

Project Partners: Aero41, ATB, AVL, Bonn-Rhein-Sieg University, Cyprus Civil Defence, Domaine
Kox, FORTH, Fraunhofer IESE, KIOS, KUKA Assembly & Test, Locomotec,
Luxsense, The Open Group, Technology Transfer Systems, University of Hull,
University of Luxembourg, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SESAME Project Partners accept no liability for any error or omission in the same.

© 2023 Copyright in this document remains vested in the SESAME Project Partners.

Project Number 101017258

D4.6 Tools for Automated Safety Analysis
of MRS and for Production of EDDIs

(Final Version)

Version 1.0
July 2023

Final

Public Distribution

University of Hull and Fraunhofer IESE

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page ii Version 1.0 5 July 2023

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Aero41

Frédéric Hemmeler

Chemin de Mornex 3

1003 Lausanne

Switzerland

E-mail: frederic.hemmeler@aero41.ch

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

E-mail: scholze@atb-bremen.de

AVL

Martin Weinzerl

Hans-List-Platz 1

8020 Graz

Austria

E-mail: martin.weinzerl@avl.com

Bonn-Rhein-Sieg University

Nico Hochgeschwender

Grantham-Allee 20

53757 Sankt Augustin

Germany

E-mail: nico.hochgeschwender@h-brs.de

Cyprus Civil Defence

Eftychia Stokkou

Cyprus Ministry of Interior

1453 Lefkosia

Cyprus

E-mail: estokkou@cd.moi.gov.cy

Domaine Kox

Corinne Kox

6 Rue des Prés

5561 Remich

Luxembourg

E-mail: corinne@domainekox.lu

FORTH

Sotiris Ioannidis

N Plastira Str 100

70013 Heraklion

Greece

E-mail: sotiris@ics.forth.gr

Fraunhofer IESE

Daniel Schneider

Fraunhofer-Platz 1

67663 Kaiserslautern

Germany

E-mail: daniel.schneider@iese.fraunhofer.de

KIOS

Panayiotis Kolios

1 Panepistimiou Avenue

2109 Aglatzia, Nicosia

Cyprus

E-mail: kolios.panayiotis@ucy.ac.cy

KUKA Assembly & Test

Michael Laackmann

Uhthoffstrasse 1

28757 Bremen

Germany

E-mail: michael.laackmann@kuka.com

Locomotec

Sebastian Blumenthal

Bergiusstrasse 15

86199 Augsburg

Germany

E-mail: blumenthal@locomotec.com

Luxsense

Gilles Rock

85-87 Parc d'Activités

8303 Luxembourg

Luxembourg

E-mail: gilles.rock@luxsense.lu

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

E-mail: s.hansen@opengroup.org

Technology Transfer Systems

Paolo Pedrazzoli

Via Francesco d'Ovidio, 3

20131 Milano

Italy

E-mail: pedrazzoli@ttsnetwork.com

University of Hull

Yiannis Papadopoulos

Cottingham Road

Hull HU6 7TQ

United Kingdom

E-mail: y.i.papadopoulos@hull.ac.uk

University of Luxembourg

Miguel Olivares Mendez

2 Avenue de l'Universite

4365 Esch-sur-Alzette

Luxembourg

E-mail: miguel.olivaresmendez@uni.lu

University of York

Simos Gerasimou & Nicholas Matragkas

Deramore Lane

York YO10 5GH

United Kingdom

E-mail: simos.gerasimou@york.ac.uk

 nicholas.matragkas@york.ac.uk

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Initial outline 5 June 2023

0.2 Added new UOH content 12 June 2023

0.3 Incorporated input from IESE on the ODE Updater 19 June 2023

0.4 Added information about ODE update; expanded KIOS example 20 June 2023

0.5 Further minor updates 22 June 2023

0.6 Review ready version 26 June 2023

0.7 Updated after review feedback 3 July 2023

0.9 Final version for QA 4 July 2023

1.0 Final QA version 5 July 2023

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page iv Version 1.0 5 July 2023

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Updates since D4.4 .. 2
1.1.1 Response to reviewers ... 2
1.1.2 Summary of changes ... 3

2. HiP-HOPS .. 4

2.1 What is HiP-HOPS .. 4

2.2 How it works .. 4
2.2.1 System Modelling ... 5
2.2.2 Failure annotation ... 6
2.2.3 Synthesis of propagation models .. 8
2.2.4 Failure Analysis .. 8

2.3 SESAME-specific extensions and functionality ... 8

2.4 Updates since D4.4 .. 9

3. SafeTbox .. 15

3.1 What is safeTbox ... 15

3.2 How it works .. 19
3.2.1 Using SafeTbox for Systems Modelling ... 22
3.2.2 Using SafeTbox for CFT Modelling ... 23
3.2.3 Using SafeTbox for HARA ... 23
3.2.4 Using SafeTbox for GSN Assurance Cases .. 25
3.2.5 Using SafeTbox for ConSerts ... 25

3.3 SESAME-specific extensions and functionality ... 28

4. Dymodia ... 29

4.1 What is Dymodia ... 29

4.2 How it works .. 30

4.3 SESAME-specific extensions and functionality ... 33

5. ODE Tools .. 34

5.1 Recent Changes to the ODE .. 34
5.1.1 Removal of SubSetType enumeration from ODE::Dimension package ... 34
5.1.2 Numeric dimension ... 35
5.1.3 Minor name changes ... 36

5.2 Common Tool Adapter .. 37
5.2.1 User Guide .. 38

5.3 ODE Framework Updater ... 39

5.4 EDDI Editor .. 42
5.4.1 The ODE Model Converter ... 42
5.4.2 The EDDI Editor ... 43

6. Other Tools: GeNIe Bayesian Network Tool .. 53

6.1 What is GeNIe Modeler ... 53

6.2 How it works .. 54
6.2.1 Using GeNIe Modeler for Bayesian Network Modelling ... 54
6.2.2 Using GeNIe Modeler for Bayesian Network Inference ... 56
6.2.3 Using GeNIe Modeler for Machine Learning Tasks ... 58
6.2.4 Using GeNIe Modeler for Bayesian Network Validation ... 59

6.3 SESAME-specific extensions and functionality ... 61
6.3.1 Setting up & Running the Tool Adapter ... 62

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page v

Confidentiality: Public Distribution

6.3.2 Setting up the Transformation Python Script with the User‘s SMILE License .. 62
6.3.3 Setting up the Python environment to run the Transformation Python Script .. 63
6.3.4 Run the Transformation Python Script to get an EDDI model ... 63

7. Use Case Applications ... 64

7.1 KIOS/Cyprus Civil Defence Drone Inspection Use Case .. 64
7.1.1 System Architecture .. 65
7.1.2 Annotating with failure data ... 71
7.1.3 Safety Analysis ... 77
7.1.4 MRS aspects ... 82
7.1.5 Conversion to ODE model and Preparation for Runtime .. 83

8. Conclusion ... 86

9. References .. 87

TABLE OF FIGURES

Figure 1 - HiP-HOPS analysis output ... 4
Figure 2 - HiP-HOPS failure annotation interface for Matlab Simulink .. 7
Figure 3 - Qualitative FMEA measures .. 10
Figure 4 - The previous HiP-HOPS failure data interface (cf. Fig 2) ... 11
Figure 5 - KIOS drone model in Matlab Simulink ... 12
Figure 6 - New incoming input deviations and internal failures lists ... 13
Figure 7 - Global list of output deviations for hazard definition .. 14
Figure 8 - Example of abstract component in safeTbox ... 15
Figure 9 - Example of Functions sheet in safeTbox HARA ... 16
Figure 10 - Example of FHA sheet in safeTbox HARA ... 17
Figure 11 - Partial example of situations driving sheet in safeTbox HARA .. 17
Figure 12 - Example of risk assessment sheet in safeTbox HARA .. 17
Figure 13 - Example of failure logic for subcomponent in safeTbox ... 18
Figure 14 - Example of abstract GSN structure in safeTbox .. 19
Figure 15 - safeTbox website registration page .. 20
Figure 16 - safeTbox website downloads page ... 20
Figure 17 - safeTbox welcome screen .. 21
Figure 18 - Creating a new project in safeTbox.. 21
Figure 19 - A project with a loaded model in safeTbox ... 22
Figure 20 - safeTbox Smart Menu .. 22
Figure 21 - Instantiating existing component types in safeTbox .. 23
Figure 22 - Adding Functions to the HARA in safeTbox ... 24
Figure 23 - Adding ConSerts in safeTbox .. 25
Figure 24 - Editing a Collaborative System Group‘s Operational Modes in safeTbox .. 26
Figure 25 - Specifying CSG Service Types in safeTbox .. 26
Figure 26 - Specifying CSG Service Type Quality Properties in safeTbox .. 27
Figure 27 - Specifying CS Provided Services in safeTbox ... 28
Figure 28 - Specifying CS Required Services in safeTbox ... 28
Figure 29 - Specifying CS System Configurations in safeTbox ... 28
Figure 30 - safeTbox (E)DDI I/O ... 28
Figure 31 - Dymodia UI ... 29
Figure 32 - Example Dymodia system model ... 30
Figure 33 - Failure data in Dymodia ... 31
Figure 34 - Dymodia state machine .. 32
Figure 35 - Dymodia FMEA output.. 32
Figure 36 - DemandGuaranteeDimensionRelation in ODE::ConSert package .. 35
Figure 37 - Updated ODE::Dimension package ... 36
Figure 38 - Tool Adapter Service Interface .. 37
Figure 39 - Overview of Apache Thrift (DEIS D4.2) ... 38
Figure 40 - Tool Adapter framework .. 39
Figure 41 - Workflow of automatic ODE Framework Updater .. 41

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page vi Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 42 - Example ODE Framework Updater Configuration File ... 41
Figure 43 - ODE Converter – imported model ... 42
Figure 44 - EDDI Editor ... 44
Figure 45 - EDDI Editor import dialog... 45
Figure 46 - example standby-recovery model... 46
Figure 47 - Merged subsystem .. 48
Figure 48 - Dymodia state machine for the standby-recovery system .. 49
Figure 49 - Imported state machine .. 50
Figure 50 - Add Action dialog .. 51
Figure 51 - Action added .. 51
Figure 52 - Add Event dialog ... 52
Figure 53 - Initial screen of GeNIe Modeler... 55
Figure 54 - Button to select for creating new Bayesian network nodes .. 55
Figure 55 - Button to select for creating new causal relationships between two nodes .. 55
Figure 56 - Buttons for adapting the number of states of a node .. 56
Figure 57 - Conditional probability table for a node that has two parents in an example Bayesian network 56
Figure 58 - Save option via the ―File‖ menu in GeNIe Modeler .. 56
Figure 59 - File format options provided by GeNIe Modeler ... 56
Figure 60 – Update button to run an inference over the network ... 57
Figure 61 - Simplified example Bayesian network which is computing the criticality of a situation (node ―Critical‖) for

a autonomous shuttle given the shuttle‘s speed (node ―AV Shuttle Speed‖) and the distance to the closest pedestrian

(node ―Distance to Pedestrian‖). Two evidence (bold and underlined states) are manually set. 57
Figure 62 - Simplified example Bayesian network from Figure 61 after the inference .. 57
Figure 63 - Option to open the parameter learning dialog window .. 58
Figure 64 - Option to change the active file in GeNIe Modeler ... 58
Figure 65 - Option to open the structure learning dialog window .. 59
Figure 66 - Example dataset (.csv file) to evaluate the example Bayesian network from Figure 61 60
Figure 67 - Option to open the validation window in GeNIe Modeler ... 60
Figure 68 - Validation results for the node ―Critical‖ from the example Bayesian network given in Figure 61 validated

with the example dataset given in Figure 66... 61
Figure 69 - Vasilikos Power Station incident .. 64
Figure 70 - KIOS drone system model – top level ... 66
Figure 71 - Positioning Unit subsystem .. 67
Figure 72 - EDU subsystem .. 67
Figure 73 - Rotor propulsion subsystem ... 68
Figure 74 - FCU subsystem .. 68
Figure 75 - Comms subsystem.. 69
Figure 76 - GCS subsystems ... 70
Figure 77 - GCS comms unit .. 71
Figure 78 - Basic events of the FCU ... 73
Figure 79 - Output deviations of the FCU .. 74
Figure 80 - Hazard definition in HiP-HOPS ... 77
Figure 81 - Fault Tree summary ... 78
Figure 82 - Fault tree for the "failure to detect survivor" (H1) ... 79
Figure 83 - Drone collision cut sets .. 80
Figure 84 - Drone collision fault tree .. 81
Figure 85 - Part of the FMEA ... 82
Figure 86 - Importing the two HiP-HOPS files .. 84
Figure 87 - Converted ODE model ... 85

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page vii

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

The Executable Digital Dependability Identity — or EDDI — is a composable model-

based artefact that contains dependability information about a system. The EDDI

concept is intended for dynamic dependability management at runtime. However, in

order to generate runtime EDDIs, relevant information must be captured at design time.

It is these design-time activities that are covered in this deliverable. Existing safety

analysis tools are targeted to create appropriate system models and safety artefacts,

which can then be converted to ODE-compliant models via tool adapters and model

converters. The tools, adapters, and converters are described within, along with

information about how they can be used.

To demonstrate the use of the tools, the HiP-HOPS tool is applied to the Cyprus Civil

Defence/KIOS power station inspection case study.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page viii Version 1.0 5 July 2023

Confidentiality: Public Distribution

LIST OF ABBREVIATIONS

ACCF Actual Common Cause Failure

BE Basic Event (i.e., root cause of a fault tree)

BN Bayesian Network

CCF Common Cause Failure

CFT Component Fault Tree

DDI Digital Dependability Identity

DFT Dynamic Fault Tree

EDDI Executable Digital Dependability Identity

FHA Functional Hazard Analysis

FMEA Failure Modes & Effects Analysis

FMEDA Failure Modes, Effects, & Diagnostic Analysis

FTA Fault Tree Analysis

HARA
Hazard Analysis & Risk Assessment (or Hazard And

Risk Analysis)

MAS Multi-Agent System

MBSA Model-based Safety Analysis

ML Machine Learning

MRS Multi-Robot System

ODE Open Dependability Exchange metamodel

PCCF Potential Common Cause Failure

SACM Structured Assurance Case Metamodel

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

The Executable Digital Dependability Identity — or EDDI — is a composable model-

based artefact that contains dependability information about a system. The EDDI

concept is primarily aimed at runtime usage, where the EDDIs are intended to be

executed onboard or alongside their target system to perform dynamic dependability

management.

However, in order to generate runtime EDDIs, relevant information must be captured at

design time. Furthermore, EDDIs can also serve as purely design-time artefacts, storing

dependability information about a system. In this form, they can serve as safety

argumentation and can support additional design-time dependability analyses. It is these

design-time activities that are covered in this deliverable; the runtime aspects are

detailed further in the various WP7 deliverables:

 D7.1: Runtime Safety and Security Concept – EDDI Runtime Model

Specification

 D7.2: Tools for Generation of Runtime EDDIs.

 D7.3: Runtime Safety and Security Concept – EDDI-based MAS &

communication

 D7.4: Open Source Components for Explainable EDDIs

EDDIs are based on the Open Dependability Exchange (ODE) metamodel. The ODE is

intended to be the common interchange format between the different EDDI-related tools

so that common models can be created and used to generate or interact with runtime

EDDIs regardless of the original design-time tool. The updated ODE is defined in

D4.2/D5.2: Safety/Security ODE and EDDI Specification (though please check

section 5.1 for more recent changes to the ODE).

To support design-time EDDI activities such as system modelling and safety analysis,

three primary existing safety analysis tools are being targeted: HiP-HOPS, safeTbox,

and Dymodia. These tools have been chosen for their good support for model-based

safety analysis. Additionally, in the case of the first two, we develop them ourselves and

thus can more readily make any necessary changes. All three are tools that allow the

creation or import of architectural models of a system which can then be annotated with

failure data to record the failure behaviour of the system. The data can then be analysed

to produce safety analysis artefacts such as fault trees and FMEAs. More general

information about each tool and the principles that underpin them can also be found in

D4.5: Safety Analysis Concept & Methodology.

Although not a safety analysis tool per se, we also target the GeNIe tool for Bayesian

network analysis, as described in Section 6.

To ensure these tools can be integrated into the EDDI toolchain, their models need to be

convertible to the ODE in order to facilitate exchange with other tools. For this purpose,

we have developed a number of ODE-related tools, including a Common Tool Adapter

and a standalone converter & editor (the EDDI Editor). These are discussed in section 6.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 2 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Finally, to demonstrate how the tools can be applied, an example based on the Cyprus

Civil Defence/KIOS power station inspection use cases is provided in section 7. This

follows on from a high-level example based on the same use case found in section 6 of

D4.5 Safety Analysis Concept and Methodology.

1.1 UPDATES SINCE D4.4

1.1.1 Response to reviewers

As D4.6 is the 'final' version of the interim deliverable D4.4, we wished to address the

valuable feedback received during the M18 midterm review, which focused on the

following issues. We have tried to address this feedback wherever possible in this new

version of the deliverable. Our rationale is also provided below.

1. Clarify difference between EDDIs and DDIs

 This confusion likely arose due to outdated terminology in the technical

description of some of the tools. This has been updated, as the EDDI

essentially replaces the older DDI concept, which was primarily a design-

time concept. The plan to extend the DDI to runtime is what led to the

EDDI.

2. Conduct usability evaluation of the ODE metamodel

 Usability is certainly an important attribute and one that we do wish to

address. However, the ODE itself is a metamodel intended primarily to

act as a superset of the information present in different processes and

tools, thereby allowing it to act as a repository and common interchange

format, rather than something directly used by an end user, like a DSL.

The ODE is instead primarily relevant to the developers of analysis tools

and model converters.

 Nevertheless, we plan to include usability as one of the criteria in the use

case evaluations taking place during the last phase of the project. These

evaluations will look at tool usability and will attempt to assess whether

the EDDI methodology, including the use of models enabled by the

ODE, offers an improvement on existing dependability processes in use

by industrial partners.

3. Consider moving some technical content in the model converter chapter to

code repository documentation

 Parts of Section 5 have been moved to specific user guides for the

Common Tool Adapter and the EDDI Editor.

4. To what extent is tool heterogeneity supported?

 Tool heterogeneity is supported by the Common Tool Adapter and the

EDDI Editor. The former allows models to be transformed to and from

the ODE interchange format, while the latter allows models from

different tools to be combined as part of a single ODE model.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 3

Confidentiality: Public Distribution

1.1.2 Summary of changes

As a 'final' version of an earlier deliverable, D4.6 uses the earlier document as a base to

build upon. Changes from D4.4 include:

 Section 2.4 has been added to cover the changes to HiP-HOPS that have been

implemented after the first round of use case evaluations. HiP-HOPS

screenshots earlier in Section 2 have also been updated.

 Section 5.1 has been added to describe minor changes made to the ODE since

the publication of D4.2/D5.2 ODE Specification.

 Parts of Section 5.2 on the Common Tool Adapter have been moved to a

separate user guide.

 Section 0 has been added to describe the new ODE Updater tool, which

facilitates updates to the Common Tool Adapter after changes to the ODE.

 Section 5.4 replaces the earlier section on the ODE Converter with a new section

on the EDDI Editor, which is derived from the earlier converter and provides

more functionality to support tool heterogeneity. Further information is also

provided in a separate user guide.

 Section 7.1 has been rewritten. The previous Locomotec example in D4.4 has

been replaced by a new example describing the process of using HiP-HOPS to

model and analyse the KIOS/Cyprus Civil Defence use case and produce a

design-time EDDI.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 4 Version 1.0 5 July 2023

Confidentiality: Public Distribution

2. HIP-HOPS

2.1 WHAT IS HIP-HOPS

Hierarchically Performed Hazard Origin & Propagation Studies, or HiP-HOPS
1
 to use

its more convenient name, is a comprehensive model-based safety analysis

methodology with a tool of the same name.

Originally created in the late 1990s [1], it has been the focus of continuous development

at the University of Hull over the ensuing 20+ years. Over that time it has evolved from

a simple fault tree analysis tool to a powerful dependability engine with a wide range of

capabilities and additional functionalities. These include multiple failure mode FMEAs,

optimisation capabilities (for architecture, maintenance, and safety requirements) [2],

dynamic analysis (using state machines and/or dynamic fault trees) [3], and automatic

allocation of safety integrity levels according to safety requirements to support ISO

26262-style workflows [4].

Figure 1 - HiP-HOPS analysis output

2.2 HOW IT WORKS

A full manual is available on the HiP-HOPS website. However, a shorter explanation on

the core HiP-HOPS functionality is provided below.

A standard HiP-HOPS analysis consists of four main phases plus an extra optional step:

1
 https://hip-hops.co.uk

https://hip-hops.co.uk/manual/HiP-HOPS_Manual.pdf
https://hip-hops.co.uk/

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 5

Confidentiality: Public Distribution

1. System modelling. In this phase, an external modelling package such as Matlab

Simulink
2
, SimulationX

3
, or MetaEdit+ (with EAST-ADL)

4
 is used to create a

model of the system architecture — i.e., components and the connections

between them. This provides the basis for the origin of failure modes and the

channels along which they can propagate.

2. Failure annotation. Using a specific interface or HiP-HOPS plugin to one of

the tools above, the system model is annotated with additional information to

describe the system's failure behaviour. Components are annotated with

potential failure modes — failures that originate within them, or which are first

detectable via them — as well as how deviations of their outputs are caused

either by these internal failure modes or deviations received at their inputs.

Probabilistic information can also be added to these failure modes if available.

Further logic can be added to describe the propagation of failures between

components if required. Finally, system-level hazards are also identified and

linked to the potential component output deviations that could cause them.

3. Synthesis of fault propagation models. With the model complete, it is passed

to the HiP-HOPS engine itself. The tool begins by generating a fault propagation

model: working backwards from each identified hazard, HiP-HOPS works its

way through the system by following failure propagations and establishes all the

possible component-level causes of that hazard. The result is a network of

interconnected fault trees.

4. Failure analysis. Having generated fault trees in the previous step, HiP-HOPS

can now analyse them. It does this by removing redundancies, resolving

contradictions, and simplifying causes until it achieves the minimal set of

possible causes for each hazard, along with an estimate for unavailability if the

necessary data was provided. From these it can also generate a system-wide

multiple failure mode FMEA, which indicates the potential hazards each failure

mode can lead to.

5. Optional extra steps. If desired, and if appropriate data is present, these

analysis results can also be used as the basis of other activities, e.g. architectural

optimisation or allocation of safety requirements.

Each of these first four steps will be described further below.

2.2.1 System Modelling

A HiP-HOPS-compatible system model requires two main elements: components and

connections. Components represent functional system elements. They do not necessarily

have to be physical hardware components; software components and abstract functions

are also possible components, and indeed it is not uncommon for different models to be

created at different stages of the design lifecycle, e.g. beginning with a basic functional

design architecture and then progressing through to a joint hardware/software

architecture later. HiP-HOPS provides the concept of 'perspectives', which are

essentially top-level subsystems, to separate out different forms of components if

2
 https://www.mathworks.com/products/simulink.html

3
 https://www.esi-group.com/products/system-simulation

4
 https://www.metacase.com/solution/east-adl.html

https://www.mathworks.com/products/simulink.html
https://www.esi-group.com/products/system-simulation
https://www.metacase.com/solution/east-adl.html

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 6 Version 1.0 5 July 2023

Confidentiality: Public Distribution

required. This allows, for instance, separate modelling of hardware and software

components while still allowing software to be allocated to the hardware that executes

it.

The other main elements are the connections between components. Depending on the

modelling tool, these can vary from simple unidirectional point-to-point connections to

more complicated undirected lines connecting multiple components with their own

propagation logic. Connections connect to components via ports, which represent the

interface between a component and the rest of the system.

As the name would suggest, hierarchical modelling is also possible. Any component can

have a subsystem within it, which can host more components and more connections.

HiP-HOPS can automatically combine failures that originate from a component's

subsystem with failures that originate at the top level. This can be particularly useful for

describing failures that affect the component subsystem as a whole; for example,

individual failure modes can be modelled at the subsystem level, while generic issues

like electromagnetic interference or a power cut can be modelled once at the top

component level.

Although different modelling tools handle it in different ways, in general a HiP-HOPS

input file — containing the description of the system architecture and any failure

annotations in XML form — is generated by the tool separately from its own model

format. In this way, HiP-HOPS has a common input interface regardless of the

originating modelling tool used.

2.2.2 Failure annotation

HiP-HOPS failure annotations come in three main forms:

 Failure modes / basic events, which are component-level failures;

 Input & Output deviations, which are propagated failures at inputs/outputs;

 Common Cause Failures, which are failures that exist at a system level rather

than component level.

Failure modes (generally referred to as basic events in HiP-HOPS) are typically random

hardware failures experienced by components, but in general they represent any failure

that originates (or is initially detected) within a component. Software bugs, overheating,

jamming, electromagnetic interference, water ingress etc are all possible basic events.

Output deviations represent the way these basic events (or input deviations) can cause

unwanted deviations from nominal output at the output ports. Deviations all require a

particular failure class, which indicates the general type of failure. Common classes

include omission (lack of input/output when expected), commission

(unintended/unwanted input/output), timing (e.g. late, early), and value (e.g. high, low)

failures. Deviations are expressed as a combination of this failure class and the port

name, e.g. Omission-ImageOut means an omission at the ImageOut port.

Output deviations specifically are also provided with logical expressions to describe

their causes. This is how HiP-HOPS understands how failures propagate through

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 7

Confidentiality: Public Distribution

components. Most expressions consist of basic events, input deviations, and simple

Boolean operators (AND/OR), but more complex logic is also possible. As an example:

 Omission-ImageOut = HardwareDefect OR Omission-PowerIn

Here the omission at image out for an imaging component (e.g. a camera) is caused

either by an internal hardware defect or a lack of power at the electrical input port.

Figure 2 - HiP-HOPS failure annotation interface for Matlab Simulink

Output deviations can also refer to common cause failures. HiP-HOPS differentiates

between what it calls potential common cause failures (PCCFs) and actual common

cause failures (ACCFs). PCCFs are defined at the component level and represent

effects from possible CCFs, should they exist; if the CCF does not exist in a particular

operating context, then the PCCF is ignored.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 8 Version 1.0 5 July 2023

Confidentiality: Public Distribution

To 'activate' a PCCF, a corresponding ACCF must be defined at the system level. These

are common failures not specific to any particular component and typically represent

environmental effects, e.g. flooding, fire etc.

In this way, the failure logic is more generic and can be stored in e.g. a component

library without regard for whether or not the system environment features a particular

CCF. For instance, components originally modelled for use aboard a ship may have a

PCCF "water flooding" defined, but if re-used aboard an aircraft, the water flooding

ACCF is (hopefully) absent and thus these PCCFs remain inert with no need to modify

the logic of every output deviation.

2.2.3 Synthesis of propagation models

The internal workings of the tool are beyond the scope of this document, but different

options are available when conducting the synthesis. The most important affect the

structure of the resultant fault trees, which can either be left in their original form to

better reflect the propagation of failures, or simplified and contracted to make them

easier to read, albeit at the cost of most of the intermediate steps.

2.2.4 Failure Analysis

HiP-HOPS performs two main forms of analysis: fault tree analysis (FTA) and failure

modes & effects analysis (FMEA). The former can involve both qualitative analysis

(deduction of logical causes) and quantitative analysis (estimation of failure

probability), while, as mentioned, FMEA can include both direct effects of failures and

contributing effects that only occur in conjunction with other failures.

HiP-HOPS generates its analysis output in the form of multiple XML files which are by

default accompanied by a HTML wrapper that enables them to be viewed in a web

browser. Other forms of output are also possible, according to the options set, including

output of a single XML file with no HTML (most useful for importing into other tools)

and generation of an Excel spreadsheet.

2.3 SESAME-SPECIFIC EXTENSIONS AND FUNCTIONALITY

Both HiP-HOPS and the various compatible modelling tools are closed source tools.

Therefore, in order to be able to use them effectively as part of the EDDI toolchain, it

needs to be possible to convert from the native file formats (e.g. HiP-HOPS architecture

or results XML files) to ODE files. This is done via one of the converters described in

section 5.

Because HiP-HOPS served as one of the sources of input to the ODE design process,

the two metamodels are broadly compatible. HiP-HOPS is fully capable of generating

an ODE-compliant system architecture along with integrated ODE failure models like

fault trees and FMEAs.

However, as a design time tool, HiP-HOPS lacks the capability to add runtime-specific

information such as event monitoring or responses to fault detection/diagnosis. This

must be added after the fact via other tools (e.g. Eclipse Epsilon or the EDDI Editor).

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 9

Confidentiality: Public Distribution

2.4 UPDATES SINCE D4.4

In light of feedback received during the initial round of use case evaluations by

Locomotec and AVL, HiP-HOPS has been updated. Screenshots in the preceding

section were updated to reflect these updates while the details of the changes are

described below, along with comparative screenshots of the older interface.

Key points F1-F5 from the feedback were:

 From Locomotec (D8.5):

o F1) the desire to include explicit qualitative likelihoods and RPNs in the

FMEA;

 From AVL (D8.4):

o F2) The ability to use SysML models;

o F3) The UI should show a list of existing input deviations when defining

output deviations, to avoid having to remember them;

o F4) Most importantly, the UI should show all output deviations when

defining hazards. Since these are non-local, it is even harder to remember

them in large models.

 In addition, there was informal feedback that the UI was confusing in places

(F5). This was apparent from some of the questions asked during the evaluation

process. While this confusion was remedied at the time, it was decided that the

UI needed to be overhauled and streamlined to improve usability and help avoid

similar issues arising in the future.

Some initial work to the user interface has taken place to support F1, namely the input

of qualitative-only FMEA data (see Figure 3). However, implementing this feature

necessitates changes to the entire HiP-HOPS pipeline — not just the UI or input format,

but the internal processing and analysis and the output format and display — so this

work is still in progress.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 10 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 3 - Qualitative FMEA measures

Feedback F2, the ability to use SysML models, is infeasible. The issue here is that

HiP-HOPS requires two things: a system architecture model and local failure data

annotations. Even if a model transformation was created to import SysML architectural

models directly, without the ability to add the failure data annotations, HiP-HOPS

cannot function. Creating these annotations requires a plugin or UI of some kind that

forms part of the modelling tool itself (like the Simulink interface above), so that the

model and annotations can be created together. Implementing such a UI for a suitable

SysML modelling package, together with the required XML export and model

transformation, would be a major undertaking in its own right.

The remaining points (F3-F5) relate primarily to the usability of the existing Simulink

user interface. To this end, a major overhaul of the Simulink-based user interface took

place. Many of the more confusing options — specialised options that are rarely used,

or that relate to optimisation functionality — were moved into a separate window, while

the commonly used fields for normal failure data annotation were streamlined. This can

be seen by comparing Figure 4 below with the earlier Figure 2: both show the same

component failure data, but the updated interface is cleaner and less cluttered.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 11

Confidentiality: Public Distribution

Figure 4 - The previous HiP-HOPS failure data interface (cf. Fig 2)

Points F3 and F4 were also addressed directly. Ideally, these would be achieved by

adding autocomplete and syntax highlighting functionality to the text box where the

failure expressions are defined; however, this is not possible with the API Matlab

exposes.

Instead, new list boxes were added to the output deviation and hazard definition dialogs.

These list boxes query the underlying model and HiP-HOPS annotations to populate the

lists with incoming input deviations or global output deviations. Double-clicking any

deviation copies it directly into the failure expression box at the current cursor position.

This achieves the primary objective of not having to remember the deviations to type

them in manually, which can be frustrating and error-prone.

To illustrate, an example is shown below.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 12 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 5 - KIOS drone model in Matlab Simulink

This architecture is explained further in section 7.1, but this particular part of the model

shows the top-level subsystems of a drone:

 Positioning Unit (top left)

 Flight Controller Unit (top middle)

 Propulsion Unit (top right)

 Battery (bottom left)

 Environmental Detection Unit (bottom middle)

 Communications Unit (bottom right)

Except for the battery, all of these subsystems have subcomponents that may in turn

generate output deviations. In addition, more output deviations may come from outside

this subsystem via the CommsIn port (the small rounded rectangle under the Comms

Unit).

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 13

Confidentiality: Public Distribution

Previously, when defining output deviations for a component (e.g. the Communications

Unit), the user would have to remember all of the output deviations that lead to this

component. For simple, flat models, this is not an insurmountable issue; however, for

more complex hierarchical models like this, where output deviations may come from

subcomponents or supercomponents not even visible in the main view, this can be

challenging and error-prone.

The new interface solves this by providing ready-made lists of both incoming input

deviations (whether from the same level of the system, a subcomponent, or a

supercomponent elsewhere) as well as any internal local failures that have been defined:

Figure 6 - New incoming input deviations and internal failures lists

In this figure, Omission-PowerIn is the only deviation on the same level — it originates

from the battery. The omission and false positive at DataIn originate from

subcomponents of the Flight Controller Unit, while Omission-CommsIn originates from

the ground station, which is an entirely different system.

Similar functionality has been added to the hazard definition dialog (see Figure 7

below), where a list of all output deviations across the model is generated and

displayed. For large models with many components (and thus many deviations), this

results in significant savings in time, effort, and sanity.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 14 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 7 - Global list of output deviations for hazard definition

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 15

Confidentiality: Public Distribution

3. SAFETBOX

SafeTbox is a model-based safety modelling and analysis tool developed by and

commercially available from Fraunhofer IESE. The tool supports the safety engineering

lifecycle, focusing particularly on the stages before implementation, i.e. requirements

analysis and system design. Thus, the tool allows modelling a system‘s architecture,

analysing its risks and potential failures, and structuring assurance cases regarding the

system‘s dependability.

3.1 WHAT IS SAFETBOX

SafeTbox is an add-in to the Enterprise Architect (EA) modelling framework. Thus, it

extends EA‘s system modelling support for popular languages UML and SysML,

featuring its own component-based system modelling variant. An example of how this

variant appears graphically in the tool can be seen in Figure 8.

Figure 8 - Example of abstract component in safeTbox

In this figure, a host component (whose type is ‗Component_Type2‘) contains input and

output ports with which it connects to its external environment, and simultaneously

contains an internal component (whose type is ‗Subcomponent‘ and whose instance‘s

name is ‗CompInst‘). The host component‘s ports are linked to the contained

component‘s ports, allowing information, energy, or similar relations to flow from

outside the host component, to the contained component, and vice versa.

While these are listed as ‗components‘, they are abstract and flexible enough to also

represent complex system architectures. At the system level, dependability analysis

often begins with a Hazard Analysis and Risk Assessment (HARA), a part of which can

be seen in Figure 9. In the figure, a spreadsheet view allows the user to navigate

between sheets, each of which is dedicated to a different process step of the HARA. The

initial sheets are mostly for process documentation and information; the first process

step begins with the ‗Functions‘ sheet, as seen in Figure 9. In this sheet, the user can

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 16 Version 1.0 5 July 2023

Confidentiality: Public Distribution

specify their own system functions manually, or add existing ones defined in the system

model previously. For example, each of the components listed before can be considered

as a function and included in the list.

Figure 9 - Example of Functions sheet in safeTbox HARA

Once functions are included, the next step is identifying the different possible modes of

functional failure. This is performed in the ‗FHA‘ sheet, as seen in Figure 10. A

standard list of keywords is typically used here, including ‗Omission‘/‘Commission‘

(function was not provided when needed/provided when not needed), ‗Too Early‘/‘Too

Late‘, ‗Too Low‘/‘Too High‘, etc. Each of the functions listed previously can be

considered against each of the keywords (and beyond, if the analyst finds a unique

failure). Failure modes that are considered potentially hazardous (could cause harm to

people, environment, etc.) can be mapped to specific hazards. Each of the row entries

corresponds to a functional failure, and each vertical entry on the rightmost columns

represents a user-specified hazard that can be associated with those corresponding

functional failures.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 17

Confidentiality: Public Distribution

Figure 10 - Example of FHA sheet in safeTbox HARA

Once a set of hazards has been collected, the ‗Situations Driving‘ and ‗Situations

Standing‘ sheets allow detailing of the exposure risk parameter for specific situations

involving those hazards (while the vehicle is driving or standing still accordingly). See

Figure 11 for an example. Exposure reflects how likely a given hazardous situation is

expected to occur during the vehicle‘s operation. The combination of a hazard and such

a situation is referred to as a hazardous event.

Figure 11 - Partial example of situations driving sheet in safeTbox HARA

In the final sheet (‗Risk Assessment‘), the hazardous events from both situation sheets

are collected, and each is further rated with respect to the severity of the hazard (e.g.

death or severe injury of the driver) and with respect to its controllability by the driver

(e.g. the driver can easily observe the problem and halt the vehicle). The more severe,

frequently occurring, and difficult to control a hazard (-ous event), the higher the overall

assessed risk rating it receives (represented as an ISO26262 Automotive Safety Integrity

Level - ASIL). To mitigate one or more hazardous events, appropriate safety goals must

be specified, and be assigned an ASIL corresponding to the highest ASIL of all the

hazardous events they are intended to address.

Figure 12 - Example of risk assessment sheet in safeTbox HARA

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 18 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Either during or after the HARA, more detailed failure analysis may be needed to dig

deeper into underlying causes of system-level failures. Fault trees are one type of causal

analysis that can be used in this way. Figure 13 shows what the failure logic of the

subcomponent might look like. In the figure, the component‘s structure is represented

by the outer box (‗<<Component Type>>Subcomponent‘), whereas the inner box

(‗<<CFT>>Subcomponent‘) represents its Component Fault Tree (CFT) [5] [6]. CFTs

(described further in D4.5: Safety Analysis Concept) are a variant of traditional fault

trees and allow us to modularize fault tree models and map them to their corresponding

components.

Figure 13 - Example of failure logic for subcomponent in safeTbox

The CFT contains an input failure mode (In FM_12) and output failure mode (Out

FM_13). Each is associated with the outer box‘s component ports, indicating where that

failure might occur and/or propagate to, either inside or outside the component. Inside

the CFT, the failure modes are linked by a logical ‗OR‘ gate (―at least 1‖ symbol) to a

basic event (Basic Event_15). The basic event represents an internal component fault

that does not need to be decomposed further. Automatic qualitative analysis of the CFT

can reveal the minimal combinations of necessary and sufficient basic events and input

failure modes needed to trigger a specific failure. The analysis can also be quantitative,

evaluating the likelihood of the subject failure of occurring, based on assumed

probability models of the basic events.

Finally, assurance cases can also be modeled using the Goal Structuring Notation

(GSN) [7]. An example of an abstract GSN structure in safeTbox can be seen in Figure

14, where the safety of ‗ComponentType_2‘ is claimed to be acceptable. The claim is

depicted using a rectangle (Goal_20), also known as a ‗Goal‘ in GSN. To support the

claim, a strategy of argument (represented as a parallelogram Strategy_21) is used,

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 19

Confidentiality: Public Distribution

arguing that acceptable safety is achieved by evaluating the system‘s residual risk after

its safety goals have been validated. Another Goal (Goal_22) claims that the residual

risk is acceptable; an associated Assumption (Assumption_25, represented with an

ellipse) assumes that the safety goals contribute no risk of their own to the system.

Finally, evidence supports the final claim, by referring to the CFT of the subcomponent

seen previously in Figure 13, and notes that the risk of critical failures after the safety

goals have been implemented is acceptably low. Of course, we should note that this is

an oversimplified example, for illustration purposes.

Figure 14 - Example of abstract GSN structure in safeTbox

3.2 HOW IT WORKS

For detailed guidance on using safeTbox, the user manual and provided example model

should be useful references
5
. An abridged guide is included below for users in

SESAME.

To use safeTbox, an existing installation of Enterprise Architect (EA) is required, up to

version 15.1. Trial versions are also supported. SafeTbox can be downloaded and

5
 https://safetbox.de/docu-samples

https://safetbox.de/docu-samples

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 20 Version 1.0 5 July 2023

Confidentiality: Public Distribution

installed for free from its dedicated website
6
; the user must register an account, as seen

in Figure 15, and they can then download the installer executable and a trial license, as

seen in Figure 16.

Figure 15 - safeTbox website registration page

Figure 16 - safeTbox website downloads page

Once downloaded, run the installer executable and follow the instructions (installing

any additional requirements that are needed as well).

Once installed, safeTbox should be usable the next time EA is launched.

The first time EA is launched, you will be requested to provide your downloaded

license. Simply use the dialog to navigate to the license file and confirm. Upon starting

EA from here onwards, you should be greeted by the safeTbox welcome screen, as seen

in Figure 17.

6
 www.safetbox.de

http://www.safetbox.de/

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 21

Confidentiality: Public Distribution

Figure 17 - safeTbox welcome screen

If this is not the case, review your installation steps, consult the user manual, or contact

safeTbox user support via the website.

To create a model, open the (project) ‗Browser‘ pane and click to open or create a new

project, as per Figure 18.

Figure 18 - Creating a new project in safeTbox

Use the file dialog to either select the file path of the new project, or the file path of an

existing one. After successful creation/loading, the project‘s ‗Model‘ should be visible

in the Browser pane, as in Figure 19. By selecting and pressing Ctrl+Space, the

safeTbox ‗Smart Menu‘ should appear, allowing access to options such as Create, as

seen in Figure 20.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 22 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 19 - A project with a loaded model in safeTbox

Figure 20 - safeTbox Smart Menu

The Create option is likely the most useful, as it lets the user add new system, HARA,

CFT, and GSN models to the project model.

3.2.1 Using SafeTbox for Systems Modelling

To model a system e.g. an individual robot or even MRS, create a new Architecture

Model via the Smart Menu.

A new tab should appear, where a randomized name has been given to the new

component, seen at the center of the view. To rename the component and set its

properties, either double-click on it, or select and use the Smart Menu to access its

safeTbox Properties. In the dialog that appears, you can set various options, importantly

its name and description.

Upon confirming your changes, the dialog should close and the component should

reflect its new name and other visual properties that changed.

New ports and subcomponents can also be added via the Smart Menu. Ports can reflect

communication or interaction points between the subject system and the external

environment.

Subcomponents can represent participating elements of their host system e.g. individual

robots within an MRS. Components can be re-used by selecting the corresponding

option in the component creation dialog, as seen Figure 21.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 23

Confidentiality: Public Distribution

Figure 21 - Instantiating existing component types in safeTbox

The first list in the dialog allows the user to select which existing component to

instantiate. The second list refers to a more advanced feature that is explained in the

user manual. At the end of the dialog, an optional name for the new instance of the

component can be provided directly.

3.2.2 Using SafeTbox for CFT Modelling

Once a new component type has been created, a CFT can be added to it using the Smart

Menu => Create => Add Failure Model. A new tab should appear, depicting an emptier

but otherwise similar view to Figure 13. Once again, the Smart Menu should allow

access to creating all elements relevant to the CFT diagram.

3.2.3 Using SafeTbox for HARA

A HARA can be created from the (project) Browser pane via the Smart Menu. Note that

the HARA model requires user-triggered synchronization with the rest of the model;

this option is available via the tab menu => safeTbox => Synchronization.

Synchronization allows updates in both Model-HARA directions to occur.

As you progress through the sheets, you can often add safeTbox-related content to the

rows and columns by right-clicking on the margin. For example, this applies in the

Functions sheet, where the user can add Functions by right-clicking on the row margin

and selecting the Add Function option in the menu that appears, as seen in Figure 22.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 24 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 22 - Adding Functions to the HARA in safeTbox

Similar functionality can be found throughout the HARA spreadsheet, including:

 In the FHA sheet, new Hazard entries can be added by right-clicking on the

rightmost columns‘ margin

 In the Situations sheets, new entries can be added by right-clicking on the row

margin

 In the Risk Assessment sheet, new Safety Goals can be added by right-clicking on

cells under the columns in the Safety Goal section.

The embedded safeTbox menu is also important for some of the sheets:

 In the Functions sheet, safeTbox => ―Load existing component types‖ opens a

dialog to conveniently select which system model elements shall be imported into

the sheet

 In the FHA sheet, safeTbox => ―Permutate functions with failure modes‖

automatically generates entries based on combinations of the chosen guidewords

and the Functions sheet‘s functions.

 In the Situations sheets, safeTbox => ―Update situations sheet‖ automatically

generates situations based on the hazards specified in the FHA sheet.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 25

Confidentiality: Public Distribution

 In the Risk Assessment sheet, safeTbox => ―Update risk assessment sheet‖

automatically collects hazardous events from the Situations sheets.

3.2.4 Using SafeTbox for GSN Assurance Cases

To create a new GSN case, use the Smart Menu in the (project) Browser. A new GSN

Module should appear in the modelling view. A GSN Module represents a part of an

assurance case, and its contained elements can be referenced by other Modules.

The Smart Menu allows the user to create new Goals, Strategies, Solutions, and other

GSN elements. For referencing other Modules, use the Toolbox pane to access Away

elements (e.g. Away Goals), which can be dragged onto the module to add them.

Adding a new Away element to a Module will prompt the user with a dialog to specify

which GSN element should be referenced. Note that only GSN elements with the

property ‗Public‘ can be referenced, so make sure to set that property on the elements

you wish to be referenceable (via the safeTbox properties dialog).

3.2.5 Using SafeTbox for ConSerts

Creating ConSerts involves adding at least two models: a Collaborative System Group

(CSG), and a Collaborative System (CS). This can be done via the Smart Menu, as seen

in Figure 23.

Figure 23 - Adding ConSerts in safeTbox

CSGs represent sets of systems that collaborate to deliver an application-level service

e.g. hospital disinfection for the corresponding SESAME use case. To implement this

service, each constituent CS provides some of its own services as the application service

itself, or as a supporting service to other CS.

The CSG acts as a specification of service types and operational modes for the CS that

are associated to it. Each CS must offer services compatible with those types.

To begin the process, a CSG should be created first; to edit the service types and

operational modes of the CSG, use the Smart Menu => Specify Services option. A form

should appear in the main view, as partially seen in Figure 24.

The Operational Modes tab allows adding, editing and removing operational modes. In

the figure, an example based on the hospital disinfection case of 3 operational modes is

shown. ―Setting-up‖ refers to preparing the disinfection mission e.g. by initializing the

robot positions and orientations, ―Disinfecting‖ refers to the mode where the robots are

performing the disinfection, and ―Ending‖ refers to the robots returning to their mission

completion position.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 26 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 24 - Editing a Collaborative System Group’s Operational Modes in safeTbox

The Service Types tab allows specification of different types of services provided by the

constituents to the CSG i.e. the CSs. The Functional Properties sub-tab allows each

service type to be specified and be associated with a set of operational modes it is

applicable for. In the example seen in Figure 25, an application-level service type,

‗Disinfection‘, is defined in the first list, associated with the ‗Disinfecting‘ operational

mode. In the second list, CS-level services are specified; ‗NavigateToTarget‘ refers to

the robot navigating to a destination, ‗TurnOffLampX‘ refers to the robot deactivating a

specific UV-C lamp and ‗TurnOnLampX‘ the opposite.

Figure 25 - Specifying CSG Service Types in safeTbox

In the Quality Properties sub-tab, each (application or basic) service‘s quality properties

can be specified. For now, only ‗safety‘ properties are supported semantically by the

interface, but the interface can be used to define non-safety properties as well, as there

is no semantical constraint.

To specify quality properties for a service, select it in the first list. The second list

should update to reflect its current quality properties, if it has any. Use the buttons on

top of the second list to add/edit/remove or set the operational modes a quality is

relevant in. In the example seen in Figure 26, the application-level service

‗Disinfection‘ has one safety quality property ‗UV-C Overexposure‘, reflecting the

situation where one or more people have been overexposed by the one or more of the

MRS robots‘ lamps during the disinfection. The safety quality property is assigned a

risk rating (based on the automotive standard ISO26262 currently, this will be adapted

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 27

Confidentiality: Public Distribution

to the use cases), and can also be given a ‗failure mode‘ type (‗Commission‘ reflects

that the overexposure happened due to the UV-C lamps being on when not intended)

and assigned to an operational mode that applies to its service type owner.

Figure 26 - Specifying CSG Service Type Quality Properties in safeTbox

For each robot modeled, a CS can be specified, using the Smart Menu in the (project)

Browser. Once created, use the Smart Menu => Specify Configurations and Services

actions to edit the properties of the CS.

The first tab in the CS editing form is the Domain Realization, seen in .

The first section of the tab allows us to specify which, if any, of the application-level

services are supported by the given CS. In the case of our example, each robot

contributes to the MRS‘ application-level service of ‗Disinfection‘. Therefore, an

application-level service is added here, and its service type is set to match be the

Disinfection service, defined previously in the CSG tab (see Figure 25). Use the buttons

above the list area to add/edit/remove and set the service type.

The second and third sections of the tab allows us to specify which Provided and

Required Services are associated with this CS. In our example, this refers to the

individual services a given robot can perform. As seen in Figure 27, a given robot can

navigate to a target and turn its lamps on and off. The required services can be specified

similarly, and reflect which services a robot depends on to yield its provided services.

For example, a robot must perceive its environment to navigate and detect people,

therefore its required service is ‗Perception‘, as seen in Figure 28.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 28 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 27 - Specifying CS Provided Services in safeTbox

Figure 28 - Specifying CS Required Services in safeTbox

In the next tab, as seen in Figure 29, two configurations are specified for the given CS.

In our minimal example, a robot can be considered to either be detecting a person

around them, or not.

Figure 29 - Specifying CS System Configurations in safeTbox

3.3 SESAME-SPECIFIC EXTENSIONS AND FUNCTIONALITY

Building on prior work with DDIs, safeTbox has also been extended as part of joint

work for WP4 and WP7 to import/export EDDIs of its contained models. Simply use

the Smart Menu => Import/Export to EDDI File… to parse or serialize an EDDI. This

feature uses the Tool Adapter concept, explained later in Section 5.2. (Note that the

interface lists DDIs instead of EDDIs, but the models currently supported are indeed

updated to the new EDDI metamodels, as described in D4.2/D5.2: Safety/Security

ODE Specification).

Figure 30 - safeTbox (E)DDI I/O

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 29

Confidentiality: Public Distribution

4. DYMODIA

4.1 WHAT IS DYMODIA

Like HiP-HOPS and safeTbox, the Dymodia tool
7
 is a model-based safety analysis tool

that supports common analyses like FTA and FMEA. However, unlike the other two

tools, Dymodia integrates architectural, behavioural, and failure modelling and analysis

as part of a single platform. In this way, it is not reliant on an external modelling

package like Matlab Simulink or Enterprise Architect, which limits the other tools to a

uni-directional flow of separate steps: model, then analyse. By combining the model

and the failure analysis as part of the same package, Dymodia enables tighter

integration and allows a more rapid iterative process where design changes can quickly

be reflected in the analysis results

Another difference is that unlike the primarily static analyses of HiP-HOPS and

safeTbox, Dymodia also supports the use of state machines to model dynamic system

behaviour, which can then be linked directly to the architectural and failure models.

Standalone dynamic fault trees can also be defined to model failure-related behaviour

that does not correspond directly to system architecture elements or system states, e.g.

when modelling more complex hazardous scenarios.

Figure 31 - Dymodia UI

Both FTA and FMEA are supported. FTA results track changes in state, so that not only

combinations but also sequences of events that cause failures can be included. The

analysis results themselves are also integrated as part of the package, allowing e.g. users

to click on a result and be taken to the part of the system model that generated it.

However, Dymodia is still under development and is not as mature as the other tools. It

also features a much more complex input format, since it combines several elements in

7
 https://dymodiansystems.com/dymodia/

https://dymodiansystems.com/dymodia/

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 30 Version 1.0 5 July 2023

Confidentiality: Public Distribution

a package more like an IDE rather than a simple modelling tool. This makes it more

difficult to adapt to the ODE.

4.2 HOW IT WORKS

Dymodia follows roughly the same process as the preceding tools; the primary

difference is that it all takes place within the same interface. Three types of models are

possible to create:

 System models, to describe system architecture;

 State machines, to describe dynamic behaviour;

 Standalone fault trees, to describe failure logic that is not system-specific.

System models consist of components and connections, with ports serving as the

interface:

Figure 32 - Example Dymodia system model

As with the other tools, components can be annotated with failure data to describe

internal failure modes and deviations at their outputs. A particular grammar is used for

the logic, effectively forming a kind of simple domain-specific language.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 31

Confidentiality: Public Distribution

Figure 33 - Failure data in Dymodia

State machines can also be created and linked to system models. When linked in this

way, the states defined by the state machine are assumed to be the different modes of

operation for the system architecture, thus allowing different failure logic to be defined

for each state per component.

Transitions in the state machine can have a variety of triggers, including failure modes

and output deviations defined within the system architecture model. They can also be

triggered by standalone fault trees or even by transitions in other state machines, thus

allowing a form of hierarchical state machine to be created.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 32 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 34 - Dymodia state machine

Once created, the model(s) can be analysed. As with HiP-HOPS, both FTA and FMEA

is conducted. Unlike HiP-HOPS, these analyses can incorporate elements from multiple

models, including more than one model of each type.

Figure 35 - Dymodia FMEA output

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 33

Confidentiality: Public Distribution

4.3 SESAME-SPECIFIC EXTENSIONS AND FUNCTIONALITY

As it is the least mature tool and still in development, it is harder to use Dymodia for the

purpose of creating ODE-compliant EDDI models. However, its capabilities —

particularly for dynamic analysis with integrated state machines — makes it an

attractive prospect. Furthermore, because Dymodia is inspired by similar preceding

tools like HiP-HOPS, it too uses a metamodel that is broadly compatible with ODE.

The reverse is unlikely to be possible, however, because of the fact that Dymodia is an

integrated modelling and analysis tool. The models imported by HiP-HOPS and

safeTbox do not need to know about e.g. the position of each component or other

display information (like colours or images); this is instead handled by the external

modelling tool.

This same extra detail makes it more challenging to extract the relevant information out

of a Dymodia file to generate a corresponding ODE model. For that reason, only

Dymodia state machines can currently be converted to ODE models.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 34 Version 1.0 5 July 2023

Confidentiality: Public Distribution

5. ODE TOOLS

Two model converters are available for conversion of other models/file formats to ODE

models. In addition, this section also describes the minor changes that have been made

to the ODE metamodel since the publication of D4.2 & D5.2 Safety/Security-Targeted

ODE and EDDI specification.

5.1 RECENT CHANGES TO THE ODE

The ODE metamodel was slightly changed after issues were found with the

ODE::Dimension and ODE::ConSert packages. In addition, a few entities were renamed

to avoid name collision with SACM elements.

5.1.1 Removal of SubSetType enumeration from ODE::Dimension package

In the older version of the ODE, as described in D4.2 & D5.2 Safety/Security-

Targeted ODE and EDDI specification, the ODE::Dimension package included the

enumeration ―SubsetType‖ that was used as an attribute for a general dimension. The

idea was to be able to specify how two dimensions should be compared, i.e. one being a

subset of the other.

This SubsetType enumeration is only relevant when using dimensions in the context of

ConSerts, where it has to be checked to see if the demand could be fulfilled by the

provided guarantee. However, dimensions are also referred to from other packages and

elements where the subset type is not relevant at all, e.g. from within a Bayesian

Network NodeState. In general, dimensions should be generic and be usable by any

other element types where comparisons based on numeric, categorical, or binary

dimensions are relevant, and therefore they should not contain attributes that are

relevant for a specific modelling approach (like ConSerts).

In the new ODE version, this subset type aspect has been moved from the

ODE::Dimension package to the ODE::ConSert package. The SubsetType described

how the values of provided guarantee have to be related to the expected values defined

for the demands. For the new revision, the possible relations are:

1. Guarantee in Demand (GiD): Values provided by the guarantee are a subset of

the expected values defined for the demand.

2. Demand in Guarantee (DiG): Expected values defined for the demand are a

subset of the guarantee ―Demand in Guarantee‖.

3. Equal: Both values (the one expected by the demand and the one provided by

the guarantee) have to be equal.

4. Intersection not Empty: Assuming the guarantee and demand both define

ranges, the demand would be fulfilled if the intersection of both ranges is not

empty.

Thus the ―DemandGuaranteeDimensionRelation‖ type and associated enumeration were

introduced to define how the relation for each guarantee/demand dimension pair is

expected to be fulfilled. For example, assume a demand requires a minimum safe

operating distance between a robot and human workspace to fulfil requirements —

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 35

Confidentiality: Public Distribution

"safe_distance > 1 metre". If the robot guarantees that the safe distance will be at least 2

metres, then the demand is a subset of the guarantee (Demand in Guarantee) and the

requirement is fulfilled. Alternatively, a demand may require a maximum operating

temperature of 50° C, while the robot guarantees a max temperature of 40° C. In this

case, the guarantee should be a subset of the demand (Guarantee in Demand) to ensure

safe operation.

Figure 36 depicts how the newly introduced element type and enumeration are

integrated into the ODE::ConSert package.

Figure 36 - DemandGuaranteeDimensionRelation in ODE::ConSert package

5.1.2 Numeric dimension

The old ―Numeric Dimension‖ from the previous ODE version was found to be

unintuitive and not detailed enough to model different types of numeric dimensions.

With the older version, it was only possible to define a numeric dimension as a bounded

range (lower bounded, upper bounded, or both). Thus it was not able to explicitly cover

one single value (e.g., for comparing numbers to be equal). Furthermore, it was also not

possible to specify bounds inclusivity — whether or not the number that defines the

boundary should be included in the boundary (i.e., less/greater than or equal).

The refactored ODE::Dimension package including the new numeric dimension

definition is depicted in Figure 37. The specific types of dimensions have been renamed

in that they now end with the ―Dimension‖ suffix and additionally the ―Numeric‖ is

now called ―NumericRangeDimension‖. This numeric representation now does not refer

to one or more ―Limits‖ (as in the old version) but can have a starting and/or an ending

―NumericBoundary‖. Further, each numeric boundary can be specified to be inclusive,

which allows the ―<=‖ or ―>=‖ checks using the ―NumericRangeDimension‖.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 36 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 37 - Updated ODE::Dimension package

The actual numeric value which defines the boundary is no longer specified by a simple

attribute of the type of double, but is instead represented by the referenced

―NumericValue‖ element type. For this ―NumericValue‖ type, besides the actual value,

an epsilon value as well as the number type can be defined. Given this new

representation, it is now possible to define following classes of numeric dimensions:

 A single numeric value (e.g., for checking equality): starting and ending

―NumericBoundary‖ are set to the same value, where both boundaries have the

―inclusive‖ flag set to true.

 An upper boundary to check whether another numeric dimension is less than (or

equal to) this defined boundary: only the ending ―NumericBoundary‖ is set with

its ―inclusive‖ flag set as appropriate.

 A lower boundary to check whether another numeric dimension is greater than

(or equal to) this defined boundary: only the starting ―NumericBoundary‖ is set

with its ―inclusive‖ flag set as appropriate.

 A closed or (half-)open interval: both starting and ending boundaries are set to

different numbers with the ―inclusive‖ set as desired. This allows us to check if

other numeric range dimensions are contained in the interval or even if there are

intersections between two intervals.

5.1.3 Minor name changes

A few minor changes were made to the names of some ODE elements, whether for

clarity or to avoid clashes with similarly named elements elsewhere. These are briefly

described below:

 allocatedRequiredService in ProvidedService was renamed to

allocatedRequiredServices to reflect its 0..* cardinality;

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 37

Confidentiality: Public Distribution

 Similarly, guaranteePropagation, runtimeEvidence, and

conSertGate in ConSert were renamed to guaranteePropagations,

runtimeEvidences, and conSertGates;

 Event was renamed to OdeEvent to avoid collision with the Event in SACM;

 Action in the TARA package was renamed to ThreatAction to avoid

collision with the new Action in the FailureLogic package;

5.2 COMMON TOOL ADAPTER

Figure 38 - Tool Adapter Service Interface

The Tool Adapter is a service-providing software component that allows importing and

exporting EDDI models that conform to the ODE metamodel into or from an arbitrary

software (e.g. modelling software). Additionally, it provides a service for executing

Epsilon scripts on existing EDDI models. The standardized, language-agnostic and

generic service interface is realized using Apache Thrift. Figure 38 shows the service

interface provided by the Tool adapter and how it is used by modelling tools. This

chapter describes the service interface definition and usage in a modelling tool. For

further information about the Tool Adapter and its architecture, please refer to

SESAME project deliverable D5.4: Tailorability of EDDIs (Section 3.1).

Apache Thrift is used as an intermediate service interface provider. The open-source

framework comes with its own Interface Definition Language (IDL). Using the IDL

allows us to define service interfaces and the data types that shall be exchanged through

the services in a language-independent manner. The Thrift compiler is then used to

generate language-specific source code from the IDL definitions. This source code (e.g.

Java, C#, C++, etc.) can then be used in server- or client-side applications. For instance,

the Tool Adapter (Server) and modelling tools (Client) use Thrift to establish a

standardized service provision and consumption. Sending and receiving models to and

from the Tool Adapter needs a transformation between the tool internal model

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 38 Version 1.0 5 July 2023

Confidentiality: Public Distribution

representation and the Thrift data types on the client side (see Section 5.2 for further

information).

Figure 39 provides a brief overview on how generated code is integrated into client and

server software solutions. The ServiceInterface.thrift element represents the service and

data type definition using IDL. On each side, the generated Code is integrated and the

language-specific Thrift library is used to invoke the client or server-side specific

request and response procedures.

Figure 39 - Overview of Apache Thrift (DEIS D4.2)

As mentioned above, within the Tool Adapter, Apache Thrift is used to define the

service interface for importing/exporting EDDI models into/from modelling tools and

for executing Epsilon scripts on EDDI models. Furthermore, all ODE metamodel

elements and their relationships are defined as Apache Thrift datatypes. Thus,

generating language-specific code out of the Thrift contract defined in IDL means the

ODE data structure including the server and client code for providing and consuming

mentioned services is available in the specific language and is ready to be used in

software that shall communicate with each other.

5.2.1 User Guide

More information on setting up and using the Common Tool Adapter can be found in

the SESAME Common Tool Adapter user guide located in the

design_time_eddis/tool_adapter directory of the SESAME git repository.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 39

Confidentiality: Public Distribution

5.3 ODE FRAMEWORK UPDATER

As described in the preceding section, the Common Tool Adapter is a software

component providing a service that allows importing and exporting EDDI models from

arbitrary software tools. The exchanged EDDI models conform to the ODE metamodel.

Figure 40 depicts the Tool Adapter framework containing the components required for

the import and export functionality.

Figure 40 - Tool Adapter framework

Apache Thrift is used to provide programming language-independent service interfaces

(not depicted in figure) to support the EDDI export and import functionality from and to

modelling tools. The model element types defined in the ODE Metamodel are adapted

in internal data structures defined in the ODE Thrift Contract to use the adapter‘s

services and transfer the models from and to the external modelling tools.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 40 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Using the Thrift compiler, programming-language-specific source code files (e.g. Java,

C#, C++) are generated for the services and data structures defined in the Thrift

contract. These code files can again be integrated into modelling tools and into the Tool

Adapter (written in Java) to establish connections between server (Tool Adapter) and

clients (modelling tools) and invoke the EDDI import and export services. The ODE

metamodel is defined using the Eclipse Modeling Framework, which allows generation

of Java classes for each defined element type.

When the services for exporting or importing EDDI models are invoked, the Tool

Adapter receives or sends out the model from and to modelling tools in the Thrift

representation respectively. The exchangeable EDDI model is serialized in XML style

using the EMF representation of the model. Therefore, within the Tool Adapter a

transformation between the Thrift representation and the EMF representation has to be

performed. Additionally, wrapper classes for the Thrift data structures are defined for

allowing to use inheritances during these transformations.

When the ODE metamodel is updated or generally changed, the following steps have to

be performed in order to further support the export and import functionalities of the

Tool Adapter:

1. Update the Thrift contract.

a. Needs additional workaround steps to imitate inheritance relationships in

the ODE metamodel as Thrift‘s interface definition language does not

support defining inheritance for data types natively. Therefore, abstract

datatypes for super types are defined and unions together with

enumerations are used to point out to the actual subtype that is wrapped

within the abstract datatype.

2. Re-generate the programming-language-specific code files using the Thrift

compiler.

3. Adapt the wrapper classes in the Tool Adapter.

4. Update the EMF-to-Thrift transformation algorithms.

5. Update the Thrift-to-EMF transformation algorithms.

Besides being time-consuming, the above-mentioned steps are also error-prone, which

further increases time spent debugging the adapter tool. One method to mitigate errors

and development resources is to automatically provide an update of the Thrift contract

and the language-specific generated code files, the Thrift wrapper classes, and the

transformation algorithms, after the ODE metamodel has been changed.

This has been implemented in the form of the ODE Framework Updater. Figure 41

depicts the workflow of the ODE Framework Updater, which follows this approach.

First, the (updated) ODE metamodel is parsed and the defined element types are

validated such that all element types have unique names. An EMF-Thrift Mapping

Metamodel specifies the Thrift- and EMF-specific metamodeling structures and how

they can be mapped to each other. The mapping model is required, as the lack of native

inheritance definition support in Thrift does not allow a one-to-one mapping between

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 41

Confidentiality: Public Distribution

the datatypes defined in Thrift and EMF. An instance of this mapping metamodel is

created (―Mapping Model‖ in the figure), where the EMF and Thrift representation of

all ODE-related element types are mapped to each other. This mapping model is then

used to generate the new Thrift contract and the necessary transformation and wrapper

class code files. Finally, the generated code files are copied to the ODE Tool Adapter

code base to ensure it supports the export and import functionalities for the updated

ODE metamodel.

Figure 41 - Workflow of automatic ODE Framework Updater

To use the ODE Framework Updater, a configuration file (see example in Figure 42)

has to be prepared. Most of the configuration entries define paths to required directories

and files, including the updated metamodel and the location where the mapping model

should be serialized to.

Figure 42 - Example ODE Framework Updater Configuration File

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 42 Version 1.0 5 July 2023

Confidentiality: Public Distribution

5.4 EDDI EDITOR

5.4.1 The ODE Model Converter

The EDDI Editor was initially developed as a straightforward model transformation

tool, the "ODE Model Converter". Since none of the tools described in sections 2-4

support the ODE directly, converters are required to allow interoperability. In addition

to the Common Tool Adapter described in section 5.2, the ODE Model Converter was

developed as a standalone converter to enable direct conversion from HiP-HOPS to

ODE. The motivation for this lay in the fact that to capture the full output of HiP-

HOPS, two files are required:

 The input XML file, which contains the system architecture and local failure

data;

 The output XML file, which contains the FTA and FMEA analyses.

For the purposes of a simple design time analysis, the second file is sufficient. In order

to support the generation of runtime EDDIs, however, more information about the

system itself is required. Thus to enable a true conversion of a full HiP-HOPS model,

conversion of both separate files are necessary: one containing the system architecture

and the other containing the failure propagation model and analysis results. The ODE

Model Converter fulfilled this purpose by allowing both files to be imported and

exported as a single, combined ODE model. Equally, it also allowed just one file to be

imported, though this limits the usefulness of the converted model in turn.

Figure 43 - ODE Converter – imported model

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 43

Confidentiality: Public Distribution

The Converter additionally allowed limited editing of certain properties of both the

imported model(s) and the generated ODE model (prior to export).

5.4.2 The EDDI Editor

The EDDI Editor is a development of the original model converter with a greater range

of functionality. It is intended to act as a form of glue between the different safety

analysis tools and runtime EDDI generators and support a degree of tool heterogeneity.

Functionality includes:

 Import of HiP-HOPS models (either separate system architecture or analysis

models, or both combined) and conversion of them to ODE models;

 Import of Dymodia state machines and conversion of them to ODE models;

 Import of safeTbox EDDI models (containing both system architecture and

generated fault trees);

 Loading ODE models directly (e.g. system architectures, fault trees, FMEAs,

state machines);

 Simple editing of entity properties in each model (both before and after

conversion);

 Merging/combining of ODE models, e.g. by importing a model/subsystem

hierarchy to replace an existing (empty) placeholder system, or adding new

failure models etc;

 (In development) experimental validation and test execution of the resulting

models.

Note that the EDDI Editor is not a modelling or analysis tool in itself: models must still

be created and/or analysed in an appropriate tool first, like HiP-HOPS or safeTbox.

Similarly, some degree of further post-processing (e.g. code generation) is necessary to

produce an actual runtime EDDI.

The main interface of the EDDI Editor is similar to the earlier Converter, except rather

than having two tabs — one for the imported HiP-HOPS model, one for the converted

ODE model — the main interface now displays only the converted ODE model. Editing

of the imported model is now performed in a separate window as part of the import

process.

More information on the use of the EDDI Editor can be found in its user guide in the

design_time_eddis/eddi_editor directory of the SESAME git repository. However, a

subset is provided here to present some of its key capabilities.

The interface displays a hierarchical view of the system and its failure models on the

left, while on the right is a properties grid. Different elements can be selected from the

hierarchy, allowing their properties to be viewed and edited in the grid on the right. All

simple properties can be edited; however, only very limited changes to the actual

structure (i.e., adding or removing model elements) are possible.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 44 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 44 - EDDI Editor

Menu commands allow for file manipulation, including opening an existing ODE model

or importing a new model from a different tool (e.g. HiP-HOPS). Additionally, right-

clicking on the system hierarchy opens context-dependent import options:

 Import model as subsystem: opens the import dialog and lets you import a

model as a new subsystem under the current (right-clicked) system.

 Import model and replace this subsystem: opens the import dialog and lets

you import a model to replace the current (right-clicked) system. Used for

replacing placeholders/dummy systems with full ones.

 Import new failure model: imports a new failure model and adds it to the

current system.

Models imported this way can be existing ODE models or models from another tool

(which will get converted). In this way, it is possible to merge and combine different

models from different tools. For example, a high-level ODE model can have its abstract

subsystems refined by detailed subsystems imported from HiP-HOPS or safeTbox,

along with accompanying analysis results, which can then all be combined with a state

machine imported from Dymodia to represent overall system dynamic behaviour.

To support generation of runtime EDDIs, the Editor also allows creation and editing of

runtime-specific elements not found in any of the separate tools, e.g. information about

Events and Actions. These can be added by right-clicking appropriate model elements,

e.g. Failures for Events and States or Causes for Actions.

Examples of how to perform various actions are provided below.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 45

Confidentiality: Public Distribution

5.4.2.1 Importing and converting a HiP-HOPS model

To import any model for conversion into a new ODE model, click the Import option

from the File menu. This opens the Import dialog. At the top-left of this window are

slots for two files; for HiP-HOPS, these are the system architecture file (usually called

XYZ_Analysis.xml) and the analysis results file (XYZ_Results.xml). Note that

the outputtype=RESULTS option should be used with HiP-HOPS to generate a

single output XML file rather than one per fault tree.

For other tools, e.g. safeTbox or Dymodia, only the first slot is required.

Once loaded, the model hierarchy tree and properties pane will be populated with the

imported model and the "Detected type" box should identify the source of the model

(e.g. HiP-HOPS, Dymodia, etc).

This will load, populating the model hierarchy tree view and the properties pane. The

"Detected type" box should say that it is a HiP-HOPS model. You may notice that the

Results in the hierarchy view is empty, but if the load was successful there should be

hazards and a default perspective with components and failure data, etc.

Figure 45 - EDDI Editor import dialog

At this stage, you can choose to edit some or all of the properties of the model. Note

that editing is restricted to the properties of existing model entities; you cannot change

the model structure by adding/removing entities.

Pressing the Convert button next to the detected type will convert the imported model to

ODE and return to the main view. At this stage, you can again edit the resulting ODE

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 46 Version 1.0 5 July 2023

Confidentiality: Public Distribution

model if you wish, though again you cannot edit the overall structure, only the

properties.

5.4.2.2 Replacing a subsystem

One of the goals of the EDDI Editor is to support tool heterogeneity, i.e., to allow

different tools to be used together to produce EDDIs. For example, an initial functional

design model may be created in safeTbox, then more detailed implementation

information can be imported from HiP-HOPS models representing individual

subsystems. This also helps address scalability by ensuring that separate concerns can

be addressed in detail using different models (even different tools) but then combined in

order to produce an overall EDDI.

Doing this is relatively straightforward. Once an initial ODE model has been opened or

converted, you can import and merge other models directly within the hierarchy. Take a

simple standby-recovery system as an example:

Figure 46 - example standby-recovery model

This is a simple primary-standby model with three components: a sensor for input, a

primary actuator/processor, and a standby actuator/processor that takes over if the

primary fails. The standby is only a placeholder where the actual implementation should

be. This simulates a high-level architecture model where detailed information about

subsystem implementation is not available yet, e.g. because the design is still immature

or because the subsystem is produced by a third-party contractor.

The EDDI Editor then allows you to add or replace subsystems and thereby merge

models (potentially from different tools).

To demonstrate, use the hierarchy tree view to navigate down to the Standby system:

 Default (model)

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 47

Confidentiality: Public Distribution

o System Elements

 Default (system)

 Subsystems

o Standby (System)

For a placeholder, although the system element is present, there will be no failure data

defined. Right-clicking the placeholder opens up a context menu; selecting Import

model and replace this subsystem allows us to replace it (via merging) with an

imported model for that subsystem.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 48 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 47 - Merged subsystem

This should return to the main view, except now the previous placeholder has been

replaced by the imported model with associated failure data (e.g. output deviations and

failure modes).

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 49

Confidentiality: Public Distribution

5.4.2.3 Importing a state machine

Just as we can import and merge system architecture models, so can we import failure

models such as state machines. This allows us to add dynamic behaviour to otherwise

static models by e.g. combining a HiP-HOPS model with a Dymodia state machine. By

then adding appropriate events and actions, we help pave the way towards the

generation of a runtime EDDI.

Figure 48 - Dymodia state machine for the standby-recovery system

To do this, select Import New Failure Model and choose an appropriate file in the

import dialog, e.g. a Dymodia state machine (.uproj file). Pressing Convert converts it

to an ODE model and then merges it into the main ODE model.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 50 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 49 - Imported state machine

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 51

Confidentiality: Public Distribution

5.4.2.4 Adding Events and Actions

As mentioned earlier, to support generation of runtime EDDIs, it is necessary to add

information about how to execute the EDDI: namely, Events and Actions. Events are

occurrences triggered by something (usually a specific condition that is being

monitored), and Actions are pre-determined actions that are executed in response.

These can be added by selecting appropriate system elements and right-clicking. Both

States (in state machines) and Causes (in fault trees or attack trees) can have Actions

attached; for states, these can be "on entry" (executed when entering a state) or "on exit)

(executed when leaving a state), while for Causes, the Actions are executed when the

Cause becomes true.

Clicking on either will open an Add Action dialog:

Figure 50 - Add Action dialog

This allows you to set basic information about the Action and to select its type from the

drop down menu. Press Add Action and the action will be created and added to the

model:

Figure 51 - Action added

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 52 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Events, on the other hand, are primarily defined as part of Failures (i.e., the occurrence

of the failure triggers the Event), but are added in a similar manner.

Figure 52 - Add Event dialog

Note that in both cases, type-specific information (e.g. the actual condition for

ConditionEvents or the message for MessageActions) can only be defined in the

properties grid after the Action/Event has been added.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 53

Confidentiality: Public Distribution

6. OTHER TOOLS: GENIE BAYESIAN NETWORK TOOL

6.1 WHAT IS GENIE MODELER

GeNIe Modeler
8
 is a commercial modelling and analysis tool by BayesFusion

9
. It

allows graphical modelling of Bayesian networks, and supports Bayesian inference at

design time to get fast feedback during the modelling phase. Further, a plethora of

machine learning algorithms are supported for either learning the structure, i.e., the

causal connections, of a Bayesian network or for parametrization of the network‘s

conditional probability distributions with the help of data. Diverse analysis tools, e.g.

sensitivity analysis, are available in the tool as well to deepen the understanding of a

specific Bayesian network and its respective inference process.

In addition to Bayesian network modelling and inference, GeNIe Modeler supports the

following machine learning algorithms:

- Algorithms for learning the network‘s structure:

o PC (Peter Clark)

o Bayesian Search

o Greedy Thick Thinning

o Tree Augmented Naïve Bayes

o Augmented Naïve Bayes

o Naïve Bayes

- Algorithms for learning the network‘s parameters:

o EM (Expectation Maximization

Further, the application supports the following methods for evaluation and analysis:

- Evaluation using normal testing

- Evaluation using a k-fold cross validation

- Strength of influence analysis

- Sensitivity analysis

Notice that GeNIe Modeler is not only used for Bayesian networks, but also supports

influence diagrams, dynamic Bayesian networks, equation-based models, and hybrid

models.

8
 https://www.bayesfusion.com/genie/

9
 https://www.bayesfusion.com/

https://www.bayesfusion.com/genie/
https://www.bayesfusion.com/

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 54 Version 1.0 5 July 2023

Confidentiality: Public Distribution

For a more in-depth perspective on GeNIe Modeler, we refer to the official

BayesFusion website
10

 and their support page
11

.

6.2 HOW IT WORKS

GeNIe Modeler is a commercial software. So, beforehand a license must be acquired

and the software must be installed. In addition to their commercial business license,

BayesFusion distributes a free academic license as well. The following steps show the

process of getting a license, installing, and setting up GeNIe Modeler:

To use GeNIe Modeler, the user must:

1. Install the respective version of GeNIe Modeler as described on the official

website
12

. Notice that you must decide between the business
13

 and the academic
14

version. So, navigate to https://www.bayesfusion.com/downloads/.

a. If an academic version is desired, navigate to

https://download.bayesfusion.com/files.html?category=Academia and

download Genie academic version (compatible with Windows, can be used

in MacOS and Linux with emulation software e.g. Wine)

b. The business version requires purchasing a license by contacting

Bayesfusion. 30-day trial versions are available at

https://download.bayesfusion.com/files.html?category=Business

2. Execute the installer (in the emulated environment, if applicable) and follow the

instructions to install Genie Modeller.

3. Launch Genie Modeller for the first time.

4. Get a license for your GeNIe Modeler version after launching the application for the

first time. For that, you just need to follow the dialog box that opened automatically.

a. In case of a business license, you must have the individual license file

provided by BayesFusion on hand.

Now, GeNIe Modeler can be used. In addition to the following tutorial sections, we

refer to the official user handbook
15

 for GeNIe Modeler for specific questions and more

details in general.

6.2.1 Using GeNIe Modeler for Bayesian Network Modelling

1. Launch GeNIe Modeler.

2. Now, GeNIe Modeler starts with an empty network like shown in Figure 53.

10

 https://www.bayesfusion.com/
11

 https://www.bayesfusion.com/resources/
12

 https://www.bayesfusion.com/downloads/
13

 https://download.bayesfusion.com/files.html?category=Business
14

 https://download.bayesfusion.com/files.html?category=Academia
15

 https://support.bayesfusion.com/docs/GeNIe/

https://www.bayesfusion.com/downloads/
https://download.bayesfusion.com/files.html?category=Academia
https://download.bayesfusion.com/files.html?category=Business
https://www.bayesfusion.com/
https://www.bayesfusion.com/resources/
https://www.bayesfusion.com/downloads/
https://download.bayesfusion.com/files.html?category=Business
https://download.bayesfusion.com/files.html?category=Academia
https://support.bayesfusion.com/docs/GeNIe/

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 55

Confidentiality: Public Distribution

Figure 53 - Initial screen of GeNIe Modeler

3. Now, you can start modelling a Bayesian network by adding nodes via the button in

the topbar that symbolizes a network node (as shown in Figure 54). Hint: You have

to click on the canvas after selecting the node button to create new nodes.

Figure 54 - Button to select for creating new Bayesian network nodes

4. Similar, with the arc button (as shown in Figure 55), you can connect two nodes in

the canvas to model a causal relationship.

Figure 55 - Button to select for creating new causal relationships between two nodes

5. In the ―Node properties‖ you can specify each node. You can open the ―Node prop-

erties‖ dialog window by double clicking on a node on the canvas.

a. In the ―Definition‖ tab, you can define the concrete states of that node. You

can rename them by double clicking on the node‘s states (left part in Figure

57). Via the buttons in the bar above (as shown in Figure 56), you can add or

remove states.

b. In the same ―Definition‖ tab, you can define the conditional probability dis-

tribution in form of a table for that specific node. This is the concrete param-

eterization for this specific node, thus, it decides the outcomes when the

Bayesian network is inferred given evidence. This table gives the probabili-

ties for each state of the node given a state permutation over all parents of

this node (as shown in Figure 57).

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 56 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 56 - Buttons for adapting the number of states of a node

Figure 57 - Conditional probability table for a node that has

two parents in an example Bayesian network

6. Finally, for saving the modelled Bayesian network, you can use the standard save

functionality. This option can be reached via the ―File‖ menu as seen in Figure 58 -

Save option via the ―File‖ menu in GeNIe Modeler. Accordingly to Figure 59,

assure that you save the file as a .xdsl format.

Figure 58 - Save option via the “File” menu in GeNIe Modeler

Figure 59 - File format options provided by GeNIe Modeler

6.2.2 Using GeNIe Modeler for Bayesian Network Inference

1. To test your Bayesian network, you can run inferences in GeNIe Modeler. The

lightning button in the top bar updates all nodes in the network at once (as shown in

Figure 60).

a. To easier observe the outcomes of the nodes, you can change the view

option on the canvas to include the states with their probability distribution.

For this, mark all nodes and right click on them. Then, select the ―View As‖

– ―Bar Chart‖ option.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 57

Confidentiality: Public Distribution

b. To set specific evidence for one node, you can simply double click on the

respective states when the ―Bar Chart‖ view option is active.

Figure 60 – Update button to run an inference over the network

2. After setting an evidence but before updating the network (= inference), the

Bayesian network still has nodes without probability distributions like in the

example (Figure 61).

Figure 61 - Simplified example Bayesian network which is computing the criticality of a situation (node
“Critical”) for a autonomous shuttle given the shuttle’s speed (node “AV Shuttle Speed”) and the dis-
tance to the closest pedestrian (node “Distance to Pedestrian”). Two evidence (bold and underlined
states) are manually set.

3. Now, after the network is updated, there is a probability distribution of the node

states assigned to, respectively, computed for, all the nodes in the network. So, the

node of interest can be observed that way, like the ―Critical‖ node in the example

(Figure 62).

Figure 62 - Simplified example Bayesian network from Figure 61 after the inference

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 58 Version 1.0 5 July 2023

Confidentiality: Public Distribution

6.2.3 Using GeNIe Modeler for Machine Learning Tasks

1. Open the dataset that shall be used for the evaluation in GeNIe Modeler. This can be

achieved via drag-and-drop or via the ―File‖ menu using the ―Open Data File…‖

option. Typical dataset formats like .csv, .txt, or GeNIe‘s proprietary .gdat format

are supported.

a. Notice that the dataset must have a data column for each evidence and output

node with the data values being the node‘s states each.

2. Open the ML dialog box.

a. In case of parameter learning:

i. Simply open the ―Learn Parameters…‖ option in the ―Learning‖

menu like shown in Figure 63.

ii. Confirm the ―March Network and Data‖ window. There you can as-

sure that all the data entries are linked to the correct network nodes

and states. In case that the dataset columns and values align with the

network‘s nodes and states identifiers, GeNIe Modeler automatically

matches everything correctly. Conflicts are highlighted in this win-

dow as well and you can manually link entries by drag-and-drop.

b. In case of structure learning:

i. Assure that you have the dataset that you want to use actively

selected as the open window in GeNIe Modeler. For that you have to

select the dataset in the ―Window‖ menu like shown in Figure 64.

ii. Now, you have different menu options available. Select the option

―Learn New Network…‖ in the ―Data‖ menu like shown in Figure

65.

Figure 63 - Option to open the parameter learning dialog window

Figure 64 - Option to change the active file in GeNIe Modeler

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 59

Confidentiality: Public Distribution

Figure 65 - Option to open the structure learning dialog window

3. Select the ML algorithm of choice, set up the respective parameters and run the ML

task. For the parameter learning with the EM algorithm you can skip this step

because EM is the only available option.

a. Details on the supported datafiles, ML algorithms and their parameters etc.

can be found in the official documentation
16

 in the section ―Using GeNIe‖

―Learning‖.

4. After the ML task finished, the created, respectively adapted, Bayesian network will

be automatically shown in GeNIe Modeler. Be aware that you must save the newly

created network manually again in case of structure learning.

6.2.4 Using GeNIe Modeler for Bayesian Network Validation

Using GeNIe Modeler for Bayesian Network Evaluation

1. Open the dataset that shall be used for the evaluation in GeNIe Modeler. This can be

achieved via drag-and-drop or via the ―File‖ menu using the ―Open Data File…‖

option. Typical dataset formats like .csv, .txt, or GeNIe‘s proprietary .gdat format

are supported.

a. Notice that the dataset must have a data column for each evidence and output

node with the data values being the node‘s states each. So, an example

dataset for evaluating the previous example Bayesian network (Figure 61)

may look like Figure 66.

16

 https://support.bayesfusion.com/docs/GeNIe/

https://support.bayesfusion.com/docs/GeNIe/

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 60 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 66 - Example dataset (.csv file) to evaluate the example Bayesian network from Figure 61

2. Now, the validation window must be opened like shown in Figure 67.

Figure 67 - Option to open the validation window in GeNIe Modeler

3. Confirm the ―March Network and Data‖ window. There you can assure that all the

data entries are linked to the correct network nodes and states. In case that the

dataset columns and values align with the network‘s nodes and states identifiers,

GeNIe Modeler automatically matches everything correctly. Conflicts are

highlighted in this window as well and you can manually link entries by drag-and-

drop.

4. Select the ―Validation method‖ that you want to perform and set up the respective

parameters. It is important that you chose at least one node of interest (―Class

nodes‖) for which you want to see the evaluation results. Finally, run the evaluation.

a. Details on the supported evaluation types, their parameter, and the

evaluation result can be found in the official documentation
17

 in the section

―Using GeNIe‖ ―Learning‖ ―Validation‖.

5. After the evaluation finished, a pop-up window with the evaluation results is shown

(see Figure 68). This window includes, for instance, the accuracy and the confusion

matrix for each selected class node. Details on the different types of results can be

found in the official documentation
18

 under ―Using GeNIe‖ ―Learning‖

―Validation‖.

17

 https://support.bayesfusion.com/docs/GeNIe/
18

 https://support.bayesfusion.com/docs/GeNIe/

https://support.bayesfusion.com/docs/GeNIe/
https://support.bayesfusion.com/docs/GeNIe/

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 61

Confidentiality: Public Distribution

Figure 68 - Validation results for the node “Critical” from the example Bayesian network given in Fig-
ure 61 validated with the example dataset given in Figure 66

Using GeNIe Modeler for Bayesian Network Analysis

GeNIe Modeler provides tools for performing ―Strength of Influence‖ and ―Sensitivity‖

analyses. For details on the advantages of those analyses, the required steps to perform

such analyses, as well as, information about the expected results for each type of

analysis, we refer to the official documentation which goes into great detail here.

The documentation for the ―Strength of Influence‖ analysis can be found in the official

documentation
19

 under ―Using GeNIe‖ ―Bayesian networks‖ ―Strength of

influences‖.

The documentation for the ―Sensitivity‖ analysis can be found in the official

documentation
20

 under ―Using GeNIe‖ ―Bayesian networks‖ ―Sensitivity analysis

in Bayesian networks‖.

6.3 SESAME-SPECIFIC EXTENSIONS AND FUNCTIONALITY

To translate the Bayesian networks modelled with GeNIe Modeler to EDDIs, the tool

adapter introduced in Section 5.2 is used. The tool adapter allows via remote procedure

calls using Apache Thrift to send the content of an EDDI as argument and then creates

and stores the actual EDDI file for the user.

19

 https://support.bayesfusion.com/docs/GeNIe/
20

 https://support.bayesfusion.com/docs/GeNIe/

https://support.bayesfusion.com/docs/GeNIe/
https://support.bayesfusion.com/docs/GeNIe/

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 62 Version 1.0 5 July 2023

Confidentiality: Public Distribution

The connection and integration for Bayesian networks is implemented in a Python script

that connects to the Apache Thrift
21

 server that the tool adapter is running. The Python

script takes an .xdsl file as an input argument and triggers the tool adapter after

extracting all relevant information from the .xdsl Bayesian network model. For the

extraction of the Bayesian network itself, the SMILE Engine
22

 from BayesFusion is

used. This library is used as backend for GeNIe Modeler as well and supports the .xdsl

format out of the box. The engine is written in C++ but BayesFusion provides official

wrapper for a plethora of programming languages as well, i.e., Python, Java, R, and

.NET. A connection to MATLAB is established too. For the SMILE Engine to work

you need a license. There are free academic licenses and commercial business licenses.

So, for running the Python script three things are mandatory beforehand:

1. The tool adapter must be set up properly and the respective Apache Thrift server

must be running.

2. The transformation Python script must be set up so that the user‘s SMILE Engine

license is used.

3. The Python environment must be set up properly for running the file format

transformation. This includes installing several Python packages, e.g., Apache Thrift

and PySMILE (the Python wrapper for the SMILE engine).

In the following, the three points are covered. Afterwards, it is shown how to run the

actual Python script to generate the EDDI Bayesian network model out of the .xdsl

Bayesian network model.

6.3.1 Setting up & Running the Tool Adapter

Information on this topic can be found in Section 5.2 and 5.3.

6.3.2 Setting up the Transformation Python Script with the User’s SMILE License

First, a license must be granted by BayesFusion to the user. For this the user must go to

the download page
23

 and select between the free academic page
24

 or the commercial

business page
25

. On their the user shall follow the steps to issue a license for the SMILE

engine. After receiving and downloading the SMILE Engine license, the user must

unzip the archive and locate the ―pysmile_license.py‖ file.

After that, the ―pysmile_license.py‖ file must be copied to the code base so that the

transformation Python script is able to validate the installed PySMILE version when

running the script. The user must copy the file into the following directory:

―./xdsl_to_ddi/license/‖.

21

 https://thrift.apache.org/
22

 https://www.bayesfusion.com/smile/
23

 https://www.bayesfusion.com/downloads/
24

 https://download.bayesfusion.com/files.html?category=Academia
25

 https://download.bayesfusion.com/files.html?category=Business

https://thrift.apache.org/
https://www.bayesfusion.com/smile/
https://www.bayesfusion.com/downloads/
https://download.bayesfusion.com/files.html?category=Academia
https://download.bayesfusion.com/files.html?category=Business

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 63

Confidentiality: Public Distribution

6.3.3 Setting up the Python environment to run the Transformation Python Script

The user must install Apache Thrift and PySMILE in the Python environment that shall

be used for running the Python script. To achieve this, the following two commands are

sufficient:

1. Apache Thrift Python installation: python3 -m pip install thrift==0.11.0

2. PySMILE Python installation (the required command depends on the type of license

that was issued):

a. In case of a free academic license: python3 -m pip install --index-
url https://support.bayesfusion.com/pysmile-A/ pysmile

b. In case of a commercial business license: python3 -m pip install --
index-url https://support.bayesfusion.com/pysmile-B/ pysmile

6.3.4 Run the Transformation Python Script to get an EDDI model

You can run the transformation Python script with the following command: python3
xdsl_to_ddi.py –bayesianNetwork <BayesianNetwork.xdsl>

With ―BayesianNetwork.xdsl‖ being the name of the concrete input Bayesian network

.xdsl file that shall be transformed into an EDDI file.

The generated output EDDI file can be found in the ―./xdsl_to_ddi/out/‖ directory.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 64 Version 1.0 5 July 2023

Confidentiality: Public Distribution

7. USE CASE APPLICATIONS

Design-time EDDIs have been used as part of three use cases: the Locomotec

disinfection robot use case, the KIOS/CCD power station inspection use case, and the

AVL battery production use case. This section describes a HIP-HOPS example based on

the KIOS/CCD use case.

7.1 KIOS/CYPRUS CIVIL DEFENCE DRONE INSPECTION USE CASE

In this section, we will discuss the application of some of the design-time safety

analysis tools to the KIOS/Cyprus Civil Defence use case. It is intended to follow on

from the high-level discussion of the use case in D4.5 Safety Analysis Concept &

Methodology and lead on to the runtime aspects of the EDDI application in D7.3

Runtime Safety & Security EDDI Concept for MAS. The use case itself, along with

preliminary results from the initial evaluation phase of the project, is discussed further

in D8.7 Power Station Interim Use Case Evaluation.

In July 2011, an explosion at a nearby naval base caused heavy damage to the Vasilikos

Power Station, the biggest power plant in Cyprus. To ensure the safety of first

responders, an exclusion zone was set up around the power station to prevent further

injury. Instead, Cyprus Civil Defence (CCD) made use of drones to inspect the power

station for damage. Realising the potential of such drones for emergency response, CCD

established a collaboration with KIOS to engage in relevant research projects with the

goal of developing drone-based inspection systems for emergency search & rescue and

damage inspection purposes.

Figure 69 - Vasilikos Power Station incident

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 65

Confidentiality: Public Distribution

The goal of the overall MRS is therefore to:

 Gather information about the disaster (damage, safe locations, casualties &

trapped survivors, possible threats to human safety etc);

 Operate under a control centre in a safe location outside the zone to coordinate

operations and keep open communications with involved parties;

 Provide aerial visual assistance and assessment.

The system itself therefore consists of a central base station at the safe control centre

and one or more UAVs — quadcopter drones in this case — to perform information

gathering tasks and aerial support tasks.

7.1.1 System Architecture

At this stage in the design process, it is assumed that more concrete information is

available about the system and its functionality. Exact details about the implementation

of the drone platform are omitted for confidentiality purposes, but an overview of the

architecture is provided below:

 The Propulsion Unit encompasses the four rotors of the drone and

accompanying motors.

 The Flight Controller Unit (FCU) controls the Propulsion Unit (i.e., rotors)

based on the inputs of different sensors. It serves as the main control unit of each

drone.

 The Positioning Unit provides data about the drone's position to the Flight

Controller Unit. It includes an Inertial Measurement Unit (IMU) that provides

information about acceleration and turning rate etc, as well as a compass and a

barometer to measure altitude.

 The Communications Unit serves as the means to remotely control the drone

by sending instructions to the FCU. It also serves to relay information obtained

by the drone back to the ground control station and the user(s). The

Communications Unit has been established to be high priority in the earlier

HARA (see D4.5) and so has multiple channels of communication: Wifi, 3G

cellular, and standard radio.

 The Environmental Detection Unit (EDU) consists of the drone's sensors for

detecting people — the RGB camera and the thermal camera. The LIDAR laser

rangefinder is also included here, though it is intended for obstacle avoidance

and navigation support.

 The Gimbal acts as a stabiliser for the camera(s), ensuring that the orientation

remains constant as the drone moves around. As such, it needs information from

the FCU to compensate for any movement.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 66 Version 1.0 5 July 2023

Confidentiality: Public Distribution

In addition to one or more drones, there is also the Ground Control Station (GCS). This

helps to automate the process of logging, managing, and monitoring UAV operation. It

also governs task allocation, ensures maximal area coverage, and facilitates

communication between the robotic agents of the MRS. For the purposes of the

analysis, we are more interested in the drones than the GCS, but given the interaction

we assume the GCS has two high-level components:

 A Communications Unit to allow communication with the drones.

 A Drone Manager which has overall responsibility for controlling the drones. It

monitors which drones are connected to the MRS, what equipment and

capabilities they possess, their current status (battery level etc), and can issue

commands to them. Commands are generated by a task manager subsystem that

enables the drones to work collaboratively to cover the search area.

Using this information, we can construct a hierarchical system architecture model of the

drone, in this case using HiP-HOPS and Matlab Simulink.

Figure 70 - KIOS drone system model – top level

Here we can see the main subsystems of the drone itself — the Positioning Unit, FCU,

EDU (cameras), Propulsion system, Communications unit, and the battery.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 67

Confidentiality: Public Distribution

Figure 71 - Positioning Unit subsystem

Figure 71 shows the Positioning Unit subsystem, with IMU, Barometer, and GPS. The

component on the right is responsible for taking readings from these instruments and

deriving an actual position from them.

Figure 72 - EDU subsystem

This figure depicts the EDU — visual camera, thermal camera, and LIDAR.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 68 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 73 - Rotor propulsion subsystem

Above is the propulsion system with the four motors. The component on the right

simply combines the outputs to allow us to define appropriate failure logic.

Figure 74 - FCU subsystem

Figure 74 shows the Flight Controller Unit, which contains the main CPU. It takes input

from other parts of the system and is responsible for navigation and controlling the

motors powering the drone's rotors. Since it acts as the drone's central computer, it also

takes and processes input from the cameras to do onboard person recognition.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 69

Confidentiality: Public Distribution

Figure 75 - Comms subsystem

Finally, the communications unit consists of three possible comms channels: wifi,

cellular, and radio. These operate independently, allowing fallback from one to the other

if one channel is unavailable for whatever reason. The combiner blocks on the right

simplify the top-level model by combining all communication propagation into a single

line for each direction.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 70 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 76 - GCS subsystems

This shows the two subsystems of the GCS: the comms unit and the drone manager. We

assume power supply is not a point of failure here (e.g. because power is provided

externally by a generator or mains supply).

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 71

Confidentiality: Public Distribution

Figure 77 - GCS comms unit

Inside the GCS comms unit are the same three communications channels as the drone.

7.1.2 Annotating with failure data

With the model created, we can begin to add component-level failure data to define how

each component can fail and how it reacts to failures elsewhere. This is all supported by

the updated HiP-HOPS interface to Simulink, which allows definition of basic events,

common causes, and output deviations etc.

Exact failure data for each basic event (i.e., component failure mode) is not available,

but we can derive maximum failure rates based on the SILs assigned by the safety

requirements according to the guidance provided by standards like IEC 61508:

 SIL 1 = 1e-5 failures/hr – 1e-6 failures/hr

 SIL 2 = 1e-6 failures/hr – 1e-7 failures/hr

 SIL 3 = 1e-7 failures/hr – 1e-8 failures/hr

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 72 Version 1.0 5 July 2023

Confidentiality: Public Distribution

 SIL 4 = 1e-8 failures/hr – 1e-9 failures/hr

Most components form part of the critical path, i.e., their failure directly and singly

impacts one or more of the safety requirements. Only places where there is redundancy

— the communications (three channels), the positioning sensors, and the cameras —

can lower SILs be accepted.

As described in D4.5 Safety Analysis Concept & Methodology, SIL decomposition

can be applied where redundancy exists and components are independent. Usually this

is according to a simple arithmetic, e.g. SIL 1 + SIL 2 = SIL 3. For the purposes of the

example, we have decomposed the SILs and assigned failure rates to each component as

follows:

Subsystem Component SIL Failure rate
(/hr)

GCS Drone Manager 4 1e-8

GCS Comms 4 (1 + 2 + 1)
26

GCS\Comms Wifi 1 1e-5

GCS\Comms Cellular 3G 2 1e-6

GCS\Comms Radio 1 1e-5

Drone Battery 4 1e-8

Drone Position Unit 4 (2 + 2, 2 + 2)
27

Drone\PositionUnit IMU 2 1e-6

Drone\PositionUnit Barometer 2 1e-6

Drone\PositionUnit GPS 2 1e-6

Drone\PositionUnit APU 4 1e-8

Drone\Propulsion Motor (x 4) 4 1e-8

Drone\FCU CPU 4 1e-8

Drone EDU 4 (2 + 2)
28

Drone\EDU RGB Camera 2 1e-6

Drone\EDU Thermal Camera 2 1e-6

26

 Comms failure (SIL 4) = Wifi failure (SIL 1) + 3G failure (SIL 2) + Radio failure (SIL 1)
27

 Position consists of horizontal location (GPS SIL 2 + IMU SIL 2) and altitude (Barometer SIL 2 + LIDAR SIL 2)
28

 EDU failure (SIL 4) = RGB Camera (SIL 2) + Thermal Camera (SIL 2)

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 73

Confidentiality: Public Distribution

Drone\EDU LIDAR 2 1e-6

Drone Comms Unit 4 (1 + 2 + 1)

Drone\Comms Wifi 1 1e-5

Drone\Comms Cellular 3G 2 1e-6

Drone\Comms Radio 1 1e-5

Table 1 - SIL and failure rates for all components

However, this only applies to the default hardware failure of each component. In some

cases, there may be other types of failure mode. For example, for the FCU, we can

define five basic events (failure modes):

Figure 78 - Basic events of the FCU

In this case, "OtherFailure" is the default hardware failure (1e-8 failures/hr).

Overheating is caused when the CPU exceeds maximum operating temperature

threshold (due to environmental factors, e.g. fire); this is set as 1e-5 failures/hr, given

the likely conditions the drone might operate in. Then there are two failures for false

negative (0.01) and false positive (0.001) person detection. Failure rates here are simply

broad estimates for the purposes of design time analysis, but techniques like SafeML

can help provide more meaningful estimates once real datasets are available.

We also define the output deviations, i.e. failures being propagated from the outputs of

the component. In the case of the FCU, we have two output ports (DataOut for data

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 74 Version 1.0 5 July 2023

Confidentiality: Public Distribution

which is sent back to the GCS, and ControlOut for controlling the rotors). We define

two output deviations for DataOut and one for ControlOut as follows:

Failure Class Port Cause

Omission ControlOut Omission-PowerIn OR Omission-PositionIn OR

Omission-DataIn OR Overheating OR OtherFailure

Omission DataOut Omission-PowerIn OR (Omission-RGBIn AND

Omission-ThermalIn) OR Overheating OR

OtherFailure

FalsePositive DataOut PersonDetectionFalsePositive

Table 2 - Output deviations for the FCU

Figure 79 - Output deviations of the FCU

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 75

Confidentiality: Public Distribution

For example, the figure above shows the cause of omission of data to DataOut, i.e., the

failure of the FCU to send video data and information about people detected to the

GCS. This is caused by:

1. No power to the CPU

2. An omission of data from both the RGB camera and the thermal camera

3. Overheating (CPU fails)

4. OtherFailure (CPU fails)

5. PersonDetectionFalseNegative (CPU incorrectly fails to identify a person)

Other components are annotated similarly, with output failure caused by internal

hardware failure or omission of input. A few warrant a further mention, however:

 GPS can suffer from both an internal hardware failure and GPS jamming.

 Both cameras (and the LIDAR) can suffer from gimbal failure as well as

hardware failure. This hardware failure can be the result of ordinary wear and

tear or deliberate damage as part of a physical security attack.

 Failure of any single rotor is sufficient to cause overall propulsion failure.

Again, rotor failure could be an ordinary hardware fault or it could be due to

deliberate external damage.

 Position failure is caused by either a failure to establish horizontal location (both

GPS and IMU failure) or failure to establish altitude (both barometer and

LIDAR failure).

Additionally, four common cause failures (CCFs) are defined that affect

communications between drone and GCS:

 Wifi jamming

 3G jamming

 Radio jamming

 Wifi security attack (further information would be provided by subsequent

security analysis)

These all have fixed unavailabilities of 1e-7, reflecting the overall low (but not

impossible) chance of a malicious attack on the system.

It is also important to define the hazards, which serve as the top-level starting point for a

safety analysis. The earlier HARA identified two key hazards:

 H1: Failure of the drone to locate survivors, caused by:

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 76 Version 1.0 5 July 2023

Confidentiality: Public Distribution

o Failure of the drone's onboard sensors (camera, LIDAR, etc), whether

due to hardware failure or environmental factors

o Failure of the person detection algorithms designed to automatically

identify survivors (ML-driven)

o Failure of the drone's propulsion (inability to fly), including battery

failure

o Inability to navigate (navigation system failure, including potential GPS

jamming, potentially also obscured/inoperative onboard sensors)

o Inability to communicate (hardware failures, radio jamming, etc)

 H2: Collision between drone and the environment, caused by:

o Navigation error (navigation system failure, GPS jamming)

o Propulsion failure (e.g. failure of one or more motors leading to the

drone crashing), including battery failure

The risk assessment found that H1 has the highest risk (16), while H2 has a slightly

lower risk (10) despite being more severe, due to the lower likelihood of its causes.

In HiP-HOPS, we establish the cause of these hazards as follows:

 H1 = Omission-GCS.CommsUnit.DataOut

o No data received from the drone, meaning we don't detect a survivor in

need

 H2 = Omission-Drone.Propulsion.Out

o Either due to lack of control signal, power failure, or motor failure, the

drone flies out of control

We also assume the system is at risk for approximately 100 hours (4 days of operation).

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 77

Confidentiality: Public Distribution

Figure 80 - Hazard definition in HiP-HOPS

7.1.3 Safety Analysis

Once all of the failure data has been defined, it can be combined to synthesise fault trees

and an FMEA so that an overall analysis of the system can take place.

HiP-HOPS produces its results in web browser-viewable form. The initial page presents

a summary of the fault trees, their cut sets, and the unavailability:

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 78 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 81 - Fault Tree summary

Here we can see that there are 45 cut sets for H1 (failure to detect survivor) — i.e., 45

possible combinations of failures that cause this hazard — and 12 cut sets for H2 (drone

collision).

Clicking on either of the fault tree links leads us to the results for that fault tree. We can

view both the fault tree itself (Figure 82) and the minimal cut set results. Since there are

36 cut sets here, they are summarised as follows:

 5 cut sets of order 1 (single points of failure):

o Battery.failure (1-e8)

o CPU.otherFailure (1e-8)

o CPU.overheating (1e-3)

o CPU.PersonDetectionFalseNegative (0.01)

o CommsUnit.Interference (0.1)

 4 cut sets of order 2:

o Combinations of (each 1e-10):

 RGB camera failure or RGB gimbal failure

 Thermal camera failure or thermal gimbal failure

 36 cut sets of order 3:

o Combinations of communications failures:

 Wifi failure (jamming, drone wifi failure, GCS wifi failure, wifi

security attack)

 3G failure (jamming, drone 3G failure, GCS 3G failure)

 Radio failure (jamming, drone radio failure, GCS radio failure)

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 79

Confidentiality: Public Distribution

Figure 82 - Fault tree for the "failure to detect survivor" (H1)

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 80 Version 1.0 5 July 2023

Confidentiality: Public Distribution

The overall unavailability estimate for H1 is 0.109892. This is primarily driven by the

possibility of communications interference (0.1), a false negative of the person detection

algorithm (0.01), or the overheating of the CPU (0.001).

For H2, the failure of the drone propulsion system leading to collision, we have 12 cut

sets:

Figure 83 - Drone collision cut sets

These consist of combinations of position unit failures (GPS and IMU or barometer and

LIDAR), APS failure, power failure, CPU failure, or a motor failure.

The fault tree for H2 is shown below:

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 81

Confidentiality: Public Distribution

Figure 84 - Drone collision fault tree

We can also look at the FMEA, which displays the effects of each component failure

mode. HiP-HOPS can display both direct effects (the failure mode directly causes the

hazardous system effect) and further effects (the failure mode contributes to the hazard

in conjunction with other failure modes).

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 82 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 85 - Part of the FMEA

Figure 85 shows part of the FMEA for the system. At the top are the various common

cause failures affecting the communications; each of these are insufficient to cause H1

by themselves, but can in combination (hence "Single Point of Failure" = false). The

battery failure, on the other hand, is not only a single point of failure but can cause both

H1 and H2.

7.1.4 MRS aspects

Note that this analysis considers only two parts of the MRS: one drone and the ground

control station. There is the possibility for the drones to cooperate and in doing so

mitigate failure to some degree; for instance, a drone that suffers from position unit

failure may be able to use collaborative localisation, e.g. triangulation with other

drones, to approximate its own location and continue its mission (or at least find a safe

place to land).

On a higher level, multiple drones can cover the same area in a shorter amount of time,

and the GCS can allocate replacements when a drone fails to ensure the area allocated to

that drone is still surveyed.

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 83

Confidentiality: Public Distribution

These aspects are hard to capture in a design-time analysis. While the model could be

extended with one or two additional drones, in practice this would simply bloat the

results by duplicating everything. There are already 36 cut sets regarding

communication failure between the drone and the GCS; if we were to attempt to model

a potential localisation failure between 3 drones, this number would increase

exponentially.

Approximations can be made, e.g. by adding a specific component to represent the rest

of the drone swarm so that simple failures can be taken into account without cluttering

the results with the simultaneous internal failures of multiple drones.

However, it is better to address these elements using runtime EDDIs that can better

model the dynamic, adaptive circumstances involved in the scenario.

7.1.5 Conversion to ODE model and Preparation for Runtime

Once the HiP-HOPS model has been constructed and analysed, it can be exported to an

ODE XML file. In this form, it can be kept as an information repository about the

system — its architecture, its failure behaviour, decomposition of safety integrity levels,

and so forth — and by adding additional information about the dependability

requirements, an all-in-one safety case can be created.

This same file can also be used as the basis for a runtime EDDI, augmenting it with

runtime-specific information, adding dynamic models like Bayesian networks or

ConSerts, and specifying events and actions, etc.

Either way, the first step is to convert it to an ODE file. This can be done via the

Common Tool Adapter or via the EDDI Editor. The latter is preferred since it can

capture both aspects of the overall model: the system architecture and the analysis

results. Both files can be imported into the EDDI Editor to obtain a single merged ODE

model that contains both sets of data.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 84 Version 1.0 5 July 2023

Confidentiality: Public Distribution

Figure 86 - Importing the two HiP-HOPS files

Once imported, the merged model can be edited if required before it is converted to an

equivalent ODE model:

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 85

Confidentiality: Public Distribution

Figure 87 - Converted ODE model

The EDDI Editor allows other models (ODE or other imported models, including failure

models like BNs or state machines) to be merged into the system hierarchy. It also

allows the definition of events and actions that can help lay the foundation for runtime

execution.

Once any edits to the model are complete, the new EDDI can be saved as an XML

compliant with the ODE metamodel.

More information on the runtime aspects of EDDIs and their generation can be found in

the WP7 deliverables.

D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

Page 86 Version 1.0 5 July 2023

Confidentiality: Public Distribution

8. CONCLUSION

Within this document, three safety analysis tools have been described: HiP-HOPS,

safeTbox, and Dymodia, plus the Bayesian network tool GeNIe. Information about what

they are and how they work has been presented, showing how these tools can be used to

create system models and safety artefacts at design time — artefacts that capture the

type of information needed to produce EDDIs, either for runtime usage or as design

time artefacts themselves (e.g. for the purposes of safety argumentation).

The ODE metamodel serves as the foundation for the EDDI, acting as a superset of all

the information an EDDI might need to store. Translation from models produced by

proprietary design-time safety analysis tools to ODE-compliant models is possible via

either the Common Tool Adapter or the EDDI Editor. These allow conversion of tool-

specific file formats to ODE XML files that can then be further processed for generation

of runtime EDDIs or used in other parts of the EDDI toolchain.

The Common Tool Adapter is supported by an automated ODE updater, which allows

rapid and automatic regeneration of the necessary data to update the Adapter in

response to ODE metamodel changes.

The EDDI Editor provides additional support for tool heterogeneity and modification of

ODE-based EDDI models in preparation for runtime EDDI generation. Separate

models, potentially created by separate tools, can be merged and composed to help

address issues of scalability and distribution of dependability processes over multiple

partners.

Finally, to demonstrate how this pipeline looks in action, the HiP-HOPS tool was

applied to an example based on the KIOS/CCD power station inspection case study,

following on from the general walkthrough provided in D4.5 Safety Analysis Concept

& Methodology to create a structured system model (in Matlab Simulink) with failure

data annotations and analysis results (via HiP-HOPS) and finally to an ODE XML file

(via the EDDI Editor).

 D4.6 Tools for Automated Safety Analysis of MRS and for Production of EDDIs

5 July 2023 Version 1.0 Page 87

Confidentiality: Public Distribution

9. REFERENCES

[1] Y. I. Papadopoulos and J. A. McDermid, ―Hierarchically performed hazard origin and propagation studies,‖ in

Proceedings of the 18th International Conference in Computer Safety, Reliability, and Security; collected in LNCS

by Springer, vol 1698 (p139-152), Toulouse, France, 1999.

[2] Y. I. Papadopoulos, M. D. Walker, D. J. Parker, E. Rude, R. Hamann, A. Uhlig, U. Gratz and R. Lien, ―Engineering

Failure Analysis & Design Optimisation with HiP-HOPS,‖ Journal of Engineering Failure Analysis, vol. 18, no. 2,

pp. 590-608, 2011.

[3] M. D. Walker, L. Bottaci and Y. I. Papadopoulos, ―Compositional Temporal Fault Tree Analysis,‖ Computer Safety,

Reliability, and Security. SAFECOMP 2007. Lecture Notes in Computer Science, vol. 4680, pp. 106-119, 2007.

[4] D. J. Parker, M. D. Walker, L. S. Azevedo, Y. I. Papadopoulos and R. E. Araujo, ―Automatic Decomposition and

Allocation of Safety Integrity Levels Using a Penalty-Based Genetic Algorithm,‖ in International Conference on

Industrial, Engineering and Other Applications of Applied Intelligent Systems, Amsterdam, Netherlands, 2013.

[5] B. Kaiser, P. Liggesmeyer and O. Mäckel, ―A New Component Concept for Fault Trees.,‖ in Safety Critical Systems

and Software 2003, Eighth Australian Workshop on Safety-Related Programmable Systems, (SCS2003), Canberra,

Australia, 2003.

[6] B. Kaiser, D. Schneider, R. Adler, D. Domis, F. Mohrle, A. Berres, M. Zeller, K. Hofig and M. Rothfelder,

―Advances in component fault trees,‖ in Safety and Reliability - Safe Societies in a Changing World, London, UK,

CRC Press, Taylor Francis, 2018, p. 9.

[7] A. C. W. Group, ―Goal Structuring Notation Community Standard (Version 2),‖ January 2018. [Online]. Available:

https://scsc.uk/scsc-141B. [Accessed 12 11 2021].

	1. Introduction
	1.1 Updates since D4.4
	1.1.1 Response to reviewers
	1.1.2 Summary of changes

	2. HiP-HOPS
	2.1 What is HiP-HOPS
	2.2 How it works
	2.2.1 System Modelling
	2.2.2 Failure annotation
	2.2.3 Synthesis of propagation models
	2.2.4 Failure Analysis

	2.3 SESAME-specific extensions and functionality
	2.4 Updates since D4.4

	3. SafeTbox
	3.1 What is safeTbox
	3.2 How it works
	3.2.1 Using SafeTbox for Systems Modelling
	3.2.2 Using SafeTbox for CFT Modelling
	3.2.3 Using SafeTbox for HARA
	3.2.4 Using SafeTbox for GSN Assurance Cases
	3.2.5 Using SafeTbox for ConSerts

	3.3 SESAME-specific extensions and functionality

	4. Dymodia
	4.1 What is Dymodia
	4.2 How it works
	4.3 SESAME-specific extensions and functionality

	5. ODE Tools
	5.1 Recent Changes to the ODE
	5.1.1 Removal of SubSetType enumeration from ODE::Dimension package
	5.1.2 Numeric dimension
	5.1.3 Minor name changes

	5.2 Common Tool Adapter
	5.2.1 User Guide

	5.3 ODE Framework Updater
	5.4 EDDI Editor
	5.4.1 The ODE Model Converter
	5.4.2 The EDDI Editor
	5.4.2.1 Importing and converting a HiP-HOPS model
	5.4.2.2 Replacing a subsystem
	5.4.2.3 Importing a state machine
	5.4.2.4 Adding Events and Actions

	6. Other Tools: GeNIe Bayesian Network Tool
	6.1 What is GeNIe Modeler
	6.2 How it works
	6.2.1 Using GeNIe Modeler for Bayesian Network Modelling
	6.2.2 Using GeNIe Modeler for Bayesian Network Inference
	6.2.3 Using GeNIe Modeler for Machine Learning Tasks
	6.2.4 Using GeNIe Modeler for Bayesian Network Validation

	6.3 SESAME-specific extensions and functionality
	6.3.1 Setting up & Running the Tool Adapter
	6.3.2 Setting up the Transformation Python Script with the User’s SMILE License
	6.3.3 Setting up the Python environment to run the Transformation Python Script
	6.3.4 Run the Transformation Python Script to get an EDDI model

	7. Use Case Applications
	7.1 KIOS/Cyprus Civil Defence Drone Inspection Use Case
	7.1.1 System Architecture
	7.1.2 Annotating with failure data
	7.1.3 Safety Analysis
	7.1.4 MRS aspects
	7.1.5 Conversion to ODE model and Preparation for Runtime

	8. Conclusion
	9. References

