

Project Partners: Aero41, ATB, AVL, Bonn-Rhein-Sieg University, Cyprus Civil Defence, Domaine
Kox, FORTH, Fraunhofer IESE, KIOS, KUKA Assembly & Test, Locomotec,
Luxsense, The Open Group, Technology Transfer Systems, University of Hull,
University of Luxembourg, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

SESAME Project Partners accept no liability for any error or omission in the same.

© 2023 Copyright in this document remains vested in the SESAME Project Partners.

Project Number 101017258

D7.4 Open-Source Software Components for
Explainable EDDIs

Version 1.0
4 July 2023

Final

Public Distribution

Fraunhofer IESE, University of Hull and FORTH

D7.4 Open-Source Software Components for Explainable EDDIs

Page ii Version 1.0 4 July 2023

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Aero41

Frédéric Hemmeler

Chemin de Mornex 3

1003 Lausanne

Switzerland

E-mail: frederic.hemmeler@aero41.ch

ATB

Sebastian Scholze

Wiener Strasse 1

28359 Bremen

Germany

E-mail: scholze@atb-bremen.de

AVL

Martin Weinzerl

Hans-List-Platz 1

8020 Graz

Austria

E-mail: martin.weinzerl@avl.com

Bonn-Rhein-Sieg University

Nico Hochgeschwender

Grantham-Allee 20

53757 Sankt Augustin

Germany

E-mail: nico.hochgeschwender@h-brs.de

Cyprus Civil Defence

Eftychia Stokkou

Cyprus Ministry of Interior

1453 Lefkosia

Cyprus

E-mail: estokkou@cd.moi.gov.cy

Domaine Kox

Corinne Kox

6 Rue des Prés

5561 Remich

Luxembourg

E-mail: corinne@domainekox.lu

FORTH

Sotiris Ioannidis

N Plastira Str 100

70013 Heraklion

Greece

E-mail: sotiris@ics.forth.gr

Fraunhofer IESE

Daniel Schneider

Fraunhofer-Platz 1

67663 Kaiserslautern

Germany

E-mail: daniel.schneider@iese.fraunhofer.de

KIOS

Maria Michael

1 Panepistimiou Avenue

2109 Aglatzia, Nicosia

Cyprus

E-mail: mmichael@ucy.ac.cy

KUKA Assembly & Test

Michael Laackmann

Uhthoffstrasse 1

28757 Bremen

Germany

E-mail: michael.laackmann@kuka.com

Locomotec

Sebastian Blumenthal

Bergiusstrasse 15

86199 Augsburg

Germany

E-mail: blumenthal@locomotec.com

Luxsense

Gilles Rock

85-87 Parc d'Activités

8303 Luxembourg

Luxembourg

E-mail: gilles.rock@luxsense.lu

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

E-mail: s.hansen@opengroup.org

Technology Transfer Systems

Paolo Pedrazzoli

Via Francesco d'Ovidio, 3

20131 Milano

Italy

E-mail: pedrazzoli@ttsnetwork.com

University of Hull

Yiannis Papadopoulos

Cottingham Road

Hull HU6 7TQ

United Kingdom

E-mail: y.i.papadopoulos@hull.ac.uk

University of Luxembourg

Miguel Olivares Mendez

2 Avenue de l'Universite

4365 Esch-sur-Alzette

Luxembourg

E-mail: miguel.olivaresmendez@uni.lu

University of York

Simos Gerasimou & Nicholas Matragkas

Deramore Lane

York YO10 5GH

United Kingdom

E-mail: simos.gerasimou@york.ac.uk

 nicholas.matragkas@york.ac.uk

 D7.4 Open-Source Software Components for Explainable EDDIs

4 July 2023 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Initial outline 10 May 2023

0.6 Internal review version ready 22 June 2023

0.8 Internal review done by TTS 27 June 2023

0.9 Internal review done by BRSU 30 June 2023

1.0 Review changes integrated, ready for submission 4 July 2023

D7.4 Open-Source Software Components for Explainable EDDIs

Page iv Version 1.0 4 July 2023

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

2. Motivation .. 2

3. ConSerts Visualiser ... 3

4. Attack Tree Visualisation ... 6

5. SMILE .. 10

5.1 Runtime Explainability Evaluation of ML Components .. 11

5.2 Performance Evaluation of SMILE ... 12

5.3 Discussion on SMILE for Explainability ... 15

5.4 SMILE Code Availability ... 16

6. Summary .. 16

7. References .. 17

 D7.4 Open-Source Software Components for Explainable EDDIs

4 July 2023 Version 1.0 Page v

Confidentiality: Public Distribution

TABLE OF FIGURES

Figure 3.1 Overview of EDDI ConSert Visualiser Framework .. 3
Figure 3.2 Logfile Generation Workflow ... 5
Figure 3.3 Selection dialogs at visualiser startup .. 6
Figure 4 Visualisation page of the attack trees (incl. combined and magnified views) .. 8
Figure 5 Sample of attack tree visualisation ... 10
Figure 6 An example of measuring mIoU for an image segmentation task in design time (test sample is from Aerial

Semantic Segmentation Drone Dataset) ... 11
Figure 7 A) a test sample is from Aerial Semantic Segmentation Drone Dataset, B) Detection Super pixel as stated in

SMILE procedure in D4.5 and C) Creating an explainability mask. .. 12
Figure 8 Comparing SHAP, LIME and SMILE (A) and their Consistency with Human Intuition, (B) COMPAS Dataset

and XgBoost Model without Adversarial Attack, (C) against Adversarial Attack and a Racist Model, (D) against

Adversarial Attack and a Model with Unrelated Feature .. 13
Figure 9 (A) Comparing SMILE with LIME and BayLIME for dog classification and its explainability for inceptionV3

model. (B) Heatmap Comparison between SMILE Distance Measure for Image Classification.} 15

D7.4 Open-Source Software Components for Explainable EDDIs

Page vi Version 1.0 4 July 2023

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

Executable Digital Dependability Identities (EDDIs) are meant to be deployed across

significantly diverse applications and complex Multi-Robot System (MRS)

architectures, also featuring Artificial Intelligence (AI) and Machine Learning (ML)

models. Explainability of the embedded EDDI models can support the development of

robust, comprehensive, and trustworthy MRS.

In this deliverable, we present the different tools developed and upgraded over the

course of SESAME for the purpose of explaining EDDI state and/or behaviour. These

tools will be available as open-source software components via the SESAME GitHub

repository at https://github.com/sesame-project/explainable_eddis, accompanied by

documentation and examples.

https://github.com/sesame-project/explainable_eddis

 D7.4 Open-Source Software Components for Explainable EDDIs

4 July 2023 Version 1.0 Page vii

Confidentiality: Public Distribution

LIST OF ABBREVIATIONS

EDDI
Executable Digital Dependability

Identity

ODE Open Dependability Exchange

ODD Operational Design Domain ROS Robot Operating System

ConSerts Conditional Safety Certificates XML Extensible Markup Language

YAML Yaml Ain't Markup Language EGL Epsilon Generation Language

SESAME
Secure and Safe Multi-Robot

Systems

MRS Multi Robot System

 JAR Java Archive API Application Programming Interface

XDSL
XML-based Bayesian Network

format of the GeNIe toolset

GeNie

Commercial tool for Bayesian

network modelling and inference

IDE
Integrated Development

Environment

DT Design Time

PCA Principle Component Analysis Hz Hertz

EBNF Extended Backus–Naur Form RtE Runtime Evidence

MROS Model Based ROS RT Runtime

 D7.4 Open-Source Software Components for Explainable EDDIs

4 July 2023 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

In this deliverable, tools for assisting end-users in understanding the state of a Runtime

EDDI (RT EDDI) are presented. Such explainability is important both when developing

Multi-Robot Systems (MRS), as well as during operation. In the former case,

explainability supports verification of the RT EDDI output, whereas in the latter,

explainability supports overseeing the RT EDDI. While the specific tool depends on the

type of underlying RT EDDI, the common theme across tools is the emphasis of

visualisation-based techniques. At the time of writing, some of these tools support

explainability in an „offline‟ fashion (i.e. they allow visualisation of RT EDDI

execution traces rather than at runtime).

RT EDDIs are conceptually described in deliverable D7.1 (see Figure 1). Concretely,

these constituents collaboratively performing dynamic risk management are: 1.

Dynamic Safety Capability Assessment with Conditional Safety Certificates (ConSerts),

2. Situation-Aware Dynamic Risk Assessment with Bayesian Networks, 3. Dynamic

Reliability Assessment based on the SafeDrones tool, 4. Perception Uncertainty

Monitoring with the SafeML tool and 5. conditional event monitoring to realize a typed

communication interface between the runtime EDDI and the nominal functionality of

the MRS. The toolset in deliverable D7.2 realizes the pipeline to make the engineered

runtime models executable (i.e. generate components that can infer the runtime models

based on runtime-available information) and deploy them into common robotic platform

architectures.

The Robot Operating System (ROS) has been selected as the exemplary target runtime

environment, to which the EDDI shall be deployed. The reason for this decision is the

usage of ROS in several SESAME use cases and the general spread of ROS in the

robotics domain. Thus, by having support for deploying runtime EDDIs to ROS

applications, the transfer of EDDIs to industrial applications is facilitated. By splitting

the runtime EDDI generator pipeline in platform-independent and platform-dependent

parts, the extension towards other runtime environments is conceptually and technically

simplified.

The developed tools provide users with visualisation or explanation of the state of RT

EDDI models at runtime (or during a recorded runtime session). The tools described in

this deliverable can be found in the SESAME public GitHub repository at:

https://github.com/sesame-project/explainable_eddis.

The rest of the deliverable is structured as follows. In Section 2, we briefly review

requirements and motivation related to MRS development and operation for which RT

EDDI explainability would be beneficial for the end user. In Section 3, we discuss the

visualisation component for the Conditional Safety Certificate (ConSert) type of RT

EDDI. In Section 5, we discuss a Machine Learning (ML) explainability approach

which builds upon the SafeML approach presented previously in WP4 and WP7 (see

D4.1, D4.2, D7.1 and D7.2). We conclude in Section 6 summarizing the deliverable‟s

main points and outlining next steps.

https://github.com/sesame-project/explainable_eddis

D7.4 Open-Source Software Components for Explainable EDDIs

Page 2 Version 1.0 4 July 2023

Confidentiality: Public Distribution

Figure 1 Relationship of D7.4 to other deliverables

2. MOTIVATION

As robotic systems find increasing applications involving more complex human and

general interactions with their environment, the need to understand their perception and

decision-making process is likely to also increase in importance. Existing work is

interrogating this subject from different perspectives, including explainability for

robotics in human interaction [1] [2] [3] [4], explainability of artificial intelligence

(XAI) for robotics [5] and XAI in relation to agents and Multi-Agent Systems [6].

Given that EDDIs are intended to be part of the developed Multi-Robot System (MRS),

it is also relevant to support their explainability, which promises the following key

benefits:

 Supports the development of robust models, as developers‟ understanding of the

EDDI state can be interrogated more comprehensively. Particularly for Machine

Learning (ML)-related elements, see e.g. SMILE in section 5, such an

understanding is essential to efficiently test and improve upon the underlying

ML model.

 Improves feedback from field operation data. Similar to development-time

benefits, enhancing the explainability of field data can, potentially, significantly

increase the value in terms of fault identification and insight acquisition. Both of

these information instances can be then exploited to improve the MRS

dependability.

 Improves operator/end-user comprehension of MRS behaviour. MRS could

potentially feature multiple highly complex and emergent robotic behaviours.

Therefore, having means of associating observed behaviours with an explanation

of the state of the RT EDDIs deployed within them can help reduce uncertainty

and increasing MRS trustworthiness.

 D7.4 Open-Source Software Components for Explainable EDDIs

4 July 2023 Version 1.0 Page 3

Confidentiality: Public Distribution

3. CONSERTS VISUALISER

Conditional Safety Certificates (ConSerts) are specified at development time based on

safety requirements, as described in SESAME deliverable document D7.1. They are

defined for each adaptable system or robot that can operate in a system-of-systems or

Multi-Robot System (MRS) respectively to perform an overall service safely. At

runtime/ simulation time, conditions in terms of demanded safety requirements

(specified for required services, provided by other collaborating robots) and internal

measurable safety requirements, aka Runtime Evidence (RtE), are evaluated to

determine which safety requirement can be guaranteed for the provided service.

ConSerts can be represented in form of a RT EDDI conforming to the ODE metamodel,

described in the SESAME deliverable documents D4.1 (initial version) and D4.6

(updated version).

Consider that each robot in an MRS can have its own EDDI containing its respective

ConSerts defined. Additionally, the robots in an MRS do not necessarily have to be

developed by the same manufacturer. Thus, the composition of the collaborating robots‟

ConSerts trees is not necessarily known at development time. Therefore, to understand

and review the composition of these ConSerts and how they evaluate given certain

fulfilment states of internal RtEs at runtime/simulation-time, a visualisation of said

aspects would be useful. The EDDI ConSert Visualiser fulfils these requirements, as it

gives insights into:

1. the collaborating robots‟ overall ConSerts composition and

2. the execution-time-related safety requirements fulfilment based on data

collected during runtime/simulation-time and the collaborating robots‟ EDDIs.

Figure 3.1 Overview of EDDI ConSert Visualiser Framework

D7.4 Open-Source Software Components for Explainable EDDIs

Page 4 Version 1.0 4 July 2023

Confidentiality: Public Distribution

Figure 3.1 depicts an example ConSerts composition visualised in the EDDI ConSerts

Visualiser tool together with the required inputs and their origin. In order to visualise

the composition and the internally-defined conditional safety requirements structure of

each ConSert, the visualiser imports and analyses the EDDI files of each collaborating

robot. The visualiser tool does not currently support the user to inspect the ConSerts‟

states live during runtime, but instead relies on the states of each ConSert logged during

runtime to be imported afterwards into the tool. This way, the user is able to jump

forwards and backwards through the recorded states to inspect the ones that are of

interest. We intend to improve upon the component to allow it to also visualise live

during runtime.

The EDDI ConSerts Visualiser is implemented in Java using the Java Swing

framework
1
 for the realization of the general GUI components. Additionally, the Java

API (jGraphX
2
) of the mxGraph

3
 diagramming library was used to allow the user to

rearranging and resizing the visual components, as well as zooming and panning the

diagram canvas. The customized graph appearance can be saved using the “Save

Graph” button on the bottom left corner to allow the user to load the graph with the

saved appearance the next time the Visualiser is started. In order to inspect the

ConSerts‟ states for each point in time of the execution, the user has following options:

 Using the slider component at the bottom to reach each logged state.

 Using the left and right arrow buttons below the slider component to jump to

those timepoints where events have occurred. Events are defined as timepoints

where at least one safety requirement fulfilment state has changed.

 Using the events‟ listing on the right side of the visualiser provides an overview

of all the relevant timepoints where states (indicating safety requirement

fulfilment) have changed. The listing additionally gives insight into the changed

states of the relevant safety requirements (true = fulfilled; false = not fulfilled).

When reaching an event, the appearance of the ConSerts graph will change in the sense

that all nodes (safety requirements depicted as guarantees, demands and RtEs as well as

logical gates) will be re-colourised. Nodes coloured in red indicate that the safety

guarantees could not be provided at a given timepoint, whereas green-coloured nodes

indicate that safety guarantees can be provided. Safety guarantee status is propagated

upwards the ConSert trees, depending on the Boolean logic gates they connect to.

In order to provide the required logged states, the generation of ConSerts monitors,

initially described in chapter 3 of the SESAME deliverable document D7.2, has been

adapted. The generator can now be called using the command line with an additional

parameter “-l” (lower case character “L”) to instrument the ConSerts monitor such that

the ConSerts state (state of safety requirements‟ fulfilment) is written to a log file each

timestep. Figure 3.2 visualises the workflow in order to generate an extended ConSert

monitor that additionally outputs a log file, where each line represents the safety

1
 https://docs.oracle.com/javase/8/docs/technotes/guides/swing/

2
 https://github.com/jgraph/jgraphx

3
 https://github.com/jgraph/mxgraph

https://docs.oracle.com/javase/8/docs/technotes/guides/swing/
https://github.com/jgraph/jgraphx
https://github.com/jgraph/mxgraph

 D7.4 Open-Source Software Components for Explainable EDDIs

4 July 2023 Version 1.0 Page 5

Confidentiality: Public Distribution

requirements‟ fulfilment states at a specific point in time. The log file for each ConSert

is written to the same directory the respective ConSert monitor is located in.

Figure 3.2 Logfile Generation Workflow

In order to start the visualiser after runtime/simulation time and having the required

input files in place (EDDI files of the executed robots and log files generated during the

execution), those files have to be provided within a environment. Therefore, copy all

EDDI files (with the .ddi file extension) into a single directory and copy the log files

generated by each ConSert monitor in another separate directory. In order to start the

EDDI ConSert Visualiser, open a terminal of your choice (e.g. Command Prompt or

PowerShell on Windows or Terminal on Linux), change current directory to the one

where the EDDIVisualiser.jar is located and run following command (JRE >= 11 is

required):

java -jar EDDIVisualizer.jar

D7.4 Open-Source Software Components for Explainable EDDIs

Page 6 Version 1.0 4 July 2023

Confidentiality: Public Distribution

When starting the visualiser, two selection dialogs are popping up for the user to

interact with (see Figure 3.3). First, the user has to either choose the directory where the

EDDI files are located, or choose an XML file containing a saved graph model from a

previous session, as mentioned above. Afterwards, in the next selection dialog, the user

has to choose the directory where the respective log files are located. Confirming the

second selection, the visualiser will start and automatically layout the graph vertically.

As mentioned above, the layout can be changed by the user manually anytime, but has

to be saved to an XML file to load the same layouted graph upon future tool startups.

Figure 3.3 Selection dialogs at visualiser startup

4. ATTACK TREE VISUALISATION

In an attack tree, the root is the ultimate goal of the attacker and the leaves are different

ways (=attacks) to achieve that goal. Between the goal and the leaves, one can find sub-

goals, which describe intermediate achievements of the attacker that bring them closer

to their goal.

The best way for a human to receive all that information is to see the actual tree form of

an attack tree. For that reason, we developed an attack tree visualisation tool. It utilises

the Thymeleaf JAVA template engine, gets as input a series of nodes and edges, and

depicts them as a tree. Listing 1 includes the JAVA method that is responsible for

creating the nodes and edges ArrayLists. As it can be seen, a new node and edge

instance is created for every node of a given tree (currentNode in the listing). Both

instances are inserted in the corresponding ArrayLists. Finally, the for statement in the

end calls the same method recursively for every child of the current tree node. The

nodes and edges ArrayLists are used to visualise the attack trees.

// method to create the nodes and edges of a given Tree (=CanPrecedeNode)

public void createNodesEdges(CanPrecedeNode currentNode) {

 Node node = new Node();

 node.setId(currentNode.getId());

 node.setLabel(currentNode.getData());

 node.setTitle(currentNode.getData());

 node.setExtendedDescription(currentNode.getExtendedDescription());

 node.setWidthConstraint(100);

 node.setHeightConstraint(100);

 node.setBorderWidth(0);

 D7.4 Open-Source Software Components for Explainable EDDIs

4 July 2023 Version 1.0 Page 7

Confidentiality: Public Distribution

 node.setFont("14px arial white");

 node.setShape("box");

 nodes.add(node);

 Edge edge = new Edge();

 edge.setFrom(currentNode.getParentId());

 edge.setTo(node.getId());

 edge.setColor("#0A9396");

 edge.setWidth(4);

 edges.add(edge);

 if (currentNode.getChildren().size() > 0) {

 for (int i = 0; i < currentNode.getChildren().size(); i++) {

 CanPrecedeNode currentChild = currentNode.getChildren().get(i);

 createNodesEdges(currentChild);

 }

 } else {

 // no children

 }

}
Listing 1: JAVA method for visualisation of an attack tree

D7.4 Open-Source Software Components for Explainable EDDIs

Page 8 Version 1.0 4 July 2023

Confidentiality: Public Distribution

Figure 4 Visualisation page of the attack trees (incl. combined and magnified views)

 D7.4 Open-Source Software Components for Explainable EDDIs

4 July 2023 Version 1.0 Page 9

Confidentiality: Public Distribution

Figure 4 depicts the page for the visualisation of the attack trees. It consists of three

main components: visualisation panel, list of attack trees, and node details. The

vitalization panel depicts the chosen tree from the list of attack trees. The depicted tree

is one of the potential Template Attack Trees related to the target system, based on its

identified potential attacks. Three colors are used for the actual visualisation of an

attack tree. The ultimate goal of the attacker (root of the tree) is presented as a red

square. Light orange is given to known attacks, documented in the CAPEC repository

with a specific CAPEC-ID. They are usually find at the leaves of the attack tree.

Finally, Dark orange are all the intermediate sub-goals, security states of the target

system, after a set of attacks.

The Listbox at the right side of the page, includes the whole list of the selected potential

Template Attack Trees. The description of their ultimate goal is mentioned. By clicking

any of these goals, the corresponding attack tree is depicted at the vitalization panel.

Since a large number of attack trees can be related to a given target system, a Listbox

menu allows the depiction of one tree at a time.

Moreover, the user can select a node of a tree and get additional information about that

node. The Node Details component, shows additional information for any tree node that

is selected. For now the title and extended description are given. More information will

be added in the future, such as mitigation actions.

D7.4 Open-Source Software Components for Explainable EDDIs

Page 10 Version 1.0 4 July 2023

Confidentiality: Public Distribution

Figure 5 Sample of attack tree visualisation

Let‟s have a closer look to the tree included in the visualisation panel. The tree has three

leaves, each for known attacks with ids 94, 8, and 85. Attack with CAPEC-ID 94 could

allow an attacker to compromise a machine in a target network. The attacker, then,

could find themselves at the state where they can use the ROS command line tool from

that compromised machine. Any of the two other attacks (CAPEC-IDs 8 and 85) can

lead to the security state where the API of one of the Drones is compromised. This state

or the one besides (use ROS command line tool) can lead to the state where the attacker

can publish arbitrary data to a ROS topic. Finally, this state lead to the ultimate goal,

which is the compromised Drone to crash.

5. SMILE

As described in D4.5, SMILE stands for Statistical Model-agnostic Interpretability with

Local, and it uses Empirical Cumulative Distribution Function (ECDF)-based statistical

distance measures such as Wasserstein, Anderson-Darling, and Cramer-von Mises. In

this section, we will discuss 1) How SMILE can be used for runtime explainability

evaluation of ML components, 2) How we evaluate the performance of SMILE itself,

and 3) A discussion on the capabilities and limitations of SMILE in this project. It

 D7.4 Open-Source Software Components for Explainable EDDIs

4 July 2023 Version 1.0 Page 11

Confidentiality: Public Distribution

should be noted that the idea of SMILE has been submitted to IEEE Software and it is

under review.

Publication

Aslansefat, K., Hashemian, M., Walker, M., Akram, M. N., Sorokos, I., & Papadopoulos, Y. (2023).

Explaining black boxes with a SMILE: Statistical Mode-agnostic Interpretability with Local Expla-

nations. IEEE Software (Under review).

5.1 RUNTIME EXPLAINABILITY EVALUATION OF ML COMPONENTS

The SMILE approach can be used for runtime explainability evaluation of the ML

components. Focusing on KIOS use case, one can select a public dataset on Kaggle for

Aerial Semantic Segmentation Drone Dataset . The main task is to detect person(s) in

the image and initiate further actions based on the detection to make sure the UAV

operates in a safe manner. In the design time different approaches can be used to

evaluate the performance of ML component and with regards to semantic segmentation

algorithms, mean Intersection over Union (mIoU) can be a method to assess the

algorithm. The following figure shows A) original image sample, B) its ground truth

and C) the UNET segmentation with mIoU measure.

Figure 6 An example of measuring mIoU for an image segmentation task in design time (test sample is
from Aerial Semantic Segmentation Drone Dataset)

In runtime evaluation, there's no established ground truth for gauging performance. We

propose using the high-scoring super pixels from SMILE as a provisional ground truth

and computing the mIoU between the SMILE mask and the machine learning

segmentation outcomes for real-time assessment. It's important to note that generating

SMILE explainability for an image may take several minutes, so it currently offers

sporadic real-time explainability measurements. Additionally, SMILE is not equipped to

directly support image segmentation algorithms. For instance, in our example, we

adapted the machine learning model output to produce a binary classification - either a

person is detected or not. The following figure shows A) a test sample is from Aerial

Semantic Segmentation Drone Dataset, B) Detection Super pixel as stated in SMILE

procedure in D4.5 and C) Creating an explainability mask.

D7.4 Open-Source Software Components for Explainable EDDIs

Page 12 Version 1.0 4 July 2023

Confidentiality: Public Distribution

Figure 7 A) a test sample is from Aerial Semantic Segmentation Drone Dataset, B) Detection Super
pixel as stated in SMILE procedure in D4.5 and C) Creating an explainability mask.

5.2 PERFORMANCE EVALUATION OF SMILE

We have performed a number of experiments to evaluate the performance of SMILE

compared to common alternatives (LIME and SHAP and, for images, BayLIME). One

way to evaluate an explanation is to compare the outcome to human intuition: a

trustworthy explanation should be consistent with the explanations of humans who have

proper expert knowledge and an understanding of the model. For example, if both an

ML model and a doctor assess the same MRI scan image, both should highlight the

same features of the image as the reason for their diagnosis.

In order to test this, we have reproduced the experiment used by [7]. Figure 8-(A) shows

the comparison of human feature impact estimates versus those provided by LIME,

SHAP, and SMILE. The experiment is based on a model that assigns a sickness score of

2 for fever and cough, 5 when only one symptom is present, or 0 otherwise; a third

unrelated symptom, congestion, is also included. As can be seen in the figure, both

SMILE and SHAP are consistent with the human explanations, providing positive

values for fever and cough and zero for congestion. However, LIME's explanations

were not consistent: LIME not only provided negative values for fever and cough but

also assigned small negative values for congestion, which is an unrelated symptom.

Figure 8-(B) show the results of LIME, SHAP and SMILE for a XgBoost model trained

on the COMPAS dataset. Although all models have the Fidelity score of 1, there is a

disagreement between them which cannot be justified without having the ground truth.

One way to obtain the ground truth is to make a model intentionally biased toward a

specific feature and see how these methods respond. For example, in Figure 8-(C), a

racist model is provided, and as can be seen, all three explainers have shown the race as

the main feature. In SMILE, other features have very small values and that is because of

the effect of local perturbations (the two circles in Figure 8-(B)). In practice, there is a

trade-off between being robust to manipulations like adversarial attacks and focusing on

specific feature explanations. The trade-off can be tuned using number of local

perturbations in the algorithm.

Last but not least is Figure 8-(D), which shows an adversarial attack on explainability.

As discussed in [8], specific models are designed to fool LIME and SHAP explanations

towards an unrelated feature. The same approach is used to test SMILE as well. As

illustrated in this figure, the LIME approach has been fooled by the attack while SHAP

and SMILE both show a degree of robustness to the attack.

 D7.4 Open-Source Software Components for Explainable EDDIs

4 July 2023 Version 1.0 Page 13

Confidentiality: Public Distribution

Figure 8 Comparing SHAP, LIME and SMILE (A) and their Consistency with Human Intuition, (B)
COMPAS Dataset and XgBoost Model without Adversarial Attack, (C) against Adversarial Attack and a
Racist Model, (D) against Adversarial Attack and a Model with Unrelated Feature

D7.4 Open-Source Software Components for Explainable EDDIs

Page 14 Version 1.0 4 July 2023

Confidentiality: Public Distribution

Explainability in images is particularly challenging compared to simple tabular data,

because the features are all part of the image rather than numbers conveniently

separated into discrete sets. Explaining the diagnosis of an illness from a scan image

means breaking down the image into those parts that either support or contradict the

given diagnosis, whereas the task of explaining a diagnosis made on the basis of

variables representing discrete symptoms is much smaller in scope. Fortunately,

because SMILE widens the range of values being inspected as part of the explanation, it

frequently produces a more accurate, holistic explanation of a prediction about an

image, e.g. by encapsulating more of those parts of the image that support the prediction

and not including those parts of the image that are irrelevant or misleading.

Moreover, the current version of LIME uses a perturbation function that simply turns

super-pixels on and off and then compares their corresponding perturbation vectors

using cosine metrics. On the other hand, because SMILE compares the original and

perturbed images, it not only makes it more accurate but also allows the algorithm to

use different types of perturbations, like adding noise, etc.

Space constraints mean we cannot provide multiple examples here, but to demonstrate

the capabilities of SMILE, we present here the results of a dog classification using the

Inception_V3 model. Figure 9-(A) delineates a comparison between LIME, BayLIME

and SMILE. BayLIME is another extension of LIME that focuses on improving the

surrogate model by replacing its weighted linear regressor model with a Bayesian

regressor model. The top-left image shown in this Figure is the original, which is given

to the model. This example is that used in [9], in which four different settings --

non_Bay, which is similar to the original LIME approach; Bay_non_info_prior,

Bay_info_prior, and BayesianRidge_inf_prior_fit_alpha -- are all considered. The

results of these settings are shown in the central four images, and on the right the

SMILE result is shown. As can be seen, SMILE largely outperforms both the original

LIME and BayLIME, successfully identifying the dog as the most important feature

while not identifying any irrelevant sections of the image as being important.

Figure 9-(B) shows the heat-map for SMILE explainability for the dog image

classification considering cosine, Kuiper, Kolmogorov-Smirnov, Wasserstein, Anderson

Darling, and Cramer-Von Mises distances respectively. The provided heat-map shows

that ECD-based explainability can provide more accurate results.

 D7.4 Open-Source Software Components for Explainable EDDIs

4 July 2023 Version 1.0 Page 15

Confidentiality: Public Distribution

Figure 9 (A) Comparing SMILE with LIME and BayLIME for dog classification and its explainability for
inceptionV3 model. (B) Heatmap Comparison between SMILE Distance Measure for Image
Classification.}

5.3 DISCUSSION ON SMILE FOR EXPLAINABILITY

As SESAME forges ahead in revolutionizing multi-robot systems, putting emphasis on

aspects like safety, security, efficiency, and explainability, integrating SMILE into its

framework could prove to be invaluable. SMILE‟s model-agnostic nature and capability

to analyse various forms of data make it an ideal candidate for enhancing the

explainability aspect of the multi-robot systems developed through SESAME‟s

D7.4 Open-Source Software Components for Explainable EDDIs

Page 16 Version 1.0 4 July 2023

Confidentiality: Public Distribution

innovations, particularly in conjunction with the Executable Digital Dependability

Identities (EDDI).

EDDI, in SESAME, focuses on ensuring the dependability of multi-robot systems by

carrying verifiable models that encompass safety and security hazards, their causes,

effects, and possible corrective actions. SMILE‟s capabilities to produce reliable and

robust local explanations for diverse data types, including images and text, could be

seamlessly integrated into EDDI‟s framework. Through this integration, stakeholders

could obtain rich insights into how the multi-robot systems are making decisions, the

underlying factors that contribute to the systems‟ behaviour, and the interdependencies

among various elements within the system. Moreover, the safety and security analyses

within EDDI could be supplemented with explanations generated by SMILE,

facilitating a deeper understanding of the root causes of potential hazards and the

effectiveness of the mitigation strategies deployed by the robots.

A key area where SMILE‟s integration can further enhance SESAME is robustness.

SMILE‟s ability to analyse a larger portion of input data can potentially provide

SESAME with a more comprehensive understanding of ML components and their

behaviour in multi-robot systems.

Given that SESAME places emphasis on efficiency and productivity, it is crucial to also

address SMILE‟s computational complexity. Strategies like optimizing calculations by

offloading them to GPUs or employing approximations such as Sinkhorn distance, a

faster approximation of the Wasserstein distance that SMILE uses, can be considered.

This will align SMILE with SESAME‟s real-time requirements and ensure that the

added computational complexity does not become a bottleneck in the system.

In SESAME‟s quest for advancements in multi-robot systems, the need for

explainability is paramount to foster trust in the deployed systems. Incorporating

SMILE as an explainability tool into the SESAME framework can be a significant leap

towards achieving transparency, safety, and security in the deployment of multi-robot

systems. Through rigorous testing and validation across SESAME‟s various use cases,

such as those focusing on robustness, productivity, and security, the benefits of

integrating SMILE can be empirically assessed, and its contribution to the

trustworthiness and dependability of multi-robot systems can be quantified.

5.4 SMILE CODE AVAILABILITY

Regarding the research reproducibility, codes and functions supporting this paper are

published online at GitHub: https://github.com/Dependable-Intelligent-Systems-

Lab/xwhy.

6. SUMMARY

In this deliverable, we present tools developed or improved upon in SESAME, with

which EDDI state or behaviour can be explained during development or runtime. The

tools discussed are going to be available as open-source from the SESAME project

GitHub repository at https://github.com/sesame-project/explainable_eddis, alongside

documentation and examples.

https://github.com/Dependable-Intelligent-Systems-Lab/xwhy
https://github.com/Dependable-Intelligent-Systems-Lab/xwhy
https://github.com/sesame-project/explainable_eddis

 D7.4 Open-Source Software Components for Explainable EDDIs

4 July 2023 Version 1.0 Page 17

Confidentiality: Public Distribution

7. REFERENCES

[1] S. Thellman and T. Ziemke, “The perceptual belief problem: Why explainability is a tough challenge in social

robotics,” ACM Transactions on Human-Robot Interaction (THRI), vol. 10, no. 3, pp. 1-5, 2021.

[2] R. Setchi, M. Dehkordi and J. Khan, “Explainable robotics in human-robot interactions,” Procedia Computer

Science, vol. 176, pp. 3057-3066, 2020.

[3] G. Papagni and S. Koeszegi, “Understandable and trustworthy explainable robots: a sensemaking perspective,”

Paladyn, Journal of Behavioural Robotics, vol. 12, no. 1, pp. 13-30, 2020.

[4] G. Papagni and S. Koeszegi, “Challenges and solutions for trustworthy explainable robots,” Trust in Robots, vol.

15, no. 57, 2022.

[5] S. Wachter, B. Mittelstadt and L. Floridi, “Transparent, explainable, and accountable robotics,” Science Robotics,

vol. 2, no. 6, 2017.

[6] S. Anjomshoae, A. Najja, D. Calvaresi and K. Framling, “Explainable agents and robots: Results from a systematic

literature review,” in 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS

2019), Montreal, Canada, 2019.

[7] S. Lundberg and S. Lee, “A unified approach to interpreting model predictions,” Advances in neural information

processing systems.

[8] D. Slack, S. Hilgrad, E. Jia, S. Singh and H. Lakkaraju, “Fooling LIME and SHAP: Adversarial attacks on post-

hoc explanation methods,” Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 180-186,

2020.

[9] X. Zhao, W. Huang, X. Huang, B. Robu and D. Flynn, “Baylime: Bayesian local interpretable model-agnostic

explanations,” Uncertainty in artificial intelligence, pp. 887-896, 2021.

[10] K. Aslansefat, I. Sorokos, D. Whiting, R. Kolagari and Y. Papadopoulos, “SafeML: Safety Monitoring of Machine

Learning Classifiers through Statistical Difference Measure.,” in International Symposium on Model-Based Safety

and Assurance (IMBSA) 2020, Lisbon, Portugal, 2020.

[11] M. De Graaf, A. Dragan, B. Malle and T. Ziemke, “Introduction to the special issue on explainable robotic

systems,” ACM Transactions on Human-Robot Interaction (THRI), vol. 10, no. 3, pp. 1-4, 2021.

[12] F. Sado, C. Loo, W. Liew, M. Kerzel and S. Wermter, “Explainable Goal-driven Agents and Robots - A

Comprehensive Review,” ACM Computing Surveys, vol. 55, no. 10, pp. 1-41, 2023.

	1. Introduction
	2. Motivation
	3. ConSerts Visualiser
	4. Attack Tree Visualisation
	5. SMILE
	5.1 Runtime Explainability Evaluation of ML Components
	5.2 Performance Evaluation of SMILE
	5.3 Discussion on SMILE for Explainability
	5.4 SMILE Code Availability

	6. Summary
	7. References

