
Project Number 101017258

D3.1 MRS Design Concept and Methodology

Version 1.0
30 September 2021

Final

Public Distribution

Hochschule Bonn-Rhein-Sieg

Project Partners: Aero41, ATB, AVL, Bonn-Rhein-Sieg University, Cyprus Civil Defence, Domaine
Kox, FORTH, Fraunhofer IESE, KIOS, KUKA Assembly & Test, Locomotec,
Luxsense, The Open Group, Technology Transfer Systems, University of Hull,
University of Luxembourg, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
SESAME Project Partners accept no liability for any error or omission in the same.

© 2021 Copyright in this document remains vested in the SESAME Project Partners.



D3.1 MRS Design Concept and Methodology

Project Partner Contact Information
Aero41 ATB
Frédéric Hemmeler Sebastian Scholze
Chemin de Mornex 3 Wiener Strasse 1
1003 Lausanne 28359 Bremen
Switzerland Germany
E-mail: frederic.hemmeler@aero41.ch E-mail: scholze@atb-bremen.de
AVL Bonn-Rhein-Sieg University
Martin Weinzerl Nico Hochgeschwender
Hans-List-Platz 1 Grantham-Allee 20
8020 Graz 53757 Sankt Augustin
Austria Germany
E-mail: martin.weinzerl@avl.com E-mail: nico.hochgeschwender@h-brs.de
Cyprus Civil Defence Domaine Kox
Eftychia Stokkou Corinne Kox
Cyprus Ministry of Interior 6 Rue des Prés
1453 Lefkosia 5561 Remich
Cyprus Luxembourg
E-mail: estokkou@cd.moi.gov.cy E-mail: corinne@domainekox.lu
FORTH Fraunhofer IESE
Sotiris Ioannidis Daniel Schneider
N Plastira Str 100 Fraunhofer-Platz 1
70013 Heraklion 67663 Kaiserslautern
Greece Germany
E-mail: sotiris@ics.forth.gr E-mail: daniel.schneider@iese.fraunhofer.de
KIOS KUKA Assembly & Test
Panayiotis Kolios Michael Laackmann
1 Panepistimiou Avenue Uhthoffstrasse 1
2109 Aglatzia, Nicosia 28757 Bremen
Cyprus Germany
E-mail: kolios.panayiotis@ucy.ac.cy E-mail: michael.laackmann@kuka.com
Locomotec Luxsense
Sebastian Blumenthal Gilles Rock
Bergiusstrasse 15 85-87 Parc d’Activités
86199 Augsburg 8303 Luxembourg
Germany Luxembourg
E-mail: blumenthal@locomotec.com E-mail: gilles.rock@luxsense.lu
The Open Group Technology Transfer Systems
Scott Hansen Paolo Pedrazzoli
Rond Point Schuman 6, 5th Floor Via Francesco d’Ovidio, 3
1040 Brussels 20131 Milano
Belgium Italy
E-mail: s.hansen@opengroup.org E-mail: pedrazzoli@ttsnetwork.com
University of Hull University of Luxembourg
Yiannis Papadopoulos Miguel Olivares Mendez
Cottingham Road 2 Avenue de l’Universite
Hull HU6 7TQ 4365 Esch-sur-Alzette
United Kingdom Luxembourg
E-mail: y.i.papadopoulos@hull.ac.uk E-mail: miguel.olivaresmendez@uni.lu
University of York
Simos Gerasimou & Nicholas Matragkas
Deramore Lane
York YO10 5GH
United Kingdom
E-mail: simos.gerasimou@york.ac.uk

nicholas.matragkas@york.ac.uk

Page ii Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

Document Control
Version Status Date

0.1 Document outline 23 July 2021
0.2 First draft 27 August 2021
0.6 Version for partner reviews 23 September 2021
0.7 Feedback from Fraunhofer IESE resolved 30 September 2021
0.8 Feedback from Locomotec resolved 30 September 2021
1.0 Final QA version for EC submission 30 September 2021

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page iii



D3.1 MRS Design Concept and Methodology

Table of Contents

1 Scientific Foundations, Prior and Related Work 1

1.1 Stakeholders in Robotic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Robot System and Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Robot Software Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Model-Driven Engineering in Robotics . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Development Processes in Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Concept and Methodology of the Executable Scenario 6

2.1 Exemplifying the ExSce Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Exemplifying the ExSce Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Instantiating the ExSce for further Use Cases and their Stakeholders . . . . . . . . . . . . . . 10

2.3.1 Use case: Disinfecting Hospital Environments using Robotic Teams . . . . . . . . . . 11

2.3.2 Use case: Dependable Multi-Robot Systems in Battery Innovation Centre . . . . . . . 12

2.3.3 Use case: Autonomous Pest Management in Viticulture . . . . . . . . . . . . . . . . . 12

2.4 Design Dimensions, Concepts and Aspects of the Executable Scenario . . . . . . . . . . . . . 14

2.4.1 Design dimensions and their concepts as focused views on the Executable Scenario . . 14

2.4.2 Aspects of cross-cutting concerns in the Executable Scenario . . . . . . . . . . . . . . 16

3 First Steps Towards a Formalization of the Executable Scenario 17

3.1 User story and behaviour-driven development meta-meta-model . . . . . . . . . . . . . . . . 17

3.2 Scenario Specification Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Developer Interviews: Empirical Analysis of Executable Scenarios in the SESAME Context 20

4.1 Test Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Testing Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Test Work Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Development and Testing Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Scenario Execution and Simulation 26

5.1 Overview of Current Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Variability in Scenario Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Simulator Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Scenario Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Conclusions 34

Page iv Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

Executive Summary

This deliverable reports about the research performed in Task 3.1 of the SESAME project. The main purpose of
the deliverable is to motivate and explain to experts inside and outside the consortium the scientific foundations,
concepts and principles of the proposed Executable Scenario (ExSce) methodology for engineering dependable
MRS. In a nutshell, Executable Scenarios are model-based narrative descriptions of robotic missions which
guide the engineering of MRS applications. We argue that the systematic engineering of dependable MRS
calls for involving and integrating heterogeneous stakeholders with different robotics expertise throughout
the life-cycle of MRS. In order to support this integration and to enable stakeholders to specify, execute and
manage scenarios of MRS missions, the ExSce methodology is based on a model-based paradigm, which
facilitates the formalization of reusable scenario concepts. Supported by a thorough empirical domain analysis
of engineering practices for MRS, we identify and describe several core scenario concepts and their constraints
on each other as well as their inherent variability originating from, to name a few, different stakeholder needs
and robot systems. In particular, we discuss some scenario concepts involved in exploiting scenarios as a way
(i) to express MRS requirements and associated criteria of acceptance, and (ii) to execute and test scenarios in
simulation environments.

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page v



D3.1 MRS Design Concept and Methodology

1 Scientific Foundations, Prior and Related Work

The objective of this chapter is twofold. First, to provide a brief introduction into the scientific foundations
of the Executable Scenario concept and methodology which will be introduced in Chapter 2.To this end, we
employ a system engineering perspective to answer the question which and how stakeholders are involved in
engineering multi-robot systems (cf., Section 1.1). Second, to introduce and discuss prior and related work
in the broad field of robot system and software engineering, which is crucial to understand our motivation to
introduce the Executable Scenario concept and methodology. To this end, we use the stakeholders introduced
in Section 1.1 to discuss how model-based approaches in robotics support stakeholders to perform their tasks.
We also discuss how existing robot software frameworks and process models are tailored toward robotic needs
and how stakeholders play a role in them (cf., Section 1.2).

1.1 Stakeholders in Robotic Applications

Engineering multi-robot systems as those considered in SESAME is an activity which is performed by various
stakeholders. Generally, engineering processes often refer to stakeholders as the source of requirements that the
developed system or software need to fulfil. Identifying parties who may hold stakes in the system-of-interest
(SoI) is challenging, as relevant stakeholders can vary depending on the particular system being developed, as
well as the specific stage the SoI is in over its life cycle. For consistency, we adopt the definition of stakeholders
from the ISO standard on system life cycle processes [2]:

Stakeholder Individual or organization having a right, share, claim, or interest in a system or in
its possession of characteristics that meet their needs and expectations.

From an organizational perspective, partners in the SESAME project can be broadly categorized into two
groups: industrial partners who provide use cases inspired by their commercial application, and research and
development (R&D) partners who drive the innovations behind technologies developed in the project.

• Having to consider tangible financial risks, industrial partners share a more conservative view on in-
novations and are generally resistant to any major modifications of their existing processes or systems.
Furthermore, they tend to focus on problems and requirements tightly coupled to their use case and not
necessary applicable anywhere else. Perhaps by design, SESAME’s industrial representatives cover a
wide variety of both MRS scenarios (e.g., from smart manufacturing to drone inspection) and matu-
rity (e.g., from emerging startup to international corporation), which can allow for different levels of
tolerance towards more generalized and potentially disruptive innovations.

• Compared to their industrial counterparts, R&D partners are either research institutes or universities
and, as a result, are less pressured by financial concerns. They can explore a wide variety of approaches
in order to produce innovative solutions for more generic problems, which may also include ones found
in industry. However, research-oriented groups tend to focus on very specific aspects of such prob-
lems, skimming over assumptions that may require significant engineering effort to resolve in industrial
settings.

In addition to the organizational perspective, stakeholders may also be identified by the activities they perform
in the project. The Horizon 2020 project RobMoSys1 (Composable Models and Software Robotic Systems)
lists several roles that may influence the development of robotics applications [98]. The definitions of task,
skill, service, and other RobMoSys relevant terms used for the following description of the stakeholders can
be found on the project’s wiki page2:

1https://robmosys.eu/
2https://robmosys.eu/wiki/glossary

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 1

https://robmosys.eu/
https://robmosys.eu/wiki/glossary


D3.1 MRS Design Concept and Methodology

Behaviour developers develop high-level tasks and task-plots, which can be performed using the robot’s avail-
able functionalities (i.e., skills), to realize the desired robotic application.

Service designers provide the service definitions which consist of communication semantics, data structure
and other properties required to describe components’ functions and their interfaces. These definitions
are independent on the components’ concrete realization and can be used for designing the system’s
architecture without having to consider concerns specific to a particular use case or platform.

Function developers develop functions to be used by component suppliers to create components.

Component suppliers use functions provided by function developers to create components based on service
definitions from service designers.

System architects designs a system architecture using existing service definitions provided by service design-
ers. The resulting architecture is independent on specific realization of components.

System builders assemble the system by selecting and composing appropriate components from the ones pro-
vided by component suppliers to realize the desired services specified in the architecture designed by
system architects.

Safety engineer deals with safety-related concerns of the system. It is important to emphasize, that in SESAME
we argue that this role should be extended to also cover security, i.e. safety and security engineer, as
both can be critical to a MRS system’s “correct operations”. Requirements provided by this role may de-
termine some of the instrumentation needs for verification and validation (V&V), which system builders
and component suppliers need to take into consideration during their respective activities.

Performance designer should be extended to cover other non-functional requirements (NFR) [1] beyond per-
formance, such as reliability, maintainability, and so on. Constraints specified by this role may also
influence the decisions of component suppliers and system builders during component creation and se-
lection. Actors in this role may need to balance the priorities of NFR that often conflict with each other:
reliability, for example, may imply inserting extra code that can impair performance.

In SESAME, such roles may be represented by individuals from both industrial or R&D partners. For example,
a R&D partner may wish to reuse existing components that need to interact with ones from an industrial partner.
This may require coordination of service designers and system architects from both organizations to agree up
on a final system architecture. Furthermore, and especially for teams of smaller size, a single individual may
assume responsibilities for several roles. A system architect, for example, often also selects the appropriate
components to realize their architecture, i.e. performs a system builder’s activity. Assuming responsibilities for
multiple roles is particularly common in smaller organizations, evident as shown and discussed in Section 2.3.

Other relevant activities may encompass several of the aforementioned roles. Testing, for example, can be
done at the functional, component or system level. At the same time, tests can be used to verify performance
and safety/security requirements or validate expected behaviours. Testing as an activity, therefore, can be per-
formed by every role listed above. Another example is hardware design and/or selection, which in SESAME
is likely to involve only component suppliers and system builders. Other projects, however, maybe interested
in developing hardware components from scratch, which then would demand activities from the function de-
veloper role.

The RobMoSys roles cover intrinsic views on designing and building systems. External factors like customers
or regulatory bodies may also influence this process. For example, each use case described and developed
within SESAME needs to conform to general and domain-specific standards imposed by authorities before it
can be deployed in the field.

Page 2 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

1.2 Robot System and Software Engineering

1.2.1 Robot Software Frameworks

Robot software frameworks provide developers with a set of tools, libraries, and communication mechanisms
for building, programming, and controlling robots. Most notable examples are ROS (Robot Operating Sys-
tem) [91], Orocos (Open Robot Control Software) [21][103] and YARP (Yet Another Robot Platform) [40].
ROS is a widely used robot software framework and provides a modular architecture and libraries for common
robot tasks. With the advent of ROS 2 several peculiarities regarding communication and node management
of ROS 1 are mitigated. Orocos follows as ROS a component-based paradigm, and enables the development
of reusable software components that can be combined to create complex robotic systems. YARP is another
flexible and modular robot software framework.

1.2.2 Model-Driven Engineering in Robotics

The Executable Scenario concept and methodology is based on the model-driven engineering paradigm [27]
which promotes the idea to consolidate, harmonise and capture domain knowledge both conceptually and
technically in the form of meta-models. Those meta-models, to mention a few benefits, pave the way to
create domain models with the help of textual and graphical domain-specific languages (DSLs) which are pro-
gramming or specification languages having abstractions from a particular problem domain [111]. Exploiting
domain models as core artefacts throughout the complete development cycle ranging from design, specifica-
tion, implementation to testing and even deployment is nowadays well-established in several application fields
such as avionics, automotive and telecommunications where general-purpose modelling languages and their
domain-specific extensions (e.g., UML MARTE [8], SysML [85], AADL [38]) are used to model and analyse
various system aspects and properties. In the control engineering field, modelling approaches and associated
tools such as Matlab/Simulink [72], 20-sim3, LabView4, OpenModelica5, and Dymola6 are popular to rapidly
develop, for example, control policies and to automatically generate optimised source code for various embed-
ded devices and platforms. In [17] and [79] these modelling tools are used together with software architectural
modelling tools to construct robot control architectures.

In robotics, DSLs are also not a new concept and early work dates back to 1984 where Henderson et al. in-
troduced the Logical Sensor Specification Language (LSS) [52] to support robot engineers to specify both
architectural and algorithmic concerns of sensing and state estimation processing chains. Nowadays, DSLs are
frequently used in robotics to specify knowledge from different problem domains such as kinematics [43][55],
dynamics [42], motion control [70][105] and perception [54][16]. Generally speaking, for any model-based
approach to be successful it is crucial to understand when, how and by whom the DSL and associated infras-
tructure is used and for which kind of task [111] and Schneider et al. [100] investigated the origin of design
decisions and underlying development process that resulted in a robotics DSL for specifying robot grasping
problems. In the context of the SESAME project we investigate in the following paragraphs the rich Body of
Knowledge in robotic DSLs from the perspective of the RobMoSys stakeholders introduced in Sec. 1.1. To
this end, we classify existing MDE approaches in robotics along stakeholders and their activities.

Behaviour developers can rely on several DSLs to specify and analyse coordination activities both on a pro-
gramming language level [13][14][97][28] and on an architectural level [60][66][108][109][95], where
different variants of hierarchical state machine languages are used to specify behaviours. Notable
examples are formalisms based on behaviour trees [45] and approaches inspired by behaviour-based

3https://www.20sim.com/ Last accessed: 14th of March 2023
4https://www.ni.com/labview Last accessed: 14th of March 2023
5https://openmodelica.org/ Last accessed: 14th of March 2023
6http://www.3ds.com/products-services/catia/products/dymola Last accessed: 14th of

March 2023

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 3

https://www.20sim.com/
https://www.ni.com/labview
https://openmodelica.org/
http://www.3ds.com/products-services/catia/products/dymola


D3.1 MRS Design Concept and Methodology

robotics [110]. For orchestrating several robots existing DSLs and associated frameworks enable be-
haviour developers to specify MRS tasks and missions [67][73] as well as managing execution-related
aspects such as resources [68][81]. Most of the mission specification languages include domain-specific
aspects, for example, the work of [24] allows the definition of permitted flying zones as part of the drone
mission specification.

Service designers are concerned with specifying re-usable interfaces and data structures of robot capabilities
and components. The general idea of DSLs supporting this role is to provide abstractions to model
both the problem space and solution space [92][44][93] of robotic systems in the form of architectural
patterns [9][99], behaviour templates [105] or specifications of high-level robot capabilities which are
independent of concrete realizations (e.g., feature model approaches [48][18]).

Function developers are supported by a wide range of DSLs to specify different robot functions ranging from
kinematic and dynamic algorithms [42], motion control architectures [83][84] and force control algo-
rithms [59] to perception [52][53]. The majority of these DSLs also support function developers in
tasks which are in one way or another either associated to service designers or system architects. For
example, in the work of Klotzbücher et al. also enables function developers to create re-usable tem-
plates of different types of hybrid force/velocity motions and the motion control languages introduced
by Nordmann [84] enables developers also to model architectural concerns of motion control systems.

Component suppliers package developed functions into components and existing DSLs support this task for
dedicated type of components (e.g., supporting packaging of sensor components [10]) or more generally
by providing dedicated views in model-based tools (e.g., see [86], [33]). Another approach is proposed
by Mallet et al. where functions are integrated directly in components conforming to a particular robot
software framework (e.g., [69]).

System architects are supported by various DSLs to assemble components into an overall architecture. DSLs
range from supporting the specification of domain-specific architectures and sub-systems (e.g., motion
control [83] or perception [54]) and general-purpose approaches [9] to languages for modelling architec-
tures of decisional autonomy [35] and the analysis of execution (e.g., scheduling, WCET etc.) properties
of robot control architectures [64].

System builders are similarly supported with DSLs as system architects, and the majority of existing ap-
proaches do not make a concrete distinction of these two roles. However, some approaches provide
dedicated views in their model-based tools to support the system builder [33].

Performance designer are supported by DSLs to specify non-functional requirements and properties on vari-
ous levels of abstraction ranging from components and sub-systems [56][80][94] to quality-of-service
properties of robot software middlewares [87]

Safety engineers need to specify and verify safety related requirements and existing approaches employ ei-
ther domain-specific abstractions to model safety-related aspects (e.g., [4]) or employ well-established
formal languages and approaches such as LTL [39] and other formalisms [3][31][30] to specify require-
ments and to synthesize systems and safe robot behaviours.

1.2.3 Development Processes in Robotics

While there are several reports about successful deployments of robotic systems in the real-world (e.g., deploy-
ment of robots in long-term domestic environments [50] or healthcare robots [57]), little is known about the
underlying and employed development processes used to engineer these and other applications. This is partly
due to the fact that in the robotics community it is more accepted and common to report about relevant and
successful core robotic algorithms (e.g., perception, navigation, planning and control) than to report about ac-
tual development practices. A notable exception is the work of Garcia et al.[46] where the authors assessed in
an empirical manner the impact of variability challenges to robotics software engineering. Another example is

Page 4 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

the BRICS project, where researchers assessed different robot application development processes and derived
a holistic process model, namely the BRICS Robot Application Process. The BRICS RAP [51] is a holistic
process model and combines several ideas and process elements known from traditional software engineering
(e.g., unit testing, agile development, V-Model etc.). In essence, the BRICS RAP is a multi-stage, iterative
and tailorable development process model composed of, to name a few, activities related to scenario build-
ing, platform building capability building and maintenance supporting different stakeholders. Even though,
the BRICS RAP paved the way to systematically work out challenges and desirables of robotics software engi-
neering, it remains a conceptual model. While some activities such as capability building are in the meanwhile
well-supported with tools and modelling approaches (see Section 1.2.2) some activities are not supported at
all. In particular, activities related to scenario building, scenario verification and so forth are crucial, yet over-
looked activities of robotics software engineering which greatly motivates the proposed ExSce concept and
methodology described in this deliverable.

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 5



D3.1 MRS Design Concept and Methodology

2 Concept and Methodology of the Executable Scenario

In this chapter we provide a definition of the main terms associated with the ExSce, namely the ExSce Concept,
the ExSce Methodology and the ExSce Workbench. Then we exemplify those definitions and derive models
as well as tools that can help SESAME stakeholders to exploit the ExSce.

Definition: ExSce Concept

Executable Scenarios (ExSce) are model-based narrative descriptions of robotic missions guiding the
engineering of MRS applications. An ExSce supports the definition of scenarios, composed of mission-
relevant and mission-plausible information. On the one hand, by mission-relevant information we refer
to, among others, the environment and its dynamics, time and events, objects (e.g., inspected building)
and subjects (e.g., human operators) and their potential behaviour. On the other hand, the mission-
plausible information describes acceptance criteria that enable the verification and validation of MRS
requirements. Both, mission-plausible and mission-relevant information are computer-interpretable
models and hence enable the transformation into artefacts which can be executed in different contexts
such as in simulators or on real robots.

Definition: ExSce Methodology

To put the ExSce concept into action, the ExSce methodology enables the structured development of
MRS from stakeholders’ scenarios. Hence, it comprises both a tailorable process model and associated
tools that guide and support the stakeholders in (i) specifying scenarios; (ii) transforming them to exe-
cutable artefacts; (iii) executing those artefacts; (iv) assuring the quality of the MRS in those scenarios;
and (v) generalizing those scenarios.

Definition: ExSce Workbench

The ExSce Workbench is a collection of tools that supports stakeholders in carrying out one or more
activities of the ExSce Methodology.

2.1 Exemplifying the ExSce Concept

To represent the narrative of the ExSce Concept, we follow the established practice of user stories [25] as com-
monly found in computer science. A user story facilitates the communication with end-users or stakeholders
of a software system. They are a natural-language specification that is easy to understand by a particular stake-
holder and allows them and developers to agree on software requirements. In the ExSce Concept, we extend
that definition to the whole MRS, including hardware and software, as exemplified in Figure 1 that shows a
potential, yet simple, user story of a mobile robot navigating in a hospital.

Stakeholder Robot Environment Task

Quality assuranceModelling

As a safety engineer, I want a disinfection robot in a hospital during navigation

to always keep separated from humans, so that it does not impose a risk.

Figure 1: Example user story for a disinfection robot

We follow the common pattern of user stories [104] to structure the narrative via “As a . . . I want to . . . , so
that . . . ”. Highlighted by the red box, we see the stakeholder or role from whose perspective this user story is
written. Each stakeholder introduces a different view on the scenario and its constituents, as we have already

Page 6 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

discussed in Section 1.1. The following three blue boxes represent the mission-relevant information from the
ExSce Concept, i.e. the robot itself, the environment in which the robot operates and the task that the robot
performs. The purple box shows the mission-plausible information, i.e. the acceptance criteria that are an
integral part of a user story that facilitate the quality assurance of a robotic system.

The user story already follows a semiformal structure, as indicated by the terms in bold font that represent
the keywords of the user story language. Yet, the highlighted terms remain in natural language and hence
inaccessible to computer-based interpretation. The objective of ExSce Concept is to provide means to formalize
those terms and capture their semantics as well as their links to the user story language via explicit models as
indicated via the green box.

While being a valuable approach in requirements engineering, a user story is still too abstract to execute
because it lacks more detailed information about the narrative or concretely measurable quantities. To this
end, computer scientist have introduced scenario specifications to express software behaviour (e.g., intended
reaction to events) in a natural way and to exploit those specifications for the actual implementation. Well-
known representatives of this approach are Use Case diagrams of the Unified Modelling Language (UML) or
more formal approaches such as Live Sequence Charts [29] and others [65]. However, for the ExSce Concept,
we employ Behaviour-Driven Development (BDD) that builds on the success stories of test-driven development
(TDD) [12]. While TDD is a methodology for testing implementations, BDD supports acceptance testing. To
this end, it employs scenarios to bridge the gap between software customers and software developers. The
success of BDD can also be tied to the availability of the (informal) Gherkin language7 and the Cucumber
software tooling [112] that supports developers in interpreting Gherkin user stories. Gherkin extends user
stories by the description of a narrative as a collection of scenarios. Each scenario description consists of a
given-when-then cascade that define the initial situation, an event or action and an acceptance criterion,
respectively. Figure 2 exemplifies such a scenario for the previous user story.

Robot

Environment

Task

Quality assuranceModelling

Given the robot is moving to a destination

and there exists a dynamic obstacle O,

when the robot encounters O,

then the robot does not collide with O.

Figure 2: Gherkin-like scenario specification to extend the user story from Figure 1.

2.2 Exemplifying the ExSce Methodology

As a next step, we focus on the ExSce Methodology that exploits the scenario models that we have discussed
above. To this end, we present the methodology’s process and tools that support the activities in that process.
Figure 3 shows a graphical representation of the ExSce process, which is composed of the five activities. We
visit those activities in the context of the example scenario in Figure 2 and, to keep it concrete for a wide
robotics audience, assume here a ROS-based robot [62].

Each activity can be supported by tools to various degrees. Most robotic developers follow this process in
one way or another, as we will also discuss in Section 4. However, they tend to skip a clear requirements
specification and transition to code quickly. As a result, many software solutions become implicitly tailored to
specific robots, environments or tasks and, hence, difficult to reuse in a different context.

7https://cucumber.io/docs/gherkin/

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 7

https://cucumber.io/docs/gherkin/


D3.1 MRS Design Concept and Methodology

Figure 3: Process view of the ExSce Methodology

Specification of Executable Scenarios This activity addresses the model building for the scenario. Here,
function developers would, for example, provide URDF [23] files for specific kinematic chains, component
suppliers would contribute, for instance, launch files8 or initial configuration files for ROS nodes, whereas
system builders create launch files for an overall robotic system. Those models are part of the robot in the
scenario specification. Performance engineers or safety engineers would usually reuse such existing models.

The stakeholder also must provide the robot with the task to be performed. Often the task specification remains
hidden in code. Yet, in various domains some formal representations have emerged such as the Planning
Domain Definition Language (PDDL) [47] in task planning (example in Listing 2), the Task Frame Formalism
(TFF) [71, 20] in motion control or behaviour trees9 in navigation stacks. In the example of Figure 2, the
task could be as simple as a navigation goal that is eventually sent to the robot’s navigation stack during the
execution, as shown in the more extensive Listing 1 (cf. navigation type).

- type: "navigation"
goal: [3.82, -2.5, -2.14]

- type: "lamp_control"
switch_on: True

- type: "standstill"
duration: 10.0

- type: "wall_following"
checkpoints:
- [ 3.16, -3.34, -0.56]
- ...
polygon:
- [4.11, -0.67]
- ...

Listing 1: Specification of a disinfection
task [88].

(define (problem disinfect-hospital)
(:domain disinfection-domain)
(:objects robot-1 - Robot

room-1 room-2 - Room)
(:init (robot-location robot-1 room-1)

(connected room-1 room-2)
(infected room-2))

(:goal (disinfected room-2)))

Listing 2: Simple mission specification in
PDDL.

8http://wiki.ros.org/roslaunch/XML
9https://navigation.ros.org/behavior_trees/index.html

Page 8 Version 1.0
Confidentiality: Public Distribution

30 September 2021

http://wiki.ros.org/roslaunch/XML
https://navigation.ros.org/behavior_trees/index.html


D3.1 MRS Design Concept and Methodology

...
events:

- time: 0.65
variable: intIn
value: 2

- time: 0.8
variable: intOut
value: 5

Listing 3: Example scenario in libcosim.

wiggle = (-10 deg, 10 deg)
ego = Car with roadDeviation wiggle
c = Car visible, \

with roadDeviation resample(wiggle)
leftRight = Uniform(1.0, -1.0) * (1.25, 2.75)
Car beyond c by leftRight @ (4, 10), \

with roadDeviation resample(wiggle)

Listing 4: Example scenario in Scenic.

Additionally, the stakeholder must define the environment in which the robot should execute the task. This in-
cludes, for instance, obstacles, their shape, appearance or surface materials but also agents in that environment
or “events” occurring in the environment. Listing 3 exemplifies the latter of a libcosim scenario10 where at
defined points in time certain values are injected into a simulated system. On the contrary, Listing 4 is an ex-
ample that contains the description of an active agent c in the Scenic [41] specification. However, the example
specification in Figure 2 only defines the presence of a “dynamic obstacle” which could simply be realized in
an ad-hoc manner by a person randomly walking in front of the real robot or in a more controlled manner, for
example, by another robot that crosses in front of the robot under test. The degree of formality and control
tends to depend on the strictness of regulations.

Finally, the stakeholder specifies the mission-plausible information or acceptance criteria, here concretely,
that the robot should not collide with an obstacle. At this point, the specification may or may not link to a
concrete way of validating that criterion. For example, an easy “implementation” could be realized by the
safety engineer observing the robot and just noting down what they consider a collision. Instead, a more
objective analysis could also be based on the robot’s internal data or derived from external measurements such
as a motion capturing system.

To support the stakeholders in this activity, we foresee various candidates for models and tools. First, handling
the BDD specification as such, as we will discuss in Section 3. Second, another set of candidate models com-
prises the task definition (e.g. a more formal representation of “moving to a destination”) and the environment
definition (e.g. how and when should the dynamic obstacle move).

Transformation of Executable Scenarios Here, the scenarios are transformed to bring them into a shape
that is ready for execution either in simulation or on a real robot. For many artefacts, especially when they are
only described in natural language, a manual implementation is required and a human must make sure that this
implementation conforms to the requirements. However, as also discussed in Section 1 there already exist a
wide range of languages and related tools to automatically transform some of the robot-centered models into
code, for example, to derive a controller implementation from Matlab/Simulink models or to turn a declarative
PDDL mission specification into concrete plan via automated planning.

Additionally, in this activity, the acceptance criteria need to be extracted and potentially refined from the ExSce
specifications. In the running example, the choice on how to evaluate the “no collide” acceptance criterion must
be made at the latest at this stage. Similarly, the dynamics of the environment must be grounded in code or
configuration, for instance, by implementing a Gazebo plugin that lets an agent follow a predefined trajectory11

or randomly move12 in the environment.

The more commonalities there are between concepts, the more beneficial formal models and automated trans-
formations are. For instance, both, the robot’s task and the dynamic obstacle’s behaviour could be realized by
a trajectory or waypoint following controller and hence could share the same model representation and tools to
process those models. Further, candidates for tools comprise various code, configuration or deployment script
generators for various framework-related artefacts including monitors to evaluate acceptance criteria. Finally,

10https://open-simulation-platform.github.io/libcosim/scenario
11https://classic.gazebosim.org/tutorials?tut=animated_box&cat=build_robot
12https://classic.gazebosim.org/tutorials?tut=plugins_random_velocity

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 9

https://open-simulation-platform.github.io/libcosim/scenario
https://classic.gazebosim.org/tutorials?tut=animated_box&cat=build_robot
https://classic.gazebosim.org/tutorials?tut=plugins_random_velocity


D3.1 MRS Design Concept and Methodology

the formal representation of all those models provides the opportunity to systematically and automatically
introduce controlled variations into (parts of) the models.

Execution of Scenarios In this activity, the stakeholder deploys all required software on the robotic sys-
tem, initializes the system as required and tries to solve the task. Tool-wise, the execution environments are
already well covered by the various established Robot Software Frameworks such as ROS or OROCOS. We
review the simulation side in more detail in Section 5. To obtain data to be used in the following activities, the
robot and the execution environment must be instrumented accordingly. In the ROS context, the former can
be done to a certain extent using rosbag13 if the appropriate data is exposed via topics. Otherwise, additional
implementation and tooling effort is required. For the latter, i.e. the instrumentation of the execution envi-
ronment, this could mean to interface with a simulator or, in the real world, employing external measurement
devices such as motion capturing systems. In any case, for traceability the recorded data should be connected to
(i) the artefacts produced by the scenario specification and transformation activities; as well as (ii) the run-time
system (for example the ROS node from which the data originated) via provenance meta-data [78].

Quality assurance of Executable Scenarios Quality assurance of Executable Scenarios consumes the
execution traces and provenance data. By applying the acceptance criteria to the data contained in those
artefacts, the execution can be evaluated and associated with scenarios. Section 4.1 demonstrates one possible
realization of the quality assurance activity that is employed in the hospital disinfection use case.

Generalization of Executable Scenarios The final activity, Generalization of Executable Scenarios
distils the outcomes of the previous phases to narrow down test cases, open up tolerances, add or remove
conditions to scenario specifications which results in generalized scenario templates. Given the insights from
the execution traces, the respective stakeholder can also contribute new scenarios.

In the running example of Figure 2, the safety engineer may find out that the initial scenario was incomplete.
For instance, (i) during the execution the robot was colliding with other obstacles such as walls that were not
explicitly listed; (ii) the robot was not colliding with the obstacle but approaching it too closely so that it would
result in uncomfortable encounters with humans; or (iii) the environment was not representative of the desired
deployment site due to a lack of constraints in terms of rooms or corridors.

From a tooling perspective, stakeholders could be supported by comparing multiple ExSce specifications to
identify commonalities or differences between such specifications. Such an analysis could then guide them in
generating ExSce templates to be reused across different robots or environments. Such templates could also
be valuable inputs for design space exploration tools that could, for instance, sample open parameters to test a
system for robustness.

2.3 Instantiating the ExSce for further Use Cases and their Stakeholders

Every stakeholder has a different point of view of the system, hence they also have a unique view on the
executable scenarios. Each stakeholder can benefit in different ways through the models and artefacts of the
ExSce tooling. In this section, the advantages of the tooling are explored for various stakeholders, through
user stories highlighting their objectives and benefits, and scenario descriptions that illustrate how they would
use scenarios for achieving their goals. In the following, we provide concrete, representative examples across
SESAME use cases.

13http://wiki.ros.org/rosbag

Page 10 Version 1.0
Confidentiality: Public Distribution

30 September 2021

http://wiki.ros.org/rosbag


D3.1 MRS Design Concept and Methodology

2.3.1 Use case: Disinfecting Hospital Environments using Robotic Teams

User Story 2.1. As a safety engineer for a hospital disinfection robot, I want the robot to detect persons in its
surrounding area so that the robot can safely operate its UVC light.

Scenario 2.1.1. Given a person is <occluded>, when the robot encounters the person, then the robot detects
the person and the UVC lights are turned off after at most <time limit>.

Scenario 2.1.2. Given robot is outside the room and the room is lit with <lighting condition> and a person
is inside the room, when the robot enters the room, then the robot detects the person and the UVC lights are
turned off after at most <time limit>.

The tasks of a safety engineer should be supported by the descriptions of the scenario, by enabling the mod-
elling of hazardous situations and the appropriate response of the system. Variation points can be integrated
into the models to generalise the scenarios. In the scenarios above, these are introduced with terms surrounded
by angle brackets (<. . . >). Specifically, in the first scenario, the person (as seen by the robot) is occluded to
varying degrees; for instance, a part of their body or face is covered. In the second scenario, the room can be
lit with varying lighting conditions, such as sunlight or luminescent light. Given a model of those variation
points, a tool to support the transformation activity in the ExSce Workbench could sample from the specified
variations to generate inputs to a simulator. With support of a tool, different values for the variation points can
be selected, and appropriate artefacts can be generated, so that the system can be exposed to new situations
that might uncover edge cases.

The person detection component is mission-critical to safely perform the disinfection task. This component
could be powered by a machine learning model, which performance can be negatively affected when trained
over data that is not representative of all the possible situations. As it is a critical component, it is important
to generalise the training and verification process. This could be done by changing the posture of a person:
standing in the centre of the room, standing next to a wall, seated behind a desk; and changing the orientation
of the person: facing directly to the robot, turned 90 degrees, or facing away completely.

User Story 2.2. As a component supplier for a hospital disinfection robot, I want the robot to navigate in
long, featureless corridors so that it successfully reaches its goal.

Scenario 2.2.1. Given a long corridor without distinct features and the robot has the correct map of the
environment, when the robot is sent a navigation goal on the other side of the corridor, then the robot navigates
to the goal and the robot is localised for the entire task.

Scenario 2.2.2. Given a long corridor with carts and the robot has no knowledge about the carts, when the
robot is sent a navigation goal on the other side of the corridor, then the robot navigates to the goal and the
robot is localised for the entire task.

Component suppliers should be able to verify their components and assess their performance in simulation.
However, this can be cumbersome to implement as this requires a 3D model of the test environment. The
creation of one 3D model of an environment can consume too much time and effort with traditional man-
ual methods, such as modelling with a 3D editor. Furthermore, the effort needed for simulation-based testing
increases when variations of the environment are desired. The ExSce Workbench can reduce this effort by
providing models to specify environments and their variations (specification activity). Then during the trans-
formation activity a tool can automatically generate, among others, a wide variety of 3D simulator models.
When the component supplier detects a failure case of the component, he would introduce further, more tar-
geted variations of the scenario during the generalization activity. On the one hand, this helps to narrow down
the origins of the problem, on the other hand those additional scenarios also provides regression tests to detect
the failure early if it occurs again in the future.

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 11



D3.1 MRS Design Concept and Methodology

2.3.2 Use case: Dependable Multi-Robot Systems in Battery Innovation Centre

User Story 2.3. As a behaviour developer for a robot in the battery innovation centre, I want to specify how
the robot moves to pick up a battery, so that I can adapt the robots’ motion to different locations of the battery.

Scenario 2.3.1. Given a battery is located <location> in front of one robot manipulator, when the start signal
is triggered, then the manipulator moves to lift the battery, and the moving manipulator remains within the
tolerances of the <motion specification>.

In the battery innovation centre use case, the robot arms may need to manipulate batteries from different
surfaces, e.g. from an elevated surface, the floor, or transported by another robot. A behaviour developer
may wish to choose specific motion specifications that are most suitable for the particular location where the
battery is placed, as shown in Scenario 2.3.1. In this context, the ExSce workbench may provide tools to
specify different motions for robot manipulators.

User Story 2.4. As a function developer for a battery innovation centre, I want to use two robot arms to lift a
battery safely, so that heavier batteries can be manipulated.

Scenario 2.4.1. Given a battery is placed between two robot manipulators on a flat surface, when the start
signal is triggered, then the manipulators hold the battery at <height> for <duration> and the end-effectors
do not exert more than <force limit> on the battery.

In this use case, there also exist heavier batteries whose weight may exceed the specified limit of some robot
manipulators. The use of two manipulators to handle such cases is of interest to function developers. A
criterion to verify the success of the dual-arm lift can be the battery being held at some height for some
predefined duration. A criterion to ensure that the robot arms will not damage the battery can be a limit on
how much force the end-effectors may exert on the battery. In this context, the ExSce workbench may provide
tools to link the instrumentation needs as specified in acceptance criteria, here in the form of BDD scenarios,
to the corresponding monitors that can provide the relevant information available in the system.

2.3.3 Use case: Autonomous Pest Management in Viticulture

User Story 2.5. As a function developer of the drone’s trajectory planner, I want the planner to minimize the
distance between the robot’s current position and the next waypoint so that the robot passes through all the
specified waypoints.

Scenario 2.5.1. Given a trajectory with several waypoints, and all waypoints are in free space, when the plan
is generated, then the trajectory passes through all the waypoints.

Scenario 2.5.2. Given a trajectory with several waypoints, and obstacles are located near those waypoints,
when the trajectory is generated, then the trajectory passes through all waypoints, and the drone maintains a
distance to the obstacles of more than 50cm.

Scenario 2.5.3. Given a trajectory with several waypoints, and a dynamic obstacle, when the drone executes
the trajectory, then the drone passes through all waypoints, and the drone keeps a minimal distance to the
obstacle of 50cm.

The function developer for the trajectory planner of the drones will want to verify and validate that the func-
tionality they designed behaves as expected. As this is a single component running in a robot within an MRS,
there are different levels at which this can be done, for example, verifying the correctness of the optimiza-
tion algorithm, verifying and validating its behaviour in an integrated system using simulation, and validating
it in the real world against application requirements where its online behaviour to external phenomena can be

Page 12 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

tested. This also implies that throughout the development cycle, the function developer will communicate with
other stakeholders about the planner’s role in the system.

In this user story, developers will require minimally a task specification (e.g. the list of waypoints to be used
to generate commands) and the chosen optimization parameters of the planner itself. Depending on the level
at which the planner is being evaluated, developers need to evaluate the acceptance criteria given the task and
parameters being used. The execution of the scenarios can be done offline, verifying algorithmically that the
planner produces the correct output, or online using existing ROS-based tools to simulate or perform tests in the
real world. An analysis of historical execution traces can help identify the boundaries at which the functionality
degrades or fails, particularly when the planner is tested as part of the system. Generating scenarios with
variations across deployment sites (e.g. a different vineyard on a steep hill) and obstacles (e.g., multiple
dynamic obstacles of different sizes flying at different, potentially varying, speeds) provides new, unseen input
data for these tests (e.g. waypoints that require sharp turns or tasks that also specify the orientation for each
waypoint), and requires a corresponding acceptance criteria to be specified (e.g., tolerances on the computed
trajectory).

User Story 2.6. As a performance designer of an autonomous pest management drone, I want the drone to
spray only infected vines so that fungicide is used efficiently.

Scenario 2.6.1. Given a row with vines, and an infected vine V, and adjacent vines U and W, when the robot
is spraying vine V, then its altitude is 2.5 m above the canopy of vine V, and the localization accuracy is not
below 15 cm, and no fungicide is sprayed on vine U and W.

Scenario 2.6.2. Given a row with vines, and an infected vine V, and adjacent vines U and W, and the robot
is spraying vine V, when wind increases, then its altitude is 2.5 m above the canopy of vine V, and the
localization accuracy is not below 25 cm, and no fungicide is sprayed on vine U and W.

Scenario 2.6.3. Given a row with vines, and an infected vine V, and adjacent vines U and W, and the robot is
spraying vine V, when connection is lost to the Global Navigation Satellite System (GNSS), then its altitude is
2.5 m above the canopy of vine V, and the localization accuracy does not fall below 25 cm, and no fungicide
is sprayed on vine U and W.

A performance designer looking at the efficiency of the spraying drone will examine its nominal behaviour to
ensure the NFR for spraying are met. To evaluate this, the scenarios must define new or reuse existing robot
and environment models, the task specification (e.g. the waypoints of the vines to be sprayed) and the drone’s
configuration parameters. As acceptance criteria, the drone’s position should be monitored and compared
against the ground truth in simulation and the vines it has sprayed, and whether healthy vines were sprayed.
In the scenarios defined above, the performance designer of the spraying drone has set the lower threshold
to 15 cm for a nominal case (“good” performance) and 25 cm for scenarios with disturbances or failures
(“sufficient”). Note that “good” and “sufficient” localization accuracy thresholds are much different for the data
collection drone in this same use case (where the sufficient values are between 2 and 3 cm). The execution can
take place in simulation or the real world, and would require the ability to introduce environmental disturbances
(e.g. wind) and failures to the system (e.g. loss of communication with the GNSS). The acceptance criteria
might depend on the specific target application, so a comprehensive set of scenarios would allow the designers
to optimize configuration parameters to achieve a desired performance and specify the acceptable thresholds
for e.g. the localization accuracy.

User Story 2.7. As a safety engineer of an autonomous pest management drone, I want the robot to react to
high speed winds so that it does not damage the vines, other drones or people.

Scenario 2.7.1. Given a drone that is spraying a vine, when the wind speed exceeds the allowed limit, then
the spraying component is stopped.

Scenario 2.7.2. Given a drone following a route, when the wind speed exceeds the allowed limit, then the
drone does not fly at an altitude below 2.5 m from the canopy.

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 13



D3.1 MRS Design Concept and Methodology

Modelling
Metametamodel

Metamodel
Model

Realization

Quality assurance
Verification
Validation

Instrumentation
Acceptance criteria

Execution context
Real world

Hardware in the loop
Simulation

Robot
Fleet
Flock

Platform
Device

Component

Environment
Crowd
Traffic

Co-worker
Obstacle

Disturbance

Task
Skill

Motion

Table 1: Various design dimensions associated with the ExSce (partially based on [19]). Blue-
coloured tables represent core robotics domains that are present in the scenario specification.

Scenario 2.7.3. Given a drone A following a route and a remote sensing drone B following drone A, when
the wind speed exceeds the allowed limit, then drone B will maintain a minimum distance of X meters.

A safety engineer will be interested in scenarios that describe potential hazards and dangerous situations. This
user story must be verified and validated both in simulation and the real world. The former allows engineers to
put the drones in dangerous situations without the risks of damaging the system, its environment or living be-
ings. The latter is required to validate that the available mitigations work in practice and to reveal corner cases
that had not occurred to engineers. In this user story, in addition to the usual elements of the scenario specifica-
tion, engineers also want to specify the behaviour and parameters of the resulting disturbances from high wind
speeds. The acceptance criteria corresponds to the application’s safety requirements (e.g. no spraying during
high winds, no flying below the safety altitude, safety distance to other drones). To simulate the wind distur-
bances, the required code must be developed or generated (e.g. as a Gazebo plugin). For safety engineers, the
generation of new scenarios helps discover corner cases; for automated generation, the corresponding accep-
tance criteria could be automatically generated.

2.4 Design Dimensions, Concepts and Aspects of the Executable Scenario

While a pure scenario specification could be built from the robotics domains, this is insufficient for the ex-
ecutable scenario that also must consider (i) the realization of the robot’s behaviour; and (ii) the execution
context that the robot is embedded in. Additionally, the ExSce must be able to evaluate the robot’s perfor-
mance. Table 1 summarizes some recurring design dimensions of the ExSce with their major constituents.

2.4.1 Design dimensions and their concepts as focused views on the Executable Scenario

Modelling. The lowest level of abstraction in modelling is the system, which is also known as a realization.
One level of abstraction higher are the models, which are specific abstractions that represent the systems. Each
view or abstractions of the same system may introduce a new type of model, or the other way around, many
models can represent the same system. The core relation in modelling is that of conformance or conforms-
to [22] between models. A model conforms to its meta-model if it satisfies all the constraints imposed by the
meta-model . Hence, a meta-model is one level of abstraction above models and defines the language in which
models can be specified: a so-called domain-specific language. The mission specification in Listing 2 pro-
vides one example that conforms to the syntactic meta-model of PDDL and the semantic meta-meta-model of
topology — here, the connection between rooms.

Page 14 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

As we discussed in Section 1, a rich zoo of DSLs exists in robotics. An equivalently rich ecosystem of
tools is available to create meta-models or DSLs and support features such as creating, modifying, checking,
linking, transforming, storing or querying concrete models. Such tools can be realized within general-purpose
programming languages, using narrowly-focused language workbenches or on top of graph databases. Even
if the representation of models varies between tools, the meta-meta-models must remain stable, thus allowing
the definition of model-to-model transformations between not only tools but also different types of models.

Robotic domains. In the above example, only the robotics domains referred more-or-less directly to robot-
specific concepts, although at a very abstract level. The challenge in making a scenario executable and then
evaluating it, is that all those concepts require a more detailed representation. Many of those (meta)models,
fortunately, share a wide range of domain-independent meta-meta-models that have already been scrutinized
and formalized, often even in “outside” fields of research. Some examples include meta-meta-models of (i) ge-
ometry which introduces concepts such as points, lines, frames, position or orientation; (ii) kinematics with
concepts like velocity or acceleration; (iii) classical mechanics for momentum, force, or various “types” of en-
ergy; (iv) dynamics as the mappings between geometry and kinematics on the one side and classical mechanics
on the other side; (v) control to make systems move and estimation for perception; (vi) algorithms for the com-
position of computations; (vii) block-port-connector for hierarchical system composition [101] as can be found
in finite state machines, kinematic chains, dynamic Bayesian networks, component-based software systems or
bond graphs; or (viii) directed-acyclic graphs to represent partial or total order. For a more elaborate treatment,
we refer the interested reader to [19].

Quality assurance. The quality assurance design dimension in Table 1 includes elements which are nec-
essary to assure that the system being developed satisfies the requirements from various stakeholders, e.g.
user stories in Section 2.3. This typically involves defining criteria for verifying and validating that the listed
requirements are met, e.g. the BDD scenarios listed in Section 2.3. This in turn requires instrumentation to col-
lect the necessary information about the system and environment while the task is carried out. Such data can
be information about the execution, such as state transitions to verify that the UVC lights are turned off when
people are detected or execution time to verify that the lights are turned off quickly enough, in the hospital dis-
infection use case, e.g. in scenarios for User Story 2.1. Relevant information may also include estimations of
internal states of the robots or external states of the environments. Examples from the battery innovation cen-
tre use case include the applied forces at the robot arms’ end-effectors to verify that the batteries will not be
damaged by the end-effector, and the height of the battery above a surface to verify that the batteries are lifted
successfully (c.f. User Story 2.4).

While acceptance criteria can hint at the type of data necessary for verification, how such data can be acquired
depends on the capabilities of the specific MRS. Verifying the forces applied by the arms’ end-effectors on
the battery, for example, is dependent on whether appropriate sensors are available on the robots. If joint
torque sensors are available, the end-effector forces can be computed via forward dynamics, which demands
both such capability to be available during execution and the appropriate data to be exposed for collection
and monitoring. Furthermore, acquisition of the same information may differ vastly depending on whether
execution is carried out in simulation or the real world. Verifying the localization of a mobile robot, as in the
hospital disinfection or vineyard use cases, implies that ground truth position of the robot is available, which
can be directly acquired in simulation but is not trivial in the real world. Finally, instrumentation needs may
change over time, e.g. force estimation in the battery lifting use case is only relevant when the end-effectors
are in contact with the battery, which suggests on-demand adaptations of monitoring instruments are desirable,
both to conserve computing resources and to avoid collection of meaningless data.

Execution context. The execution context determines if the system is to be executed fully in simulation,
partially in simulation and real world, or completely in the real world. This has an impact on points like setup
and execution times (tend to be lower in simulation than in the real world), availability of data (usually better in

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 15



D3.1 MRS Design Concept and Methodology

simulation) or quality of data (more representative in the real world). Section 5 discusses this design dimension
and its joint points with other design dimensions in depth.

2.4.2 Aspects of cross-cutting concerns in the Executable Scenario

An exhaustive, in-depth analysis of all design dimensions and their interactions is prohibitively expensive.
Hence, guided and motivated by the use cases and challenges defined in SESAME, in the following chapters
and sections we investigate specific views on or slices through the design dimensions in more detail. Following
similar terminology as in aspect-oriented programming [58], we call such a cross-cutting view an aspect.

Then, the remainder of this deliverable focuses on the following aspects:

1. A further analysis of the concepts that underlie the ExSce itself to provide first steps to a formalization
of the ExSce (Section 3)

2. An analysis of future research and development directions of the ExSce guided by developer interviews
that provide interesting insights into real-world testing of robotic systems and show opportunities for
the ExSce, especially in the quality assurance (Section 4)

3. Transformation and simulated execution of scenarios for the mobile bases in the Locomotec use case
(Section 5).

Page 16 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

3 First Steps Towards a Formalization of the Executable Sce-
nario

Scenario specification is at the core of the ExSce methodology, and is an activity that is cross-cutting across
design dimensions and stakeholder views. As the first steps towards a formalization of the executable scenarios,
we identify concepts to specify missions, environment, robots and safety concepts from prior and related work.

3.1 User story and behaviour-driven development meta-meta-model

We have already seen in Section 2 that the BDD community has spent significant time and effort to establish a
meta-meta-model for user stories and scenarios that we are planning to reuse in the ExSce. The main concepts
are the placeholders in the textual notation and include

• the role or stakeholder;
• the activity to be performed; and
• the goal or benefit from that activity;

The narrative is the composition relation of the previous three concepts. Next, BDD introduces the
acceptance criteria as the composition relation of a set for each of the following three concepts

• the given initial situation;
• the when trigger or precondition of the scenario; and
• the then effect as the outcome of the scenario.

The user story is the composition relation between exactly one narrative and a set of acceptance
criteria. While Gherkin also offers keywords such as and, but, scenario template or background
those are just syntactic sugar over the core concepts.

We consider this to be a good meta-meta-model because it is simple and understandable in a time span of a
few minutes. In the context of SESAME the next challenge is to build meta-models that compose this meta-
meta-model with the concepts from the robotics domains. Additionally, we consider to compose the user story
meta-meta-model with the DAG meta-meta-model to realize time-wise orderings between scenarios.

3.2 Scenario Specification Concepts

In SAFEMUV14, we identified concepts and relationships for an inspection application of a multi-drone team,
which shares some commonalities with the viticulture use case. Figure 4 shows the relations between the iden-
tified concepts. This graphical model offers a birds-eye view of the relationships between different concepts
across design dimensions and domains. Whenever possible, we have attempted to generalize the concepts from
the UAV-specific application to more abstract SESAME concepts. However, this generalization is not exhaus-
tive: additional concepts and relationships derived from the design dimensions and identified in the ExSce
methodology, as well as concepts for specific stakeholder views will be added, e.g. provenance concepts for
quality assurance15 and concepts for the execution context.

Tables 2, 3 and 4 show the definitions of robot, mission and environment, and safety concepts initially iden-
tified. Robotic specification concepts will be integrated into the system modelling. Environment and robotic
models and meta-model s required for the execution of scenarios in simulation will be further discussed in
Section 5.

14https://www.york.ac.uk/assuring-autonomy/demonstrators/remote-inspection-
using-drones/

15https://www.w3.org/TR/prov-overview/

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 17

https://www.york.ac.uk/assuring-autonomy/demonstrators/remote-inspection-using-drones/
https://www.york.ac.uk/assuring-autonomy/demonstrators/remote-inspection-using-drones/
https://www.w3.org/TR/prov-overview/


D3.1 MRS Design Concept and Methodology

Figure 4: Concepts (circles) and relationships (directed arrows) for specifying scenarios: Missions
(blue), robot (grey), environment (green) and safety (red) concepts.

Table 2: Robot specification concepts

Concept Definition
Fleet A set of robots deployed for a specific application.
Robot A specific instance of a robot as defined in [63]. Robot concepts should be

interpreted as a (recursively-defined) composite.
Robot Configura-
tion

A robot’s composition at a particular point in time.

Component Hardware, software or information objects according to the component
taxonomy in [63].

Capability The ability of a robot to perform an action [63].
Robot Action An action performed by a robot as defined in [63].
Operator Action Actions operators, such as a pilot, can perform in teleoperated or semi-

autonomous operations.

For each use case, we will investigate which stakeholder views require additional concepts. From the per-
spective of a safety engineer, for example, application-specific risk assessment concepts derived from their
regulatory requirements might need to be considered. In a more abstract level, Table 4 describes the basic con-
cepts from Bow-Tie Diagrams – a graphical model that establishes relationships between a hazard and a top
event (an undesired situation), and its causes (threats) and effects (consequences) – as a starting place. Events
are related to when clauses in BDD as triggers for the scenarios (threats) and then clauses as the (undesired)
outcomes. Barriers and controls are closely related to requirements and acceptance criteria, as they are test
conditions that need to be verified and validated according to internal or external regulations.

It is important to emphasize that the concepts described above are the elementary concepts which will be
formalized and extended as meta-models in Task 3.2 (Executable Scenarios Metamodels) of WP 3.

Page 18 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

Table 3: Mission specification concepts

Concept Definition
Mission A mission is a high-level task which should be achieved by the fleet.
Task A unit of work that is allocatable to a robot or robots.
Goal The specification of the post-conditions of an executed task.
Environment A description of the physical location where a mission takes place.
Volume A 3D region, usually with some semantic meaning attached, that restricts

the spatial boundaries where a robot should operate, e.g. operational vol-
umes for a mission or forbidden regions for a robot.

Area A 2D region that restricts the spatial boundaries where a robot should oper-
ate. Often a simplified version of a volume with infinite z.

Object Bodies on the environment with which a robot interacts during its tasks.
Different types of objects are usually present in an environment, e.g. obsta-
cles are objects that robots avoid.

Pose A geometric description of a location.
Requirement The criteria a mission should satisfy

Table 4: Bow-Tie Diagram concepts from [32]

Concept Definition
Event “An undesired system state where control over the hazard is lost”.
Barrier A collection of mitigation strategies that can be composed by multiple con-

trols.
Control “Any process, function, device, practice or other action that modifies a

safety risk”

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 19



D3.1 MRS Design Concept and Methodology

4 Developer Interviews: Empirical Analysis of Executable Sce-
narios in the SESAME Context

An organization’s testing policy depends on contextual factors, including operational constraints (e.g. available
resources), organizational policies, internal and external standards, among others. In this section, we provide
etnographic details of Locomotec and identify operational constraints that influence their test process. We also
analyse additional factors in this subsection, based on interviews conducted with two developers at Locomotec
to examine their quality assurance (QA) practices for their mobile disinfecction robot, and the test artefacts for
their latest test campaign. The QA techniques employed by engineers, who both are in charge of development
and testing, is key to ensure not only the correct functionality of the robot, but also to ensure that the safety
features, e.g. mitigating the risks of overexposure to UVC light, are sufficient according to standards. Finally,
we discuss development and testing challenges faced by engineers, and insights relevant for the ExSce in this
section.

Locomotec has 20 software developers, out of which, five are in charge of developing the ROS packages and
other software components used by the KELO AD robot. The experience level of the two senior developers
is on average 15 years, while the three junior developers have on average 4 years of experience. The team
does not strictly follow agile practices as part of their organization, but have adopted parts of them into their
development workflow, e.g. the duration of the sprints is variable according to the feature or issues currently
being addressed, and a subset of the developers is mostly in charge of the tests of all features (one senior and
two junior developers).

4.1 Test Process

Given that their development life cycle follows a mixture of models, they have different test strategies for
different parts of their life cycle. All their testing activities are motivated by the compliance with standards for
the UVC robot, and developers had regular testing sessions in order to comply with the minimum number of
testing hours required by internal guidelines as well. As part of their development process, and based on their
experience, they set a certain number of Key Performance Indicators (KPI), like kilometers the robot should
have navigated by the time they reach a given project milestone. This has the goal of exposing the robot to a
wide variety of situations in the real-world and is used by developers to estimate the number of hours a week
they should dedicate to testing activities. However, despite the considerable effort required for testing, it is
unclear what type of evidence they need to provide for certification. On Figure 5 the two main test processes
and its activities are illustrated.

On so-called field tests, engineers follow short, agile-like dev-test cycles. These testing sessions were held two
to three times a week, and had a duration of 4 hours on average, where engineers split their time roughly 50-
50 between development and testing activities. Test design and implementation activities were combined and
tests were usually executed right after.

Endurance tests follow a more classical test process. These types of tests usually take place full-time over a
week, where the pre-defined test cases are run multiple times. These sessions required a more structured plan-
ning process: engineers planned these sessions in a dedicated meeting where the test team defines the goals of
the test campaign, which test suites to focus on, and which test cases to include. The exit criteria for the tests
is mainly focused on robustness, i.e. the failure rates of components should be acceptable according to stan-
dards and the risk assessment of the robot, and is usually measured in mean time to failure, e.g. overexposure
or collision. Engineers carry out the first four activities of the test process (cf. Figure 5, Endurance tests) in
this meeting as well.

Test planning is informed by the standards the team is using as a baseline to argue about the safety of their
system – three of those are related to the safety of mobile robots and two are specific to the UVC light emissions

Page 20 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

Figure 5: Test processes for the UVC Arodis robot, including the activities covered in the field (blue)
and endurance test process (green). Partially implemented activities or information flow are in yellow.
Test work products are in grey.

– and by the Failure Modes and Effects Analysis (FMEA) that is conducted in parallel by the engineers together
with the hardware team.

The test monitoring and control activities are mostly carried out by the engineer leading the testing efforts,
who examines test results and logs and assesses the progress of the test campaign according to the exit criteria.
Together with the testing team, they also determine if additional test runs or new test cases are required. Test
analysis is also tightly related to the FMEA process which heavily influences what to test. Both activities
reveal defects of the system under test and help developers prioritize which features to test first. Test design
techniques employed by engineers will be discussed in more detail in Section 4.2.

Test implementation activities take place shortly before the scheduled test dates where tests are finally executed.
Test artefacts for these activities are discussed in more detail in Section 4.3.

4.2 Testing Practices

Conventional testing techniques, like the use of unit tests and continuous integration (CI) tools only play a
smaller role on the ARODIS robot. Interestingly, these techniques have been used for many years on another
robot developed by Locomotec. This choice is related to the cost of developing and maintaining testing in-
frastructure [5] and the return on investment of applying these techniques. Tests are conducted indoors, with
network access and on a higher frequency than their other robot, which is tested outdoors on remote locations
and with no network. In practice, this means that the time required to find and debug issues is much shorter for
ARODIS and therefore the benefits of unit or integration tests that could be run on CI is much lower.

Experience-based testing is the predominant test design technique, engineers use their experience and knowl-
edge to design and choose test cases. Exploratory testing and error guessing are the test design techniques

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 21



D3.1 MRS Design Concept and Methodology

used at the current TRL: Rather than define clear exit criteria for their tests, engineers are more interested in
evaluating the performance of the robot over time or find “ways to break the robo”.

Equivalence partitioning is another technique used by developers to minimize test case explosion and target
those use cases where they would gain the most (new) information. Testers divide possible test input variations
into equivalent classes, taking into account information from safety risks identified through the FMEA and
developers’ experience. Discrete variables such as presence of occlusions, or the standing/sitting position
are straightforward to identify as partitions. Continuous variables are partitioned with information from the
FMEA, component specifications (e.g. UVC lamps and sensors), and engineers’ experiences.

As an example, to identify partitions in the distance between robot and person for person detection tests, engi-
neers created a table that listed possible sensor configurations as rows and the distance to people as columns.
The latter had increments based on their experience and the boundaries at which the sensor could detect a per-
son, as well as the range at which UVC light is no longer dangerous. Based on this information, cells were
classified into high confidence of detection or no danger (green), uncertain about detection (yellow) and high
confidence of failure to detect people (red). Yellow cells and their boundaries to green and red areas are the
main focus of the tests cases, since they provide information about the boundaries at which the robot could
operate safely.

4.3 Test Work Products

A number of test products are created as the result of activities in the test process as shown in Figure 5.

Test scripts include three classes of tests: person detection (TCP), navigation (TCC) and person detection and
navigation combined (TCPC). Both TCP and TCC test cases describe component-level tests, whose goal is
to evaluate the performance of those components. The former evaluates the people detection based on the
number of false positives and false negatives, as well as the model’s precision and recall. The latter evaluates
the navigation component as it follows a disinfection route based on the time required to disinfect the area
and the distance traveled. TCC is on occasion also used as an integration test between the navigation and the
person detection components, without evaluating the performance of the latter. Finally, TCPC test cases are
system-level tests with the objective of testing the full disinfection workflow, combining the disinfection task
with its safe operation based on the people detection component. In addition to the performance metrics of
the two prior test cases, they record the amount of UVC light a person is exposed to during the task. TCPC
is a performance test where they measure how efficient the system is at disinfecting (by measuring the UVC
intensity with the help of a hand held UVC light meter).

Each script contains the goal of the test class, which are the relevant statistics for these types of tests, and the
test suites included on each class. Subsequently, each test suite includes its description, which raw information
to record from the robot, which statistics to compute (based on the test class statistics, but if necessary adding
relevant ones for the test suite), assumptions from the testers, and a table listing each test case, and the values
of each input variable based on the equivalence partitions. Perception tests were the focus of this test campaign
and clearly represent the largest proportion in number of test cases and variations to be tested. These test cases
had the longest “lifespan” on average, i.e. the number of days between the first and last test run for a given test
case, and the largest variations in the number of runs per test case.

Test reporting is done on an in-house tool called “Technology Readiness Level Test Report Library” (TRL2).
Once test cases are defined, the TRL2 tool is updated based on the test scripts. The tool uses a formal model
based on the ISO 29119 standard for software testing to define the test report template. After a run, these
models are presented to the tester as a web form with fields for the tester to input information manually, and
provide developers with a way to add observations to the test runs right after their execution. These reports
can contain multiple runs allowing testers to collect data about different variations in the test suite based on
their test case definition. The tool was developed to improve the traceability between requirements (FMEA),
software (bugs and hardware issues) and test runs. However, the time required to record and annotate test runs,

Page 22 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

along with the cost of development and maintenance of the tool itself are prohibitive for such a small team.
This is in line with other criteria used by the team about the cost of testing [5].

As for log files, engineers rely on the rosbag tool16 to record a subset of topics relevant to the test suite
being tested. The replaying capabilities of rosbag files also play an important role when testing the people
detection component, as they can be used to assess its performance on real-world data after models have been
updated. Person detection logs contain statistics about the performance of the person detection component;
this information is also contained in the rosbag files, but these CSV files provide engineers easier access to the
data needed for analysis without having to replay each rosbag file. In addition to that, engineers store the video
stream on some runs which can be reused to test the person detection models.

They also use a git repository to keep track of test incidents (bugs/issues that were not fixable in a field test
session), mostly hardware related. In addition to some basic metadata, these incident reports contain the
software versions and hardware configuration of the robot, links to other reports (test run reports, other test
incidents, git issues) and the risk assessment of the failures. This assessment is quantified for the FMEA by
computing the risk priority number (RPN) of the issue based on (i) the severity of the fault, (ii) the likelihood
of it occurring and (iii) the likelihood that it can be detected. Once the fix has been implemented, the software
and hardware versions of the components that include the fix, along with the updated risk assessment are added
to the issue.

4.4 Development and Testing Challenges

Quality assurance processes can be supported by the ExSce methodology and tools (Figure 3), and have cross-
cutting implications for the design dimensions of the ExSce. The interviewed engineers reported a high level
of confidence on their test process, but acknowledge that the variations they have considered in the defined test
cases might not be sufficient to assure that KPIs are reached in other environments. On the question of whether
the amount of testing they had carried out was sufficient, an interviewee said:

No. [Navigation tests do not] account for changes in the environment. If there are now many
tables and chairs suddenly in the corridor, this we didn’t test. So I would like to have tested all
possible combinations to be perfectly sure, but that is not feasible. [...] we have not explored
simulation [to vary the environment] so I would like to have a better understanding of all kinds of
clutterness, messiness, extremely long corridors and lots of rooms that you can not test in reality
with a real field-test. [Under] normal conditions I feel reasonably comfortable, but everything
that is a bit beyond what we have so far tested I just want to be on the safe side but this is very
difficult to create. And for person detection I think we have already good coverage I have also a
good feeling here, but I would like to have some tool that says you have indeed not overlooked a
particular scenario or something that you missed completely. [...] tests are [carried out] under
controlled conditions, but how does it scale up? I’m also rather confident that in the normal
cases it works as expected but I would like to know what we have forgotten or corner cases. [...]
something that is beyond what we have thought in our variability or we made this discretization
in meters and maybe there was something we overlooked or we should have done it with more
resolution or we should have tested smaller or longer [distances]. What I would really like is
to have stressy environments that I cannot easily reproduce in reality, just to be sure that the
performance is as in the other tests.

This challenge is related to the variability of the environment, as engineers have a limited amount of time
and resources and it is impossible to test all possible combinations. Even if resources were not a constraint,
the tests engineers have conducted only seem sufficient for the variations the physical environment allows

16http://wiki.ros.org/rosbag/Commandline

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 23

http://wiki.ros.org/rosbag/Commandline


D3.1 MRS Design Concept and Methodology

them; engineers lack the ability or resources to manufacture real-world scenarios that cause corner-cases and
environment variations beyond what their test bed offers. Test analysis and design activities can be supported
by minimizing the bias of purely experience-based techniques, and data from executed scenarios can provide
an overview of the test space.

While the current test processes are informed by risk assessment activities and standards, stakeholders rely on
handcrafted methodologies and tools to integrate them. Assured scenarios can be used to generalize scenarios
and to identify ExSce templates, enabling stakeholders to test a wider set of variations in simulation. Ideally,
the information flow between the risk assessment processes (e.g. FMEA) and standards and activities in the
test process would be bidirectional. For example, for the dashed arrow in Figure 5 between the test analysis and
FMEA activities, the assurance of the FMEA risks would be included in the exit criteria, and the results and
progress of the testing activities adds or updates risks in the FMEA worksheet. About the flow of information
between test analysis activities and the FMEA, an interviewee said:

[...] we don’t really do that so much, but this is how we would like to do that. The reason is that
we don’t have good tooling for that, but what I would like to do is we are working on the person
detection component, and we know there are some failure modes, [e.g.] person is not detected
and [...] we would like to have the statistics automatically linked to the likelihood of an event
happening, so we can trace back that the likelihood is very low because of this test campaign.

And when asked if there was information flow between test analysis (what to test) and test design (how to test)
and the FMEA process, an interviewee answered:

[Test analysis and design is] based on mitigations and subcomponents of the FMEA. There is an
assumption, this is kind of not standard, that we have a hierarchical decomposition of the system
that is used for FMEA, which is by definition of FMEA not necessarily the case.

For this, stakeholders need to maintain the traceability between (safety) requirements and executed scenar-
ios. The ExSce methodology and tools can support these activities through the provenance data of executed
scenarios. Provenance data allows stakeholders to trace back executed scenarios to requirements, scenario
specifications and acceptance criteria. As a result, these data can also be used as evidence of a SUT’s com-
pliance with standards, and support stakeholders with test monitoring and control activities. When asked why
did they choose to develop TRL instead of using another (automated) tool to manage their tests, engineers
responded:

Other tools didn’t fulfil our requirements at the time. The idea was that this would support the
overall testing process. There is a feature in TRL [tool] where a test report templates are defined,
and testers would follow some steps: define the template for each test, including its goals and the
steps to follow, and then they would go ahead and fill out the test reports. It was supposed to have
some automated information from the robot. At the time, there was no fully integrated system for
this that linked all the information together. We don’t fully exploit all the features because the
current system is a bit tedious and requires a lot of [manual] effort, so only the test reports are
used during prototyping. The goal of the [TRL tool] workflow was to first model the system for
the FMEA, then define tests for [each of] the components, and generate reports for them. It was
also integrated to issues on GitLab so you could create tests for a specific issue or once the test is
done, it was also possible to create issues directly from the report interface or close related ones.

An important aspect to consider as part of the process/methodology design dimension during the development
of the ExSce methodology and tools is the return on investment for stakeholders. Given that the cost and
resources of testing robotic systems are already a challenge for many [5], and is in line with the rationale for
(not) adopting test practices by engineers as described in Section 4.2, the ExSce should support and integrate

Page 24 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

well with existing development workflows, and the benefits and insights obtained by stakeholders from the
ExSce methodology and tools should exceed their implementation and maintenance costs. Tailorability is also
a key aspect of the generalization of scenarios, as it should support the reuse of models across applications
(e.g. the ARODIS robot shares hardware components with other robot models for logistic tasks). Similarly,
the ExSce tooling should support integration with existing development frameworks and enable developers to
easily query information about executed and assured scenarios for analysis. Engineers explain why they create
person detection logs even though the information is available on the rosbag files of their experiments:

It is just an easier way for me to create scripts and statistics because I just create all this CSV
files and [load them] on a Jupyter notebook, process all the data, and create statistics for typical
measures of object detection.

Although rosbag is a common tool used by testers [5], its data is only available when replaying the files and
therefore requires additional processing to make the performance metrics of components accessible for analysis
throughout the test process.

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 25



D3.1 MRS Design Concept and Methodology

(a) Gazebo (b) Unity (c) WeBots

Figure 6: Three representatives of multi-domain simulators currently available that enable the simu-
lation of robotic platforms.

5 Scenario Execution and Simulation

Verification and validation (V&V) is a key step in the development of any software application. This is es-
pecially true for cyber-physical systems, as their interactions with the environment poses safety and security
concerns that are stricter than in other software domains. Hence, numerous tests are needed to reach a level of
confidence that all requirements are being fulfilled, including those regarding safety and security. This activ-
ity can be performed in the real world with the robot, or in a virtual world with an abstraction of the system
and its environment. Both have their strengths and weaknesses, but in general they both can be used to reach
the confidence level required to validate the application by finding faults [106]. To use a virtual option is to
use a simulator, which can be used at various levels of abstraction of the system and during different stages of
development.

Modelling the system and specifying the scenarios are fundamental steps in the development process to docu-
ment the system and its working environment. Through the ExSce methodology, the process of verifying and
validating can be streamlined by exploiting the models from the previous design stages. While scenarios can
be executed in real and simulated environments, there is a real value in using simulation for the automatic set-
up and execution of scenarios with faster execution than real-time. For this reason, this section focuses on
simulators and their capabilities to implement scenarios.

Simulation as a tool is valuable for many reasons. It can be used to test the capabilities of the system before
there is a physical platform, enabling prototyping and software building at early stages of development. It can
also be used to assess functionality and find faults when the tasks to perform or the environment are considered
unsafe, reducing economic losses and health risks [106]. Furthermore, simulation enables the automatic and
unsupervised execution of scenarios, whose results can be automatically or manually graded. However, there
are challenges that complicate the integration of simulation into the development process, such as the reality
gap and the complexity of setting up the simulation environment [6]. There are numerous simulators available
for commercial or research purposes, so developers who wish to take advantage of current simulators need to
consider their options carefully. Between simulators, there are many differences which have an impact on the
results of the simulated tasks, and therefore, in the confidence level of the results of the scenarios.

5.1 Overview of Current Simulators

In recent years many simulators have been released to the roboticist community. The efficiency and accuracy
of these simulators depends on many factors; among them are the abstractions chosen by the designers and
developers of two important components: the physics and the visualisation engines. Current simulators rely on
physics engines to perform the calculations required to simulate the mechanical interactions of the real world
through models based on the study areas such as rigid body dynamics, soft-body dynamics, fluid dynamics.
Popular physics engines include the Open Dynamics Engine [102], Bullet Physics [26], and MuJoCo [107].
Engines can differ in their representation of bodies in space and their constraints, the calculation of velocities

Page 26 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

and forces, and other abstractions required to approximate the behaviour of bodies in the real world. All of
these aspects affect the fidelity and effectiveness of the engine.

In addition, most simulators rely on 3D engines to render the graphics for the visualisation of the simulation.
Engines such as OGRE 17, Blender18, and the Open 3D Engine 19 must perform complex operations, such as
ray tracing, that take into account the attributes of the scene and the 3D models within it to generate the visuals.
To achieve it, the engines consider the perspective of the camera, the textures of the object and their opacity,
and the lighting of the scene and its effect on the objects. While this might seem trivial as many simulators can
be run without visualisations (headless), the rendering process impacts the realism of the generated images,
which are used for simulating camera sensors. As rendering is computationally expensive, simulators either
do not run at real-time rendering photo-realistic scenes, or run with lower-quality rendering to keep real-time
performance.

The efficiency of a simulator is a predominant concern for many developers of MRS. As the number of robots
included in a scenario increases, the efficiency decreases. This is a result from an increase of state variables
for the bodies (such as velocity and acceleration) that have to be updated, an increase of movement constraints
(such as joints in a manipulator) that need to be checked, and a rise in collision tests that must be performed at
the end of the time step during the simulation. Depending on the abstractions, the geometrical representation
of bodies, and integration methods, the efficiency of simulators when more than one robot is simulated varies
greatly [90]. As the overall efficiency decreases and resource consumption grows, more time it is needed to
complete a single run, making simulation challenging for MRS with a high number of robots in the scenario.

Apart from the differences in performance, simulators may differ in the robotic platforms, tasks, and envi-
ronments they can simulate. Some simulators offer narrow abstractions to simulate a specific type of tasks
with high fidelity, such as GraspIt! [76], which enables the accurate simulation of manipulation-related tasks
with various robotic grippers. Other simulators may focus on simulating specific platforms, such as UTSim
[7], which supports the simulation of UAVs MRS by offering relevant abstractions for the type of application.
This includes general attributes such as weather conditions and communication problems, as well as domain-
specific entities such as ground control stations. There are also environmental abstractions that are required
to accurately simulate an application. For instance in the case of underwater robots, the performance of their
sensors depends on environmental conditions found in the water, including currents, temperature fluctuation,
salinity and pressure [34].

The majority of commercially available robotic simulators are multi-domain simulators, as they offer abstrac-
tions to support a wide-range of applications with a sufficient fidelity for most use cases. Popular simulators in
this category include Gazebo [61], Webots [75], MORSE [36], ARGoS [89], and CoppeliaSim [96] (formally
known as V-REP). Their features facilitate the simulation of tasks such as navigation, planning, perception,
manipulation, mapping, and learning. Even with similar features and capabilities, choosing one simulator to
perform a certain test can still be a challenge, as performance can be impacted by the characteristics of the test
and how are those characteristics handled by the simulator [82], [90], [11]. For instance, the hospital disin-
fection use case of Locomotec can be simulated in Gazebo and Unity, as both have the models necessary for
simulating a wheeled robot with all the sensors of the real robot. At the time of writing, Locomotec uses both
simulators for performing tests, but has chosen Unity as the main simulator since it offers better performance
with multiple robots than Gazebo.

One challenge of using simulation is the lack of tailorability of the models required by the simulators. Every
simulator will support different formats and models, so the effort required to set up a simulation can vary
greatly depending on whether a model is available. Since every simulator supports different model formats,
some models will not be easily reusable. Some models will require a transformation or a parser, but if this
is unavailable then the models are locked to a single simulator software. This is not ideal, as high-precision
modelling requires high amounts of effort.

17https://www.ogre3d.org/
18https://www.blender.org/
19https://o3de.org/

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 27

https://www.ogre3d.org/
https://www.blender.org/
https://o3de.org/


D3.1 MRS Design Concept and Methodology

Simulator RSF supported OS
supported

License Latest
update

Robot platforms

Gazebo ROS, Player,
Yarp*

Windows,
Mac, Linux

(Ubunut,
Debian)

Open
source

2019 wheeled robots,
legged robots,
UAVs, Arms

WeBots ROS, TCP/IP Windows,
Mac, Linux

(Ubuntu)

Open
source

2020 wheeled robots,
legged robots,
UAVs, AUVs,

Aerospace
vehicles, Arms

MORSE ROS, YARP,
socket-based
protocol, and

others

Windows†,
Mac†,
Linux

Open
source

2019 wheeled robots,
UAVs, AUVs,

Arms

CoppeliaSim ROS Windows,
Mac, Linux

(Ubuntu)

Close
source

2021 wheeled robots,
legged robots,

Arms
Unity ROS* Windows,

Mac, Linux
(Ubuntu)

Close
source

2021 wheeled robots

Table 5: Summary of support for operative systems (OS), Robot Software Frameworks (RSF), and
robotic platforms offered by simulators. (*) Supported through library or plugin. (†) Not officially
supported, not all capabilities available.

A comparison of commercially available simulators is presented in Table 5, and some of these simulators are
illustrated in Figure 6. However, the overview provided is incomplete, as it does not take into account the
abstractions available in the simulators. The robot software framework (RSF) and OS supported columns give
an idea of how many developers are supported. It is also useful to consider the type of license used, latest
update, and robot platforms supported as those aspects are relevant for deciding which simulator to use.

5.2 Variability in Scenario Execution

One of the challenges of testing, specifically with simulators, is the variation present at different dimensions
of the testing process. For instance, there is variability on the objective of the scenario, which can go from a
functionality test of a single component to the validation of the entire system. In addition, there is variation on
the acceptance criteria used to measure the results, both in terms of dimensions (time, distance, correctness)
and fulfillment criteria (boolean, percentages). Moreover, there can also be variability in the scenario, as it is a
useful way to discover software faults and make sure the system is performing as expected in general and not
in only one scenario [49]. Finally, there is variation on the functionalities of the simulator software.

Choosing a simulator for a scenario can be complex when taking into account the variability of the simulators,
especially if a developer is trying to optimize the execution. That is, obtaining the most information on the
behaviour of the system with the least number of simulation runs. The factors that make this decision difficult
include:

• The available abstractions: The system-under-study imposes constraints on the simulator used to exe-
cute the scenario. A MRS consisting of drones in a hostile environment has simulation requirements dif-
ferent from a MRS of mobile robots in a hospital. Between these two applications there are requirements

Page 28 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

regarding simulating hardware components such as specific sensors and actuators, and environmental
conditions relevant for the application.

• The objective of the scenario: Simulators can be used for a variety of tests with different goals in mind.
Depending on the goal, certain characteristics are required in a simulator: For functionality testing all the
relevant hardware and software components should be able to be simulated within a degree of accuracy;
for regression testing the simulator should be able to run headless and be configurable through an API;
or for stress testing the simulator should be stable.

• The level of abstraction: The realism of a simulation is determined by the abstractions of the simulator
models. Motion and other phenomena can be modeled by abstracting away aspects that influence its
behaviour. Complex models that include many aspects can generate realistic behaviour at the cost of
performance. No model can or should include all the aspects of a behaviour, but rather abstract away
aspects in accordance with the goals of the simulator [15].

• The level of granularity: The abstractions used by the simulator can have different effects on the perfor-
mance depending on how detailed they are [19]. More detail results in higher fidelity, but less efficiency,
and vice versa. For instance, collisions between complex solids are often approximated using primitive
shapes such as cuboids, cylinders, and spheres. When these calculations are performed with the meshes
of the solids they are more accurate at the expense of the time required to compute it.

• The acceptance criteria: The metric used to evaluate a specific scenario has to be measurable by the
simulator. In some cases, the measurement of a metric is not natively supported, and so the developer
must use either a community-available plugin or write their own in order to extend the functionality of
the simulator and measure the metric.

• The simulation technique: Simulation techniques such as hardware-in-the-loop, software-in-the-loop,
human-in-the-loop, and co-simulation are often used in the testing process, and can be a deciding factor
for developers.

As mentioned before, simulators offer a variety of functionalities to the users. With so many functionalities,
how can a developer determine if a certain simulator is the best for a certain scenario? One way to do so is to
look into the capabilities of the simulator. Simulator capabilities can be seen as a combination of the presence
of a simulator model, the level of abstraction of the model, and the requirements of the application. This
definition hints that there exist functional and non-functional aspects of the models that determine whether
a simulator is able to execute a scenario, even though the line between the two can be blurred. To illustrate
this point, consider the force of buoyancy, relevant for underwater robot applications. A simplistic model of
buoyancy can be composed of a spring and a center of buoyancy, resulting in an efficient approximation [77].
Here, the presence of a model for this force is the functional aspect, and the accuracy and efficiency are non-
functional. For a game engine this model is capable of producing the desired results. However, a simulator
of a robotic underwater application requires a more detailed model to obtain trustworthy results. In this case,
the requirements of the application regarding accuracy determine that the model is not capable of simulating
buoyancy, even though the model is present in the simulation.

5.3 Simulator Models

A simulator is able to run a scenario when it uses appropriate models to simulate the behaviour and interactions
of the real-life counterpart object or phenomenon. Defining the appropriate model is complicated. On the one
hand, a very granular model might enable very accurate results; but on the other hand these intricate models
are more computationally expensive, reducing the number of executions that can be completed in a certain
time-frame, thus making simulation less appealing. Additionally, there is the question of whether a model has
enough granularity to produce trustworthy results. The main sources for errors in simulation are numerical
integration errors and model errors. The former relates to the errors obtained from the time steps selected,
related parameters, and the integration method used to update the state of the system; whereas the latter relates
to incorrect or incomplete assumptions in the mathematical models [37].

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 29



D3.1 MRS Design Concept and Methodology

It should be noted that the simulator models are different from 3D models of structures or URDF files, the
former are used to enable the simulator to recreate the behaviour of the real world and present the results [15],
whereas the latter are used to describe the concrete system to be simulated. While the two are needed to create
a test in simulation, the study will focus on the simulator models as these determine what can be simulated and
what can be modeled. Models such as URDF and SDF are compositions that conform to the simulator models
and can be composed of several model domains. For instance, the URDF description20 presented in Listing 5
illustrates some of the models required to represent a robot in simulation.

1 <robot>
2 <link name="base">
3 <visual>
4 <origin xyz="0 0 0" rpy="0 0 0"/>
5 <geometry>
6 <box size="0.5 0.1 0.5"/>
7 </geometry>
8 <material name="white">
9 <color rgba="1 1 1 1"/>

10 </material>
11 </visual>
12 <collision>
13 <geometry>
14 <box size="0.5 0.1 0.5"/>
15 </geometry>
16 <contact_coefficients mu="0.3" kp="0.4" kd="0.0"/>
17 </collision>
18 <inertial>
19 <mass value="5"/>
20 <inertia ixx="0.1" ixy="0" ixz="0" iyy="0.2" iyz="0" izz="0.1"/>
21 </inertial>
22 </link>
23

24 <link name="link" />
25

26 <joint name="joint" type="revolute">
27 <parent link="base"/>
28 <child link="link"/>
29 <origin xyz="0 0 0" rpy="0 0 0" />
30 <limit lower="-2.95" upper="2.95" />
31 <dynamics damping="0.0" friction="0.0"/>
32 </joint>
33 </robot>

Listing 5: URDF description for a simple mechanism that showcases different model domains

In the URDF file (Listing 5), a <robot> is defined by <link> tags connected by <joint> tags that constraint
the link’s movements. Each link is defined by <visual> and <collision> information, which require
geometric information defined through the <geometry> tag. In addition, inside these tags related properties
such as the material and contact coefficients can be specified. In the same way inertial properties such as the
mass and the inertia tensor for the links can be defined with the <inertial> tag. This specification is used
during the simulation, where the geometric, inertial, and constraint information is used by the physics engine
to recreate the physical interactions of the real world.

Another format for describing robots is the simulation description format (SDF) 21. Similarly to URDF, with
the SDF format the geometric, visual, collision, inertial, and dynamic information can be specified. In addition,

20http://wiki.ros.org/urdf/XML/
21http://sdformat.org/

Page 30 Version 1.0
Confidentiality: Public Distribution

30 September 2021

http://wiki.ros.org/urdf/XML/
http://sdformat.org/


D3.1 MRS Design Concept and Methodology

Figure 7: Common models present in dynamic simulator software and their relationships.

the format enables defining information on the environment and external agents. This description is richer than
the URDF file, which concerns the robot properties exclusively. Both of the meta-models make assumptions of
the simulator models that they have to conform to, as they are intended to be general. In other words, there can
be aspects that need to be defined for a scenario that are not available among the concepts of the meta-models.

From this example it can be asserted that simulation involves simulator models from multiple domains, and
that these models have relationships between them. An overview of the most common simulator models and
their relationships can be observed in Figure 7. In the diagram, a containment relationship conveys that a
model is composed of another model. For instance, the optics model is composed of models for lighting,
textures, material, and shader. On the other hand, a conforms to relation indicates that a model conforms to
any constraint imposed by another model. For example, the constraint model determines which movement
constraints (such as joints) need to be considered in the dynamics model, and which actuators can be modeled.

Simulator models can vary in what is abstracted away to create the model, where the requirements of an
application determines the level of abstraction. For a specific application the selection or design of a model is
straight-forward, as the requirements are known. For a simulator this is different, as the simulator developers do
not know the requirements of the simulation users, hence the developers have to decide the level of abstraction
of the models based on target applications and the users determine if the fidelity of the model suits them. This
poses another challenge of tailorability as one of the goals of SESAME is to make scenarios reusable between
projects, but due to the variability in the models a scenario could be executable only in a group of simulators,
which limits the reusability.

To determine if a simulator is capable of simulating a scenario, we must look into the simulator models used by
the simulation software, and the requirements of the scenario imposed by the system, environment, agents, and
acceptance criteria. Obtaining these models requires a domain analysis on current dynamic simulators. This

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 31



D3.1 MRS Design Concept and Methodology

study can be expanded to include robotic simulators, hardware simulation, and control simulation software.
For the analysis many dimensions have to be considered, and initially can include:

• Mechanics: The reproduction of physical phenomena is a fundamental part of simulation of robotic
systems. Simulators need to perform calculations to reproduce behaviour that conforms to classical
mechanics (kinematics and dynamics), including rigid-body dynamics, soft-body dynamics, and fluid
dynamics.

• Collision detection: Although it is related to the mechanics domain, collision detection is often a sepa-
rate engine. Its purpose is to determine the instant two or more bodies in the simulation make contact,
and determine relevant information to simulate the reaction of the bodies.

• Geometry: Defines how objects are mathematically represented in space, including their pose (position
and rotation), volume, and shape.

• Optics: Models in the domain are often used just for visualisation purposes, enabling the stakeholders
to view the functionality of the system. Lighting, textures, and materials are common models available
by the visualisation engines that can be composed into the scene. Additionally, shaders are models
which are used to provide instructions on how to render the image. Together, these models influence the
realism of the rendered scene, which can affect the performance of simulated perception tasks.

• Sensors: Every simulator offers a variety of sensors to compose the hardware platform. Their accuracy
is determined by the logic behind the simulation, the mechanics, and optics. Common simulated sensors
include cameras, laser sensors, force and torque sensors, and odometers. Simulators may also include
noise models for these sensors, with the goal of recreating the imperfect readings of the real world.

• Actuators: Common actuators are also offered by simulators; however, these depend almost exclusively
on the physics engines, as these engines provide the different types of constraints that are used to com-
pose actuators.

• Scene: The environment and external agents compose the scene of a scenario, and they play a significant
role in the performance of the robotic system. Not every element in the real world needs to be simulated,
just the ones that can affect the performance of the robot system application. For instance, wind speeds
and weather are necessary to test the controller of a UAV, but are not needed to test the control system
of mobile robots in a hospital. Elements that are relevant can be not only those that can be perceived
by the system, but also elements that are not usually measured but can still affect the system, such as
temperature, pressure, or gravity. Another important factor to study is whether these elements remain
static throughout the run, or whether they can change dynamically.

• Communication: Communication is a fundamental element in MRS, as the different subsystems require
robust communication infrastructure to collaborate. As MRS are deployed in dynamic environments
where the quality of communication channels can vary, it is of interest to simulate these conditions and
observe the behaviour of the system and validate any fallback methods. Additionally, assumptions on the
required data bandwidth for the application might not hold. Finally, there is also interest in simulating
the physical communication channel and its interactions with the environment and actors.

Previous studies have focused mostly on the performance of the physics engines [37], [11]; a combination of
features and performance metrics [90]; or focusing exclusively on the documented features of a few simulators
[74]. The focus of this study would be the simulator models, as the goal is to identify the abstractions required
to simulate an application. The performance in terms of time efficiency is left to the test designer to investigate
and consider in their choice of simulator. From the analysis, a model detailing the capabilities of different
simulators can be created.

5.4 Scenario Execution

Every stakeholder in the development process has a different perspective of the system, which is determined
by their development roles. These perspectives govern the objectives, the acceptance criteria, and the scope

Page 32 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

of the test. While the overall scenario can be developed and used by many roles, each role will have their
distinctive focus. For instance, in the hospital disinfection use case, each role will concentrate on testing a
different characteristic of the system:

• Behaviour developers will focus on tests that verify their task-plots, and that the correct behaviour is
performed. They can test behaviour such as navigating room-to-room while avoiding obstacles.

• Function developers concentrate on the correct functionality of their functions. They can verify their
functions using a variety of testing techniques going from unit testing to field testing. Even if the
complexity of the test grows, their focus remains in the functions. They can focus on the algorithm for
wall following for the disinfection task.

• System architects use testing to validate their designs, as they are responsible for providing a solution to
the problem that meets all quality assurance criteria.

• System builders verify the functionality of the entire system and test the correct integration of all the
components.

• Performance designers test different configuration of parameters to select the values that maximize
performance measures.

• Safety engineers certify that the platform and its behavior comply with all the safety standards. These
tests can focus on the high risk functionality or their mitigation strategies.

The different stakeholders can use the executable scenarios workbench to describe different scenarios accord-
ing to their views and concerns. The scenarios described can be suitable for several stakeholders, allowing
their reuse through the project, or a given scenario can focus on one concern of one stakeholder. After all the
models are composed, the toolchain can generate software artefacts to facilitate the systematic testing of MRS
in the real and simulated world. The generation of artefacts can be achieved through separate model-to-model
and model-to-text transformations. For example, to assist the testing in simulation for the Locomotec use case
several transformations can be used, such as the generation of a launch file for Gazebo with the world and task
set up; or the generation of a hospital floor plan 3D model in STL format using procedural generation. The
former is a simulator-specific transformation, as the artefact can only be read by Gazebo. Whereas the latter is
a simulator-independent artefact as it can be used by several simulators as long as they read the STL format.
One important remark is that the transformation of the environment specification to a concrete 3D model ready
for simulation is a multi-step process, where a generator uses the specification to create general descriptions of
environments that can later be transformed into a format that is readable by a simulator software.

The capability models designed from the study described in Section 5.3 could be used in several ways to extend
the functionality of the tooling beyond the generation of artefacts. They can be used to determine if a specific
simulator has the abstractions necessary to execute a test. For example, if a simulator package does not have
models to simulate fluid dynamics, then this simulator might not be adequate to test AUVs systems.

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 33



D3.1 MRS Design Concept and Methodology

6 Conclusions

The purpose of this deliverable is to motivate the need for establishing a scenario-based development method-
ology for MRS and to report about the research performed in the first 8 months of the project.

We summarize the major results in the following list:

• We assessed some of the SESAME use cases from the scientific challenges perspective and exempli-
fied the need for an Executable Scenario concept and methodology to systematically deal with these
challenges.

• We assessed related work in the domain of robot software engineering and recapitulate the role of
different stakeholder in any robot software development process.

• We investigated actual MRS development practices for one of our use case partner and derived desirable
features of the ExSce concept, methodology and tooling.

• We proposed the ExSce concept and methodology and discussed the relevant scientific concepts, ExSce
design dimensions, concepts and aspects originating from the meta-modelling, robotics and develop-
ment process domain.

• We derived an initial formalization of the Executable Scenario, which will be continued in Task 3.2 and
Task 3.3.

• We discussed the idea to exploit simulators as a way to execute scenarios, and discussed challenges
associated with the enormous variability present in simulators for using them as a tool to execute sce-
narios.

Page 34 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

References

[1] Systems and software Quality Requirements and Evaluation (SQuaRE) – System and software quality
models. ISO/IEC 25010:2011, International Organization for Standardization (ISO), March 2011.

[2] System life cycle processes. ISO/IEC/IEEE Std 15288:2015, International Organization for Standard-
ization, May 2015.

[3] Tesnim Abdellatif, Saddek Bensalem, Jacques Combaz, Lavindra De Silva, and Felix Ingrand. Rigorous
design of robot software: A formal component-based approach. Robotics and Autonomous Systems,
60(12):1563–1578, 2012.

[4] Sorin Adam, Morten Larsen, Kjeld Jensen, and Ulrik Pagh Schultz. Towards rule-based dynamic safety
monitoring for mobile robots. In Simulation, Modeling, and Programming for Autonomous Robots,
pages 207–218. Springer, 2014.

[5] Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher Steven Timperley. A Study on Chal-
lenges of Testing Robotic Systems. In 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST), pages 96–107. IEEE, oct 2020.

[6] Afsoon Afzal, Deborah S. Katz, Claire Le Goues, and Christopher S. Timperley. Simulation for Robotics
Test Automation: Developer Perspectives. January 2021.

[7] Amjed Al-Mousa, Belal H Sababha, Nailah Al-Madi, Amro Barghouthi, and Remah Younisse. UTSim:
A framework and simulator for UAV air traffic integration, control, and communication. International
Journal of Advanced Robotic Systems, 16(5):172988141987093, September 2019.

[8] Stefano Di Alesio and Sagar Sen. Using uml/marte to support performance tuning and stress testing in
real-time systems. Softw. Syst. Model., 17(2):479–508, 2018.

[9] Diego Alonso, Cristina Vicente-Chicote, Francisco Ortiz, Juan Pastor, and Barbara Alvarez. V3cmm:
A 3-view component meta-model for model-driven robotic software development. Journal of Software
Engineering for Robotics, 1(1):3–17, 2010.

[10] Monica Anderson, Jason Bowman, and Paul Kilgo. RDIS: Generalizing Domain Concepts to Spec-
ify Device to Framework Mappings. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 1836–1841. IEEE, 2012.

[11] Angel Ayala, Francisco Cruz, Diego Campos, Rodrigo Rubio, Bruno Fernandes, and Richard Dazeley.
A Comparison of Humanoid Robot Simulators: A Quantitative Approach. In 2020 Joint IEEE 10th In-
ternational Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pages
1–6, October 2020.

[12] Kent Beck. Test Driven Development: By Example. Addison-Wesley Professional, 2002.

[13] Geoffrey Biggs and Bruce A MacDonald. Specifying robot reactivity in procedural languages. In
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages 3735–3740. IEEE,
2006.

[14] Geoffrey Biggs and Bruce A MacDonald. Evaluating a reactive semantics for robotics. In Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 1854–1859. IEEE,
2008.

[15] Louis G. Birta and Gilbert Arbez. Modelling and simulation: exploring dynamic system behaviour.
Springer, 2007.

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 35



D3.1 MRS Design Concept and Methodology

[16] Sebastian Blumenthal and Herman Bruyninckx. Towards a Domain Specific Language for a Scene
Graph based Robotic World Model. In Workshop on Domain-Specific Languages and models for
Robotic systems, 2013.

[17] Yury Brodskiy, Robert Wilterdink, Stefano Stramigioli, and Jan Broenink. Fault avoidance in devel-
opment of robot motion-control software by modeling the computation. In Davide Brugali, Jan F.
Broenink, Torsten Kroeger, and Bruce A. MacDonald, editors, Simulation, Modeling, and Program-
ming for Autonomous Robots, pages 158–169, Cham, 2014. Springer International Publishing.

[18] Davide Brugali and Nico Hochgeschwender. Managing the functional variability of robotic perception
systems. In 2017 First IEEE International Conference on Robotic Computing (IRC), pages 277–283,
2017.

[19] Herman Bruyninckx. Building blocks for the Design of Complicated Systems featuring Situational
Awareness. Sep 2021.

[20] Herman Bruyninckx and Joris De Schutter. Specification of force-controlled actions in the "task frame
formalism": A synthesis. IEEE Transactions on Robotics and Automation, 12:581–589, 1999.

[21] Herman Bruyninckx, Peter Soetens, and Bob Koninckx. The real-time motion control core of the Orocos
project. In IEEE International Conference on Robotics and Automation, pages 2766–2771, 2003.

[22] Jean Bézivin. On the unification power of models. Software & Systems Modeling, 4(2):171–188, 2004.

[23] Sachin Chitta, Kaijen Hsiao, Gil Jones, Ioan Sucan, and John Hsu. Unified Robot Description Format
(URDF), 2011. Last accessed: 11. Sep. 2022.

[24] Federico Ciccozzi, Davide Di Ruscio, Ivano Malavolta, and Patrizio Pelliccione. Adopting mde for
specifying and executing civilian missions of mobile multi-robot systems. Journal of IEEE Access,
2(1):6451–6466, October 2016.

[25] Mike Cohn. User Stories Applied: For Agile Software Development. Addison-Wesley Professional,
2004.

[26] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016–2021.

[27] Alberto Rodrigues da Silva. Model-driven engineering: A survey supported by the unified conceptual
model. Computer Languages, Systems & Structures, 43:139–155, 2015.

[28] Xiangtian Dai, Gregory Hager, and John Peterson. Specifying behavior in c++. In Robotics and Au-
tomation, 2002. Proceedings. ICRA’02. IEEE International Conference on, volume 1, pages 153–160.
IEEE, 2002.

[29] Werner Damm and David Harel. Lscs: Breathing life into message sequence charts. In Paolo Cian-
carini, Alessandro Fantechi, and Roberto Gorrieri, editors, FMOODS, volume 139 of IFIP Conference
Proceedings. Kluwer, 1999.

[30] Neil Dantam, Ayonga Hereid, Aaron D Ames, and Mike Stilman. Correct software synthesis for stable
speed-controlled robotic walking. In Robotics: Science and Systems, 2013.

[31] Michael De Rosa, Jason Campbell, Padmanabhan Pillai, S Goldstein, Peter Lee, and T Mowry. Dis-
tributed watchpoints: Debugging large multi-robot systems. In Robotics and Automation, 2007 IEEE
International Conference on, pages 3723–3729. IEEE, 2007.

Page 36 Version 1.0
Confidentiality: Public Distribution

30 September 2021

http://pybullet.org


D3.1 MRS Design Concept and Methodology

[32] E. Denney, G. Pai, and M. Johnson. Towards a Rigorous Basis for Specific Operations Risk Assessment
of UAS. In 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), pages 1–10. IEEE,
2018.

[33] Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, and Mikal Ziane. Robotml, a domain-
specific language to design, simulate and deploy robotic applications. In Simulation, Modeling, and
Programming for Autonomous Robots, pages 149–160. Springer, 2012.

[34] Sanjay K. Dhurandher, Sudip Misra, Mohammad S. Obaidat, and Sushil Khairwal. UWSim: A Simula-
tor for Underwater Sensor Networks. SIMULATION, 84(7):327–338, July 2008.

[35] Benjamin Dittes and Christian Goerick. A language for formal design of embedded intelligence research
systems. Robotics and Autonomous Systems, 59(3):181–193, 2011.

[36] Gilberto Echeverria, Nicolas Lassabe, Arnaud Degroote, and Séverin Lemaignan. Modular open robots
simulation engine: MORSE. In 2011 IEEE International Conference on Robotics and Automation,
pages 46–51, May 2011.

[37] Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools for model-based robotics: Comparison
of Bullet, Havok, MuJoCo, ODE and PhysX. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 4397–4404, May 2015.

[38] Peter Feiler, David Gluch, and John Hudak. The architecture analysis & design language (aadl): An
introduction. Technical Report CMU/SEI-2006-TN-011, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, PA, 2006.

[39] Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. Ltlmop: Experimenting with language,
temporal logic and robot control. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Interna-
tional Conference on, pages 1988–1993. IEEE, 2010.

[40] Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-lived robot genes. Robotics and
Autonomous Systems, 56(1):29–45, 2008.

[41] Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-
Vincentelli, and Sanjit A. Seshia. Scenic: A language for scenario specification and scene genera-
tion. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 63–78, Phoenix AZ USA, June 2019. ACM.

[42] Marco Frigerio, Jonas Buchli, and Darwin G Caldwell. Code generation of algebraic quantities for
robot controllers. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, pages 2346–2351. IEEE, October 2012.

[43] Marco Frigerio, Jonas Buchli, and Darwin G Caldwell. Model based code generation for kinematics and
dynamics computations in robot controllers. In Workshop on Software Development and Integration in
Robotics, St. Paul, Minnesota, USA, 2012.

[44] Loïc Gammaitoni and Nico Hochgeschwender. Rpsl meets lightning: A model-based approach to design
space exploration of robot perception systems. In 2016 IEEE International Conference on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR), pages 75–82, 2016.

[45] Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger, and Tomas Bures. High-level
mission specification for multiple robots. In Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering, page 127–140. IEEE, October 2019.

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 37



D3.1 MRS Design Concept and Methodology

[46] Sergio García, Daniel Strüber, Davide Brugali, Alessandro Di Fava, Philipp Schillinger, Patrizio Pel-
liccione, and Thorsten Berger. Variability modeling of service robots: Experiences and challenges. In
Proceedings of the 13th International Workshop on Variability Modelling of Software-Intensive Systems,
VAMOS ’19, New York, NY, USA, 2019. Association for Computing Machinery.

[47] Malik Ghallab, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela Veloso, Daniel Weld, and
David Wilkins. PDDL - the planning domain definition language. Technical report, Yale Center for
Computational Vision and Control, 1998.

[48] Luca Gherardi and Davide Brugali. Modeling and reusing robotic software architectures: the hyperflex
toolchain. In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages 6414–
6420. IEEE, 2014.

[49] Florian Hauer, Alexander Pretschner, and Bernd Holzmüller. Re-Using Concrete Test Scenarios Gen-
erally Is a Bad Idea. In 2020 IEEE Intelligent Vehicles Symposium (IV), pages 1305–1310, October
2020.

[50] Nick Hawes, Chris Burbridge, Ferdian Jovan, Lars Kunze, Bruno Lacerda, Lenka Mudrová, Jay Young,
Jeremy L. Wyatt, Denise Hebesberger, Tobias Körtner, Rares Ambrus, Nils Bore, John Folkesson,
Patric Jensfelt, Lucas Beyer, Alexander Hermans, Bastian Leibe, Aitor Aldoma, Thomas Faulham-
mer, Michael Zillich, Markus Vincze, Muhannad Al-Omari, Eris Chinellato, Paul Duckworth, Yiannis
Gatsoulis, David C. Hogg, Anthony G. Cohn, Christian Dondrup, Jaime Pulido Fentanes, Tomás Kra-
jník, João M. Santos, Tom Duckett, and Marc Hanheide. The STRANDS project: Long-term autonomy
in everyday environments. IEEE Robotics & Automation Magazine (RAM), 24(3), September 2017.

[51] Frederik Hegger, Nico Hochgeschwender, Gerhard Kraetzschmar, Jan Paulus, Michael Reckhaus, and
Azamat Shakhimardanov. Specifications of Architectures, Modules, Modularity, and Interfaces for the
BROCRE Software Platform and Robot Control Architecture Workbench. Deliverable d-2.2 (public),
the brics project (fp7-ict grant agreement number 231940), Bonn-Rhein-Sieg University of Applied
Sciences, Sankt Augustin, Germany, 2010.

[52] Tom Henderson and Esther Shilcrat. Logical sensor systems. Journal of Robotic Systems, 1(2):169–193,
1984.

[53] Nico Hochgeschwender, Sven Schneider, Holger Voos, and Gerhard K. Kraetzschmar. Towards a
Robot Perception Specification Language. In Workshop on Domain-Specific Languages and models
for Robotic systems, 2013.

[54] Nico Hochgeschwender, Sven Schneider, Holger Voos, and Gerhard K Kraetzschmar. Declarative spec-
ification of robot perception architectures. In Davide Brugali, Jan F. Broenink, Torsten Kroeger, and
Bruce A. MacDonald, editors, Simulation, Modeling, and Programming for Autonomous Robots, vol-
ume 8810 of Lecture Notes in Computer Science, pages 291–302. Springer International Publishing,
2014.

[55] Gregory S Hornby, Hod Lipson, and Jordan B Pollack. Evolution of generative design systems for mod-
ular physical robots. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, volume 4, pages 4146–4151. IEEE, 2001.

[56] J.F. Ingles-Romero, A. Lotz, C. Vicente-Chicote, and C. Schlegel. Dealing with Run-Time Variability
in Service Robotics : Towards a DSL for Non-Functional Properties. In Workshop on Domain-Specific
Languages and models for Robotic systems, number iv, 2010.

[57] C. Jayawardena, I. H. Kuo, U. Unger, A. Igic, R. Wong, C. I. Watson, R. Q. Stafford, E. Broadbent,
P. Tiwari, J. Warren, J. Sohn, and B. A. MacDonald. Deployment of a service robot to help older
people. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5990–
5995, 2010.

Page 38 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

[58] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented programming. In European Conference on Object-Oriented
Programming (ECOOP), 1997.

[59] M Klotzbucher, Ruben Smits, Herman Bruyninckx, and Joris De Schutter. Reusable hybrid force-
velocity controlled motion specifications with executable domain specific languages. In Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages 4684–4689. IEEE,
2011.

[60] Markus Klotzbücher, Geoffrey Biggs, and Herman Bruyninckx. Pure Coordination using the Coor-
dinator – Configurator Pattern. In Workshop on Domain-Specific Languages and models for Robotic
systems, volume 231940, 2012.

[61] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-robot simula-
tor. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), page 6. IEEE, 2004.

[62] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source multi-robot
simulator. In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004.

[63] Lars Kunze, Tobias Roehm, and Michael Beetz. Towards semantic robot description languages. In
Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 5589–5595. IEEE,
2011.

[64] Charles Lesire, David Doose, and Hugues Cassé. Mauve: a component-based modeling framework
for real-time analysis of robotic applications. In 7th full day Workshop on Software Development and
Integration in Robotics (ICRA2012-SDIR VII), 2012.

[65] Hongzhi Liang, Juergen Dingel, and Zinovy Diskin. A comparative survey of scenario-based to state-
based model synthesis approaches. In Proceedings of the 2006 International Workshop on Scenarios
and State Machines: Models, Algorithms, and Tools, SCESM ’06, page 5–12, New York, NY, USA,
2006. Association for Computing Machinery.

[66] Martin Loetzsch, Max Risler, and Matthias Jungel. Xabsl-a pragmatic approach to behavior engineering.
In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages 5124–5129.
IEEE, 2006.

[67] Douglas C MacKenzie, Jonathan M Cameron, and Ronald C Arkin. Specification and execution of
multiagent missions. In Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative
Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, volume 3, pages 51–58. IEEE,
1995.

[68] Topi Maenpaa, Antti Tikanmaki, Jukka Riekki, and Juha Roning. A distributed architecture for exe-
cuting complex tasks with multiple robots. In Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, volume 4, pages 3449–3455. IEEE, 2004.

[69] Anthony Mallet, Cédric Pasteur, Matthieu Herrb, Séverin Lemaignan, and Félix Ingrand. Genom3:
Building middleware-independent robotic components. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 4627–4632. IEEE, 2010.

[70] Vikram Manikonda, Perinkulam S Krishnaprasad, and James Hendler. A motion description language
and a hybrid architecture for motion planning with nonholonomic robots. In Robotics and Automation,
1995. Proceedings., 1995 IEEE International Conference on, volume 2, pages 2021–2028. IEEE, 1995.

[71] Matthew T. Mason. Compliance and force control for computer controlled manipulators. IEEE Trans-
actions on Systems Man and Cybernetics, 11:418–432, 1981.

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 39



D3.1 MRS Design Concept and Methodology

[72] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts, 2010.

[73] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger. Specification patterns for robotic
missions. Transactions on Software Engineering, 2019.

[74] David S. Michal and Letha Etzkorn. A comparison of Player/Stage/Gazebo and Microsoft Robotics
Developer Studio. In Proceedings of the 49th Annual Southeast Regional Conference, ACM-SE ’11,
pages 60–66, New York, NY, USA, March 2011. Association for Computing Machinery.

[75] Olivier Michel. Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation. International
Journal of Advanced Robotic Systems, 1(1):5, March 2004.

[76] A.T. Miller and P.K. Allen. Graspit! A versatile simulator for robotic grasping. IEEE Robotics Automa-
tion Magazine, 11(4):110–122, December 2004.

[77] Ian Millington. Game physics engine development: how to build a robust commercial-grade physics
engine for your game. Morgan Kaufmann, 2nd edition, 2010.

[78] Luc Moreau, Paul Groth, James Cheney, Timothy Lebo, and Simon Miles. The rationale of PROV.
Journal of Web Semantics, 35(4):235–257, dec 2013.

[79] Matteo Morelli and Marco Di Natale. Control and scheduling co-design for a simulated quadcopter
robot: A model-driven approach. In Davide Brugali, Jan F. Broenink, Torsten Kroeger, and Bruce A.
MacDonald, editors, Simulation, Modeling, and Programming for Autonomous Robots, pages 49–61,
Cham, 2014. Springer International Publishing.

[80] Matteo Morelli and Marco Di Natale. Control and scheduling co-design for a simulated quadcopter
robot: A model-driven approach. In Simulation, Modeling, and Programming for Autonomous Robots,
pages 49–61. Springer, 2014.

[81] Hiroyuki Nishiyama, Hayato Ohwada, and Fumio Mizoguchi. Logic specifications for multiple robots
based on a current programming language. In Intelligent Robots and Systems, 1998. Proceedings., 1998
IEEE/RSJ International Conference on, volume 1, pages 286–291. IEEE, 1998.

[82] Farzan M. Noori, David Portugal, Rui P. Rocha, and Micael S. Couceiro. On 3d simulators for multi-
robot systems in ROS: MORSE or gazebo? In 2017 IEEE International Symposium on Safety, Security
and Rescue Robotics (SSRR), pages 19–24. IEEE, oct 2017.

[83] Arne Nordmann and Sebastian Wrede. A Domain-Specific Language for Rich Motor Skill Architec-
tures. In Workshop on Domain-Specific Languages and models for Robotic systems, Tsukuba, 2012.

[84] Arne Nordmann, Sebastian Wrede, and Jochen J. Steil. Modeling of movement control architectures
based on motion primitives using domain-specific languages. In International Conference on Robotics
and Automation (ICRA), pages 5032–5039. IEEE, 2015.

[85] OMG. OMG Systems Modeling Language (OMG SysML), Version 1.3, 2012.

[86] Francisco J Ortiz, Diego Alonso, Francisca Rosique, Francisco Sánchez-Ledesma, and Juan A Pastor.
A component-based meta-model and framework in the model driven toolchain c-forge. In Simulation,
Modeling, and Programming for Autonomous Robots, pages 340–351. Springer, 2014.

[87] Samuel Parra, Sven Schneider, and Nico Hochgeschwender. Specifying QoS requirements and capabil-
ities for component-based robot software. In 2021 IEEE/ACM 3rd International Workshop on Robotics
Software Engineering (RoSE), pages 29–36. IEEE, 2021.

[88] SESAME Project Partners. Project Requirements. Deliverable d-1.1 (ec distribution), secure and safe
multi-robot systems (ict-46-2020-101017258 grant agreement number 101017258), 2021.

Page 40 Version 1.0
Confidentiality: Public Distribution

30 September 2021



D3.1 MRS Design Concept and Methodology

[89] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy, Manuele Brambilla, Nithin
Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick Ducatelle, Mauro Birattari, Luca Maria Gam-
bardella, and Marco Dorigo. ARGoS: A modular, parallel, multi-engine simulator for multi-robot sys-
tems. Swarm Intelligence, 6(4):271–295, December 2012.

[90] Lenka Pitonakova, Manuel Giuliani, Anthony Pipe, and Alan Winfield. Feature and Performance Com-
parison of the V-REP, Gazebo and ARGoS Robot Simulators. In Manuel Giuliani, Tareq Assaf, and
Maria Elena Giannaccini, editors, Towards Autonomous Robotic Systems, Lecture Notes in Computer
Science, pages 357–368, Cham, 2018. Springer International Publishing.

[91] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler,
and Andrew Y. Ng. Ros: an open-source robot operating system. In ICRA Workshop on Open Source
Software, 2009.

[92] Arun Kumar Ramaswamy, Bruno Monsuez, and Adriana Tapus. Solution space modeling for robotic
systems. Journal for Software Engineering Robotics (JOSER), 5(1):89–96, 2014.

[93] Arunkumar Ramaswamy, Bruno Monsuez, and Adriana Tapus. An extensible model-based framework
development methodology for robotic systems. In Journal of Software Engineering for Robotics, pages
154–163, December 2017.

[94] Andres J Ramirez and Betty HC Cheng. Automatic derivation of utility functions for monitoring soft-
ware requirements. In Model Driven Engineering Languages and Systems, pages 501–516. Springer,
2011.

[95] M. Reckhaus and N. Hochgeschwender. A Platform-Independent Programming Environment for Robot
Control. Workshop on Domain-Specific Languages and models for Robotic systems, 2010.

[96] Eric Rohmer, Surya P. N. Singh, and Marc Freese. CoppeliaSim (formerly V-REP): A versatile and
scalable robot simulation framework. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, nov 2013.

[97] Andrey Rusakov, Jiwon Shin, and Bertrand Meyer. Simple concurrency for robotics with the roboscoop
framework. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on, pages 1563–1569. IEEE, 2014.

[98] Christian Schlegel, Alex Lotz, Matthias Lutz, and Dennis Stampfer. Composition, Separation of Roles
and Model-Driven Approaches as Enabler of a Robotics Software Ecosystem, pages 53–108. Springer
International Publishing, 2021.

[99] Christian Schlegel, Andreas Steck, Davide Brugali, and Alois Knoll. Design abstraction and processes
in robotics: From code-driven to model-driven engineering. In Simulation, Modeling, and Programming
for Autonomous Robots, pages 324–335. Springer, 2010.

[100] Sven Schneider, Nico Hochgeschwender, and Gerhard K. Kraetzschmar. Structured design and devel-
opment of domain-specific languages in robotics. In Davide Brugali, Jan F. Broenink, Torsten Kroeger,
and Bruce A. MacDonald, editors, Simulation, Modeling, and Programming for Autonomous Robots,
volume 8810 of Lecture Notes in Computer Science, pages 231–242. Springer International Publishing,
2014.

[101] Enea Scioni, Nico Huebel, Sebastian Blumenthal, Azamat Shakhimardanov, Markus Klotzbücher, Hugo
Garcia, and Herman Bruyninckx. Hierarchical Hypergraphs for Knowledge-centric Robot Systems: a
Composable Structural Meta Model and its Domain Specific Language NPC4. Journal of Software
Engineering for Robotics (JOSER), 7:55–74, 2016.

[102] Russell Smith. Open Dynamics Engine. https://www.ode.org/, 2008.

30 September 2021 Version 1.0
Confidentiality: Public Distribution

Page 41



D3.1 MRS Design Concept and Methodology

[103] Peter Soetens and Herman Bruyninckx. Realtime hybrid task-based control for robots and machine
tools. In IEEE International Conference on Robotics and Automation, pages 260–265, 2005.

[104] Daniel Terhorst-North. What’s in a story? Online, 2007. Online. Last accessed: 30. September 2021.

[105] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andreas Wortmann. A New
Skill Based Robot Programming Language Using UML/P Statecharts. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages 461–466. IEEE, 2013.

[106] C. S. Timperley, A. Afzal, D. S. Katz, J. M. Hernandez, and C. Le Goues. Crashing Simulated Planes is
Cheap: Can Simulation Detect Robotics Bugs Early? In 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation (ICST), pages 331–342, April 2018.

[107] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, oct 2012.

[108] Steve Tousignant, Eric Van Wyk, and Maria Gini. An overview of xrobots: A hierarchical state ma-
chine based language. In ICRA-2011 Workshop on Software Development and Integration in Robotics,
Shanghai, China May, pages 9–13, 2011.

[109] Steve Tousignant, Eric Van Wyk, and Maria Gini. Xrobots: A flexible language for programming
mobile robots based on hierarchical state machines. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on, pages 1773–1778. IEEE, 2012.

[110] Hans Utz, Gerhard Kraetzschmar, Gerd Mayer, and Günther Palm. Hierarchical behavior organization.
In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on,
pages 2598–2605. IEEE, 2005.

[111] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An annotated bibliography.
SIGPLAN Not., 35(6):26–36, June 2000.

[112] Matt Wynne, Aslak Hellesøy, and Steve Tooke. The Cucumber Book, Second Edition. Behaviour-Driven
Development for Testers and Developers. Pragmatic Bookshelf, 2017.

Page 42 Version 1.0
Confidentiality: Public Distribution

30 September 2021


	Scientific Foundations, Prior and Related Work
	Stakeholders in Robotic Applications
	Robot System and Software Engineering
	Robot Software Frameworks
	Model-Driven Engineering in Robotics
	Development Processes in Robotics


	Concept and Methodology of the Executable Scenario
	Exemplifying the ExSce Concept
	Exemplifying the ExSce Methodology
	Instantiating the ExSce for further Use Cases and their Stakeholders
	Use case: Disinfecting Hospital Environments using Robotic Teams
	Use case: Dependable Multi-Robot Systems in Battery Innovation Centre
	Use case: Autonomous Pest Management in Viticulture

	Design Dimensions, Concepts and Aspects of the Executable Scenario
	Design dimensions and their concepts as focused views on the Executable Scenario
	Aspects of cross-cutting concerns in the Executable Scenario


	First Steps Towards a Formalization of the Executable Scenario
	User story and behaviour-driven development meta-meta-model 
	Scenario Specification Concepts

	Developer Interviews: Empirical Analysis of Executable Scenarios in the SESAME Context
	Test Process
	Testing Practices
	Test Work Products
	Development and Testing Challenges

	Scenario Execution and Simulation
	Overview of Current Simulators
	Variability in Scenario Execution
	Simulator Models
	Scenario Execution

	Conclusions

