiveness of the fuzzer is affected by the seed selection strategy and the mutation techniques.

Traditional fuzzers mutate a seed with techniques such as flips, block replacement, etc. Our GENERATIVE-
FUZZER applies semantic mutation (also called data augmentation methods in D6.4), and the mutants, i.e.,
augmented seeds are filtered based on their photo-realism scores. For each input seed, this process is repeated
n times to finally generate a set of k augmented seeds. GENERATIVEFUZZER includes a component that as-
sesses whether an augmented seed triggers an erroneous DNN behaviour, if its prediction result is incorrect.
New synthetically-generated test cases are deployed for systematic testing (Step 1).

Performance assessment. After fuzzing, the generated test cases are fed into the DL-based system under
test. Our fuzzer is capable of producing synthetic but realistic images and enables simulation of the real-world.
Thus, the robustness of the model in the operational environment is assessed by observing its performance,
when applied to the synthetic images. If the test cases cause the DNN to misbehave and its performance to
drop significantly, users can gather data over a number of iterations and trigger model repair if this is needed.

Step3: Coverage-guided Repair. SAFETYREPAIR focuses on improving the robustness of the DL-based
system. Conceptually, this tool improves DNN robustness through fundamentally different continuous learning
mechanisms. The selection of the right mechanism depends on the response of the model to the newly gener-
ated test cases. Users (software engineers) are provided with a selection of scenarios for continuous training
based on the performance monitoring outcomes. This happens sequentially with the test case generation pro-
cess over a number of iterations to allow an incremental improvement of the DNN model robustness without
affecting its performance on the initial dataset. Thus, systematic testing is performed after each repair iteration
to ensure the repairing process is achieving the right goal.

3.3 User Guide

This section provides an overview of the implementation of the hardening and repairing tool, its components
available for connection to EDDIs and other SESAME components, as well as the structure of the code and an
example of execution.

Page 20 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

All experiments in our study were conducted on a high-performance computer running a cluster GPU with
NVIDIA 510.39. We implemented the GENERATIVEREPAIR methodology and the underlying components
based on the state-of-the-art open-source DNN framework Keras (v2.2.2) with Tensorflow (v2.6) as a backend.

GENERATIVEREPAIR is implemented using the Python programming language. All the Python scripts en-
abling the use and integration of the hardening and repairing tools are available on Github12 as a set of com-
ponents linked as shown in Figure 16.

The provided Python scripts can be run into Jupyter Notebook, or in an IDE. In addition, GENERATIVEREPAIR

scripts can be run in the command line using the command prompt or PowerShell in Windows. In macOS or
Linux, the test engineers can execute GENERATIVEREPAIR using the terminal or xTerm.

The code is available as a set of packages and classes. There are two main scripts “fuzzing.py” and “repair-
ing.py” respectively dedicated to executing GENERATIVEFUZZER and SAFETYREPAIR.

Coverage Criteria package. This package includes a set of coverage criteria, including DEEPKNOWL-
EDGE developed in Task 6.1. Our tool currently supports neuron coverage (NC) [15], DeepImportance [6],
likelihood-based surprise adequacy (LSA) [11], and the neuron-level criteria k-Multisection Neuron Coverage
(KMNC) and Neuron Boundary Coverage (NBC) from DeepGauge [12].

Our tool leverages multiple extensible datasets to fuel the test generation and data augmentation processes.
For most of our use cases, the dataset loading operations are available in the pre − processing.py script.
The Dataset component allows to load and pre-process different datasets including CIFAR-10, COCO, and
Grape Leaves for the purpose of fuzzing and repairing. In order to extend the tool and integrate new use
cases/datasets, data-loading operations have to be integrated and customized for the targeted dataset following
the existing implementations.

This class has different operations for each dataset including:

- preprocessing(): which allows to resize and split the dataset according to the user inputs.
- filtering(): This operation allows the selection of specific subclasses of the dataset to fit the purpose of

training or fine-tuning the subject model.
- Load_grape_data(): This operation serves in particular for creating Grape Leaves dataset by combining

samples collected from vineyards and digital images from the web, then labeling it using a captioning
DL model.

- augmentsplit() This operation is used by the repairing component to split the augmented dataset for
training in specific time windows for the subject continuous learning paradigm.

Augmentation Package. This package encompasses a set of scripts, which implement different data aug-
mentation methods:

- tsable_diffusion.py is an implementation of the text-guided Stable Inpainting method [22]. This script
uses other scripts from the NLP process package.

- SemanticOcclusion.py as its name states is an implementation of the occlusion method [23, 16].
- GaussianNoise.py This script implements the metamorphic augmentation technique noise that is used

as a baseline in our experimental study.

NLP Process Package. This package includes a set of Natural Language Processing techniques, i.e., tag-
ging.py, captiongeneration.py, implemented for automatically generating text prompts that serve as input for
the Stable Diffusion method.

12https://github.com/sesame-project/MLTesting

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 21

https://github.com/sesame-project/MLTesting

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Figure 16: Class diagram for GENERATIVEREPAIR showing dependencies between components.

Repairing Package. This package has a set of scripts for DNN model retraining and repairing. Each script
is an implementation of the continuous learning paradigm:

- CLforKnownClass.py script is an implementation of the Continuous learning paradigm of known
classes.

- ClassincrementalCL.py script is an implementation of the Class incremental learning (i.e., new classes)
paradigm.

- TaskincrementalCL.py this script implements the task incremental learning paradigm, which allows a
classical fine-tune operation for the DNN model on new data distribution.

Page 22 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

3.3.1 Setting Up the Environment: Required Libraries

The implementation of our GENERATIVEREPAIR approach requires a set of Python, and Tensorflow libraries
and different other customized APIs that were used not only to implement our algorithm but also to integrate the
state-of-art deployed methods (i.e., coverage criteria, Spacy, etc.). The complete installation guide is available
at https://github.com/sesame-project/MLTesting. After completing the installation process
indicated there, users can continue with the user guide below.

3.3.2 Running the GENERATIVEREPAIR Tool

To run GENERATIVEREPAIR, we can use shell commands, which depend on the hardening and repairing
technique chosen:

For coverage-guided fuzzing testing, i.e., GENERATIVEFUZZER, users can execute the commands by running
the shell script “fuzzing.py” as shown in the following listing.

Listing 1: Example of Shell command to execute GENERATIVEREPAIR

1 #!/ bin /bash
2 Python3.8 fuzzing .py −method[0 or 1] −fuzzer[type_of_fuzzing] − repair [continuous_learning_paradigm]

−it [nbre_of_iteration] −model [path_to_keras_model_file] − dataset [dataset_name] −approach
[coverage_criteria] − logfile [path_to_log_file]

For the repairing process, i.e., SAFETYREPAIR, users can execute the commands by running the shell script
“repairing.py” with the specific parameters detailed in Figure 17.

The user can also run the scripts “fuzzing.py”, “repairing.py” without specifying any of the parameters, given
that we set default parameters as shown below:

Listing 2: “fuzzing.py” Python script with default parameters
1

2 from tensorflow import keras
3 from tensorflow . keras import applications
4 # Helper libraries
5 import argparse
6 import os
7 import numpy as np
8 import matplotlib . pyplot as plt
9 from datetime import datetime

10 from Dataprocessing import *
11 from utils import *
12 from Coverages. idc import *
13 from Coverages.neuron_cov import *
14 from Coverages.tkn import *
15 from Coverages.kmn import *
16 from Coverages.ss import *
17 from Coverages.sa import *
18 from Coverages.knw import *
19 from Coverages.TrKnw import *
20

21

22 os . environ [’TF_GPU_ALLOCATOR’]="cuda_malloc_async"
23 os . environ ["TF_CPP_VMODULE"]="gpu_process_state=10,gpu_cudamallocasync_allocator=10"
24 if __name__ == "__main__":
25

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 23

https://github.com/sesame-project/MLTesting

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

26 args = parse_arguments ()
27 method= args[’method’] if args [’method’] else 1
28 fuzzer = args [’ fuzzer ’] if args [’ fuzzer ’] else "RInp"
29 iteration = args [’ it ’] if args [’ it ’] else 10
30 repair = args [’ repair ’] if args [’ repair ’] else False
31 model = args [’model’] if args [’model’] else ’AllConvNet’
32 dataset = args [’ dataset ’] if args [’ dataset ’] else ’Leaves’
33 approach = args [’app’] if args [’app’] else ’knw’
34 layer = args [’ layer ’] if not args [’ layer ’] == None else −1
35 logfile_name = args [’ logfile ’] if args [’ logfile ’] else ’ fuzzing . log’
36 logfile = open(logfile_name , ’a’)
37 startTime = time. time ()
38

39 Fuzzing(method, fuzzer , iteration , approach, model, dataset , approach, repair , layer)
40 logfile . close ()
41 endTime = time.time ()
42 elapsedTime = endTime − startTime

3.4 GENERATIVEREPAIR Execution Example

This section serves as an illustration of executing the GENERATIVEREPAIR tool. The example shows the
application of our tool to the viticulture use case. The spraying mission could be achieved using LXSNS’s
DNN algorithms with the novel MRS capabilities for sensor fusion. To this end, high importance is set on
DNN accuracy and safe behaviour.

The successful accomplishment of fungicide spraying depends on the optimal functioning of DL-based soft-
ware that is able to detect the affected plants and correctly classify the detected disease. The correct execution
of these actions will enable the provision of the right treatment. This is considered a key functional require-
ment for this use case. Besides its performance, the adapted DNN model needs to detect a wide range of
diseases that are not fully represented in the collected dataset from the vineyards.

In this example, we showcase how to run the “repairing.py” script for hardening and repairing the Grape Leave
disease detection model (cf. Figure 19). This task is performed with the AllConvNet model trained on images
whose size is 32x32.

We start by creating and starting the virtual environment. In our case, we activate the virtual environment
SESAME under the project folder EU_SESAME.

Listing 3: Creating and starting the virtual environment
1

2 $ mkdir EU_SESAME
3 $ cd EU_SESAME
4 $ virtualenv SESAME
5 $ source SESAME/bin/activate

Page 24 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

■ -method : an integer took 0 for fuzzing operation and 1 for repairing.

■ -fuzzer : the name of the selected fuzzer. Our platform provides 5 strategies, with the possibility of

chose a combination of different testing criteria as guidance. These fuzzers are:

⧫ Random Noise testing (RN). This combines random sampling as seed selection strategy and

Gaussian Noise for data augmentation

⧫ Random Inpainting (RInp). This fuzzer uses random sampling strategy and test-guided Stable

Diffusion Inpainting as data augmentation.

⧫ Random Semantic Occlusion (SemOcc). This fuzzer uses random sampling strategy with

Semantic occlusion (both random erasing and synthetic occlusion similarly) to augment each input

seed.

⧫ DeepKnowledge Inpainting (KnwInp). Different from RInp, this strategy guides testing using

deepKnowledge coverage criteria as feedback. An input seed is put to the seed queue if it

improves the deepknowledge coverage.

■ -repair : this the selected paradigm for continuous learning. We can select :

⧫ CLTask : Task incremental learning

⧫ CLClass : Class incremental learning

⧫ CL : Continuous learning of known classes

■ -it : number of iteration for data augmentation within the fuzzing process. We advice to select an

integer between 2 an 10.

■ -app: for approach. The approach for coverage estimation. The selected coverage is used as

guidance in each iteration to pick the augmented seed as new test. Our current implementation

supports DeepKnowledge (Knw), DeepImportance (idc),(nc),(kmnc),(nbc),(snac),(tknc),(ssc), (lsa), and

(dsa).

■ -model : the name of the Keras model file. The trained keras model is saved as .hdf5 file or the

architecture can be saved as JSON and the weights

saved separately as an .h5 file. All the trained model are saved under the folder `Networks’. Our

implementation provides three trained DNN models including Allconvnet.h5, LeNet5.h5, and

Vgg19.h5.

■ -dataset : name of the dataset to be used. Current implementation supports Cifar-10 (cifar) COCO

(coco) and grape leaves (grape). Our platform is extensible and other dataset can be added by

modifying `Dataprocessing.py’ and `Data_Augment.py’ scripts.

■ -layer : The subject layer’s index for approaches including ‘idc’,‘tknc’, ‘lsa’. Note that only trainable

layers can be selected.

■ - logfile : The name of the file that the results to be saved.

Figure 17: Parameters for configuring GENERATIVEREPAIR

Once, all the necessary packages are loaded through the virtual environment, we apply the methodology pre-
sented in Section 3.2 (Step3) by running the shell script with the default settings (Listing 4).

The execution of “repairing.py” at first involves running the ‘Random + Inpainting’ fuzzer to enable the
generation of the augmented set for the model retraining. As shown in Figure 20, a set of 32x32 coloured
synthetic images are generated and evaluated for photo-realism before being used for the retraining paradigm.

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 25

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Figure 18: Examples of the repairing outputs. A set of synthetic images generated using Ran-
dom+Inpainting fuzzer. All these images are augmented using the same input seed.

Listing 4: Set of default parameters run the Python script “fuzzing.py”
1

2 −method = 0 (fuzzing)
3 −fuzzer = RInp Random Inpainting
4 − repair = CLTask
5 −it = 10
6 −app= Knw
7 −model = AllConvNet
8 − dataset =grape
9 −layer = −1

10 − logfile = fuzzing . txt

Figure 18 showcases a small set of augmented images generated using ‘Random + Inpainting’ fuzzer with the
Grape Leaves dataset as an input set. After fidelity estimation, these augmented images serve as new test cases
for model repair.

The model is then fine-tuned using CLTask, i.e., using the task incremental learning paradigm. To this end,
we have trained the initial version of AllConvNet model to detect the Esca vascular wilt disease that attacks the
perennial organs of grapevines. With the help of the augmented set, we fine-tune the model to detect different
types of disease. For the first run (cf. Figure 20), we generate 1915 synthetic images that have been filtered
and the remaining set of 1232 images is used to train the model on two different types of diseases, including
Isariopsis Leaf Spot and Black Measles.

The fine-tuned model is then saved in the Network folder with a combination of the original model name and
the fuzzer name as the name of the new extension of the model at time t.

Page 26 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Figure 19: Shell command to execute “repairing.py” script- 1

Augmented dataset

Figure 20: Shell command to execute “repairing.py” script- 2

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 27

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

Updating weights

Figure 21: Shell command to execute “repairing.py” script- 3

As a final note, the previous results showcase the importance of continuous hardening and repairing of Deep
Learning-based software components in MRS. The results illustrated in Figure 21, demonstrate the effective-
ness and efficiency of our tool in repairing the LXSNS’s DNN algorithm. It helped achieve an accuracy of
95.24% for the AllConvNet model after retraining on the set of synthetic images generated by our tool GEN-
ERATIVEFUZZER, in particular, the ‘Random+Inpainting’ fuzzer.

Moreover, our tool leverages the outstanding capabilities of semantic data augmentation for Deep Learning
repairing and continual learning in an easily extensible way that currently can be adapted as a design-time
artifact.

Page 28 Version 1.0
Confidentiality: Public Distribution

7 July 2023

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

4 Conclusion

This deliverable has presented the final version of the quality assurance toolset, including quality assurance
tools for data-driven learning components, and simulation-based testing tools for EDDIs. This toolset has been
developed in the context of Tasks 6.3-6.5, and follows deliverable D6.3 which reported the developments of
Tasks 6.1 and 6.2. The underlying architecture and scientific innovations have been presented in the other WP6
deliverables. As such, this document complements deliverables D6.4 and D6.6.

The developed prototype tools are compatible with most systems and architectures used by our industrial part-
ners. The development process has followed the agreed architectural conventions specified for the integrated
platform of SESAME and the partners’ requirements from deliverable D1.1.

The simulation-based testing toolset implements the methodologies and architectures (presented in deliverable
D6.6 [14]) for integrated testing, beginning with simulation-based testing and informing the transition between
simulation-based testing and lab experimentation. We presented the interfaces and DSL structure for these
simulation-based testing components, together with a usage example for these technologies.

The quality assurance tool for Data-Driven and Learning components implements the methodologies and ar-
chitectures presented in deliverable D6.4 [18] for (1) the GENERATIVEFUZZER tool, i.e., a coverage-guided
fuzzing technique; and (2) SAFETYREPAIR tool, i.e., the repairing tool that serves as a continual learning
technique for DNNs. Both tools are implemented and integrated into a self-contained fuzz testing and repair-
ing framework named GENERATIVEREPAIR, implemented as a set of Python components. These components
allow test engineers and system integrators to customise the testing and repairing operations and pass in param-
eters from the command line. We provided a comprehensive presentation of our tools and gave step-by-step
usage examples.

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 29

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

References

[1] Alberto Bartoli, Mauro Castelli, and Eric Medvet. Weighted hierarchical grammatical evolution. IEEE
Transactions on Cybernetics, 50(2):476–488, 2018.

[2] Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. Testing advanced driver assis-
tance systems using multi-objective search and neural networks. In Proceedings of the 31st IEEE/ACM
international conference on automated software engineering, pages 63–74, 2016.

[3] Darko Bozhinoski, Davide Di Ruscio, Ivano Malavolta, Patrizio Pelliccione, and Ivica Crnkovic. Safety
for mobile robotic systems: A systematic mapping study from a software engineering perspective. Jour-
nal of Systems and Software, 151:150–179, 2019.

[4] Iván García Daza, Rubén Izquierdo, Luis Miguel Martínez, Ola Benderius, and David Fernández Llorca.
Sim-to-real transfer and reality gap modeling in model predictive control for autonomous driving. Applied
Intelligence, 53(10):12719–12735, oct 2022.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[6] Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan. Importance-driven deep learning
system testing. In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE),
pages 702–713. IEEE, 2020.

[7] Mario Gleirscher, Simon Foster, and Jim Woodcock. New opportunities for integrated formal methods.
ACM Computing Surveys (CSUR), 52(6):1–36, 2019.

[8] Louis Ryan (Google). grpc motivation and design principles. =https://grpc.io/blog/principles/. Accessed:
2022-06-28.

[9] James Harbin, Simos Gerasimou, Nicholas Matragkas, Athanasios Zolotas, and Radu Calinescu. Model-
driven simulation-based analysis for multi-robot systems. In 2021 ACM/IEEE 24th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS), pages 331–341. IEEE, 2021.

[10] Fraunhofer IESE and University of Hull. D7.2 tools for generation of runtime eddis., 2022.

[11] Jinhan Kim, Robert Feldt, and Shin Yoo. Guiding deep learning system testing using surprise adequacy.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 1039–1049.
IEEE, 2019.

[12] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li,
Yang Liu, et al. Deepgauge: Multi-granularity testing criteria for deep learning systems. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering, pages 120–131,
2018.

[13] Antonio J. Nebro. Nsga-ii variants. =http://jmetal.sourceforge.net/nsgaII.html. Accessed: 2022-06-28.

[14] SESAME Project Partners. D6.6: Multi-stage quality assurance methodology for EDDIs. Technical
report, The Open Group, Jun 2023.

[15] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox testing of
deep learning systems. In proceedings of the 26th Symposium on Operating Systems Principles, pages
1–18, 2017.

[16] István Sárándi, Timm Linder, Kai O Arras, and Bastian Leibe. Synthetic occlusion augmentation with
volumetric heatmaps for the 2018 eccv posetrack challenge on 3d human pose estimation. arXiv preprint
arXiv:1809.04987, 2018.

Page 30 Version 1.0
Confidentiality: Public Distribution

7 July 2023

=
=

D6.7 Tools for Automated Quality Assurance of EDDI-Supported MRS (Final Version)

[17] Missaoui Sondess, Gerasimou Simos, and Matragkas Nicholas. D6.1 assurance of data-driven and learn-
ing components of eddis., 2022.

[18] Missaoui Sondess, Gerasimou Simos, and Matragkas Nicholas. D6.4 recommendations for EDDIs hard-
ening and repairing, June, 2023.

[19] Thierry Sotiropoulos, Hélene Waeselynck, Jérémie Guiochet, and Félix Ingrand. Can robot navigation
bugs be found in simulation? an exploratory study. In 2017 IEEE International Conference on Software
Quality, Reliability and Security (QRS), pages 150–159. IEEE, 2017.

[20] A. Stocco, B. Pulfer, and P. Tonella. Mind the gap! a study on the transferability of virtual versus
physical-world testing of autonomous driving systems. IEEE Transactions on Software Engineering,
49(04):1928–1940, apr 2023.

[21] Christopher Steven Timperley, Afsoon Afzal, Deborah S Katz, Jam Marcos Hernandez, and Claire
Le Goues. Crashing simulated planes is cheap: Can simulation detect robotics bugs early? In 2018
IEEE 11th International Conference on Software Testing, Verification and Validation (ICST), pages 331–
342. IEEE, 2018.

[22] Anwaar Ulhaq, Naveed Akhtar, and Ganna Pogrebna. Efficient diffusion models for vision: A survey.
arXiv preprint arXiv:2210.09292, 2022.

[23] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 13001–13008, 2020.

7 July 2023 Version 1.0
Confidentiality: Public Distribution

Page 31

	Introduction
	Simulation-Based Testing
	Scope Of Simulation-Based Testing
	Architecture of Integrated Testing
	Testing Platform Interfaces
	DSL Definition for MRS
	Simulator-Specific Interfaces
	EDDI Runtime Interfacing.
	New Package Structure and Custom Performance Metrics
	Test Generation and GA Execution
	Simulation Results and Traces
	Subset Selection

	User Guide
	Setting Up The Environment - Required Libraries
	Installation Instructions
	User Guide

	Simulation-Based Testing Execution Example

	Hardening and Repairing of Deep Learning Components
	Scope Of Hardening and Repairing Recommendations
	GenerativeRepair Tool

	GenerativeRepair Architecture
	User Guide
	Setting Up the Environment: Required Libraries
	Running the GenerativeRepair Tool

	GenerativeRepair Execution Example

	Conclusion

