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EXECUTIVE SUMMARY  

Executable Digital Dependability Identities (EDDIs) are meant to be deployed across 

significantly diverse applications and complex Multi-Robot System (MRS) 

architectures, also featuring Artificial Intelligence (AI) and Machine Learning (ML) 

models. Explainability of the embedded EDDI models can support the development of 

robust, comprehensive, and trustworthy MRS.  

In this deliverable, we present the different tools developed and upgraded over the 

course of SESAME for the purpose of explaining EDDI state and/or behaviour. These 

tools will be available as open-source software components via the SESAME GitHub 

repository at https://github.com/sesame-project/explainable_eddis, accompanied by 

documentation and examples. 

  

https://github.com/sesame-project/explainable_eddis
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1. INTRODUCTION 

In this deliverable, tools for assisting end-users in understanding the state of a Runtime 

EDDI (RT EDDI) are presented. Such explainability is important both when developing 

Multi-Robot Systems (MRS), as well as during operation. In the former case, 

explainability supports verification of the RT EDDI output, whereas in the latter, 

explainability supports overseeing the RT EDDI. While the specific tool depends on the 

type of underlying RT EDDI, the common theme across tools is the emphasis of 

visualisation-based techniques. At the time of writing, some of these tools support 

explainability in an „offline‟ fashion (i.e. they allow visualisation of RT EDDI 

execution traces rather than at runtime). 

RT EDDIs are conceptually described in deliverable D7.1 (see Figure 1). Concretely, 

these constituents collaboratively performing dynamic risk management are: 1. 

Dynamic Safety Capability Assessment with Conditional Safety Certificates (ConSerts), 

2. Situation-Aware Dynamic Risk Assessment with Bayesian Networks, 3. Dynamic 

Reliability Assessment based on the SafeDrones tool, 4. Perception Uncertainty 

Monitoring with the SafeML tool and 5. conditional event monitoring to realize a typed 

communication interface between the runtime EDDI and the nominal functionality of 

the MRS. The toolset in deliverable D7.2 realizes the pipeline to make the engineered 

runtime models executable (i.e. generate components that can infer the runtime models 

based on runtime-available information) and deploy them into common robotic platform 

architectures.  

The Robot Operating System (ROS) has been selected as the exemplary target runtime 

environment, to which the EDDI shall be deployed. The reason for this decision is the 

usage of ROS in several SESAME use cases and the general spread of ROS in the 

robotics domain. Thus, by having support for deploying runtime EDDIs to ROS 

applications, the transfer of EDDIs to industrial applications is facilitated. By splitting 

the runtime EDDI generator pipeline in platform-independent and platform-dependent 

parts, the extension towards other runtime environments is conceptually and technically 

simplified.  

The developed tools provide users with visualisation or explanation of the state of RT 

EDDI models at runtime (or during a recorded runtime session). The tools described in 

this deliverable can be found in the SESAME public GitHub repository at: 

https://github.com/sesame-project/explainable_eddis. 

The rest of the deliverable is structured as follows. In Section 2, we briefly review 

requirements and motivation related to MRS development and operation for which RT 

EDDI explainability would be beneficial for the end user. In Section 3, we discuss the 

visualisation component for the Conditional Safety Certificate (ConSert) type of RT 

EDDI. In Section 5, we discuss a Machine Learning (ML) explainability approach 

which builds upon the SafeML approach presented previously in WP4 and WP7 (see 

D4.1, D4.2, D7.1 and D7.2). We conclude in Section 6 summarizing the deliverable‟s 

main points and outlining next steps. 

https://github.com/sesame-project/explainable_eddis
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Figure 1 Relationship of D7.4 to other deliverables 

2. MOTIVATION 

As robotic systems find increasing applications involving more complex human and 

general interactions with their environment, the need to understand their perception and 

decision-making process is likely to also increase in importance. Existing work is 

interrogating this subject from different perspectives, including explainability for 

robotics in human interaction [1] [2] [3] [4], explainability of artificial intelligence 

(XAI) for robotics [5] and XAI in relation to agents and Multi-Agent Systems [6]. 

Given that EDDIs are intended to be part of the developed Multi-Robot System (MRS), 

it is also relevant to support their explainability, which promises the following key 

benefits: 

 Supports the development of robust models, as developers‟ understanding of the 

EDDI state can be interrogated more comprehensively. Particularly for Machine 

Learning (ML)-related elements, see e.g. SMILE in section 5, such an 

understanding is essential to efficiently test and improve upon the underlying 

ML model. 

 Improves feedback from field operation data. Similar to development-time 

benefits, enhancing the explainability of field data can, potentially, significantly 

increase the value in terms of fault identification and insight acquisition. Both of 

these information instances can be then exploited to improve the MRS 

dependability. 

 Improves operator/end-user comprehension of MRS behaviour. MRS could 

potentially feature multiple highly complex and emergent robotic behaviours. 

Therefore, having means of associating observed behaviours with an explanation 

of the state of the RT EDDIs deployed within them can help reduce uncertainty 

and increasing MRS trustworthiness. 
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3. CONSERTS VISUALISER 

Conditional Safety Certificates (ConSerts) are specified at development time based on 

safety requirements, as described in SESAME deliverable document D7.1. They are 

defined for each adaptable system or robot that can operate in a system-of-systems or 

Multi-Robot System (MRS) respectively to perform an overall service safely. At 

runtime/ simulation time, conditions in terms of demanded safety requirements 

(specified for required services, provided by other collaborating robots) and internal 

measurable safety requirements, aka Runtime Evidence (RtE), are evaluated to 

determine which safety requirement can be guaranteed for the provided service. 

ConSerts can be represented in form of a RT EDDI conforming to the ODE metamodel, 

described in the SESAME deliverable documents D4.1 (initial version) and D4.6 

(updated version).  

Consider that each robot in an MRS can have its own EDDI containing its respective 

ConSerts defined. Additionally, the robots in an MRS do not necessarily have to be 

developed by the same manufacturer. Thus, the composition of the collaborating robots‟ 

ConSerts trees is not necessarily known at development time. Therefore, to understand 

and review the composition of these ConSerts and how they evaluate given certain 

fulfilment states of internal RtEs at runtime/simulation-time, a visualisation of said 

aspects would be useful. The EDDI ConSert Visualiser fulfils these requirements, as it 

gives insights into:  

1. the collaborating robots‟ overall ConSerts composition and  

2. the execution-time-related safety requirements fulfilment based on data 

collected during runtime/simulation-time and the collaborating robots‟ EDDIs. 

 

Figure 3.1 Overview of EDDI ConSert Visualiser Framework 



D7.4 Open-Source Software Components for Explainable EDDIs  

Page 4 Version 1.0 4 July 2023 

Confidentiality: Public Distribution 

Figure 3.1 depicts an example ConSerts composition visualised in the EDDI ConSerts 

Visualiser tool together with the required inputs and their origin. In order to visualise 

the composition and the internally-defined conditional safety requirements structure of 

each ConSert, the visualiser imports and analyses the EDDI files of each collaborating 

robot. The visualiser tool does not currently support the user to inspect the ConSerts‟ 

states live during runtime, but instead relies on the states of each ConSert logged during 

runtime to be imported afterwards into the tool. This way, the user is able to jump 

forwards and backwards through the recorded states to inspect the ones that are of 

interest. We intend to improve upon the component to allow it to also visualise live 

during runtime. 

The EDDI ConSerts Visualiser is implemented in Java using the Java Swing 

framework
1
 for the realization of the general GUI components. Additionally, the Java 

API (jGraphX
2
) of the mxGraph

3
 diagramming library was used to allow the user to 

rearranging and resizing the visual components, as well as zooming and panning the 

diagram canvas. The customized graph appearance can be saved using the “Save 

Graph” button on the bottom left corner to allow the user to load the graph with the 

saved appearance the next time the Visualiser is started. In order to inspect the 

ConSerts‟ states for each point in time of the execution, the user has following options: 

 Using the slider component at the bottom to reach each logged state. 

 Using the left and right arrow buttons below the slider component to jump to 

those timepoints where events have occurred. Events are defined as timepoints 

where at least one safety requirement fulfilment state has changed. 

 Using the events‟ listing on the right side of the visualiser provides an overview 

of all the relevant timepoints where states (indicating safety requirement 

fulfilment) have changed. The listing additionally gives insight into the changed 

states of the relevant safety requirements (true = fulfilled; false = not fulfilled). 

When reaching an event, the appearance of the ConSerts graph will change in the sense 

that all nodes (safety requirements depicted as guarantees, demands and RtEs as well as 

logical gates) will be re-colourised. Nodes coloured in red indicate that the safety 

guarantees could not be provided at a given timepoint, whereas green-coloured nodes 

indicate that safety guarantees can be provided. Safety guarantee status is propagated 

upwards the ConSert trees, depending on the Boolean logic gates they connect to. 

In order to provide the required logged states, the generation of ConSerts monitors, 

initially described in chapter 3 of the SESAME deliverable document D7.2, has been 

adapted. The generator can now be called using the command line with an additional 

parameter “-l” (lower case character “L”) to instrument the ConSerts monitor such that 

the ConSerts state (state of safety requirements‟ fulfilment) is written to a log file each 

timestep. Figure 3.2 visualises the workflow in order to generate an extended ConSert 

monitor that additionally outputs a log file, where each line represents the safety 
                                                           
1
 https://docs.oracle.com/javase/8/docs/technotes/guides/swing/  

2
 https://github.com/jgraph/jgraphx  

3
 https://github.com/jgraph/mxgraph  

https://docs.oracle.com/javase/8/docs/technotes/guides/swing/
https://github.com/jgraph/jgraphx
https://github.com/jgraph/mxgraph
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requirements‟ fulfilment states at a specific point in time. The log file for each ConSert 

is written to the same directory the respective ConSert monitor is located in. 

 

Figure 3.2 Logfile Generation Workflow 

In order to start the visualiser after runtime/simulation time and having the required 

input files in place (EDDI files of the executed robots and log files generated during the 

execution), those files have to be provided within a environment. Therefore, copy all 

EDDI files (with the .ddi file extension) into a single directory and copy the log files 

generated by each ConSert monitor in another separate directory. In order to start the 

EDDI ConSert Visualiser, open a terminal of your choice (e.g. Command Prompt or 

PowerShell on Windows or Terminal on Linux), change current directory to the one 

where the EDDIVisualiser.jar is located and run following command (JRE >= 11 is 

required): 

java -jar EDDIVisualizer.jar 
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When starting the visualiser, two selection dialogs are popping up for the user to 

interact with (see Figure 3.3). First, the user has to either choose the directory where the 

EDDI files are located, or choose an XML file containing a saved graph model from a 

previous session, as mentioned above. Afterwards, in the next selection dialog, the user 

has to choose the directory where the respective log files are located. Confirming the 

second selection, the visualiser will start and automatically layout the graph vertically. 

As mentioned above, the layout can be changed by the user manually anytime, but has 

to be saved to an XML file to load the same layouted graph upon future tool startups. 

 

Figure 3.3 Selection dialogs at visualiser startup 

4. ATTACK TREE VISUALISATION 

In an attack tree, the root is the ultimate goal of the attacker and the leaves are different 

ways (=attacks) to achieve that goal. Between the goal and the leaves, one can find sub-

goals, which describe intermediate achievements of the attacker that bring them closer 

to their goal.  

The best way for a human to receive all that information is to see the actual tree form of 

an attack tree. For that reason, we developed an attack tree visualisation tool. It utilises 

the Thymeleaf JAVA template engine, gets as input a series of nodes and edges, and 

depicts them as a tree. Listing 1 includes the JAVA method that is responsible for 

creating the nodes and edges ArrayLists. As it can be seen, a new node and edge 

instance is created for every node of a given tree (currentNode in the listing). Both 

instances are inserted in the corresponding ArrayLists. Finally, the for statement in the 

end calls the same method recursively for every child of the current tree node. The 

nodes and edges ArrayLists are used to visualise the attack trees.  

// method to create the nodes and edges of a given Tree (=CanPrecedeNode) 

public void createNodesEdges(CanPrecedeNode currentNode) { 

 

    Node node = new Node(); 

    node.setId(currentNode.getId()); 

    node.setLabel(currentNode.getData()); 

    node.setTitle(currentNode.getData()); 

    node.setExtendedDescription(currentNode.getExtendedDescription()); 

    node.setWidthConstraint(100); 

    node.setHeightConstraint(100); 

    node.setBorderWidth(0); 
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    node.setFont("14px arial white"); 

    node.setShape("box"); 

    nodes.add(node); 

 

    Edge edge = new Edge(); 

    edge.setFrom(currentNode.getParentId()); 

    edge.setTo(node.getId()); 

    edge.setColor("#0A9396"); 

    edge.setWidth(4); 

    edges.add(edge); 

 

    if (currentNode.getChildren().size() > 0) { 

        for (int i = 0; i < currentNode.getChildren().size(); i++) { 

            CanPrecedeNode currentChild = currentNode.getChildren().get(i); 

            createNodesEdges(currentChild); 

        } 

    } else { 

        // no children  

    } 

} 
Listing 1: JAVA method for visualisation of an attack tree 
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Figure 4 Visualisation page of the attack trees (incl. combined and magnified views) 
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Figure 4 depicts the page for the visualisation of the attack trees. It consists of three 

main components: visualisation panel, list of attack trees, and node details. The 

vitalization panel depicts the chosen tree from the list of attack trees. The depicted tree 

is one of the potential Template Attack Trees related to the target system, based on its 

identified potential attacks. Three colors are used for the actual visualisation of an 

attack tree. The ultimate goal of the attacker (root of the tree) is presented as a red 

square. Light orange is given to known attacks, documented in the CAPEC repository 

with a specific CAPEC-ID. They are usually find at the leaves of the attack tree. 

Finally, Dark orange are all the intermediate sub-goals, security states of the target 

system, after a set of attacks.   

The Listbox at the right side of the page, includes the whole list of the selected potential 

Template Attack Trees. The description of their ultimate goal is mentioned. By clicking 

any of these goals, the corresponding attack tree is depicted at the vitalization panel. 

Since a large number of attack trees can be related to a given target system, a Listbox 

menu allows the depiction of one tree at a time. 

Moreover, the user can select a node of a tree and get additional information about that 

node. The Node Details component, shows additional information for any tree node that 

is selected. For now the title and extended description are given. More information will 

be added in the future, such as mitigation actions.  
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Figure 5 Sample of attack tree visualisation 

Let‟s have a closer look to the tree included in the visualisation panel. The tree has three 

leaves, each for known attacks with ids 94, 8, and 85. Attack with CAPEC-ID 94 could 

allow an attacker to compromise a machine in a target network. The attacker, then, 

could find themselves at the state where they can use the ROS command line tool from 

that compromised machine. Any of the two other attacks (CAPEC-IDs 8 and 85) can 

lead to the security state where the API of one of the Drones is compromised. This state 

or the one besides (use ROS command line tool) can lead to the state where the attacker 

can publish arbitrary data to a ROS topic. Finally, this state lead to the ultimate goal, 

which is the compromised Drone to crash.  

5. SMILE 

As described in D4.5, SMILE stands for Statistical Model-agnostic Interpretability with 

Local, and it uses Empirical Cumulative Distribution Function (ECDF)-based statistical 

distance measures such as Wasserstein, Anderson-Darling, and Cramer-von Mises. In 

this section, we will discuss 1) How SMILE can be used for runtime explainability 

evaluation of ML components, 2) How we evaluate the performance of SMILE itself, 

and 3) A discussion on the capabilities and limitations of SMILE in this project. It 
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should be noted that the idea of SMILE has been submitted to IEEE Software and it is 

under review. 

Publication 

Aslansefat, K., Hashemian, M., Walker, M., Akram, M. N., Sorokos, I., & Papadopoulos, Y. (2023). 

Explaining black boxes with a SMILE: Statistical Mode-agnostic Interpretability with Local Expla-

nations. IEEE Software (Under review). 

 

5.1 RUNTIME EXPLAINABILITY EVALUATION OF ML COMPONENTS 

The SMILE approach can be used for runtime explainability evaluation of the ML 

components. Focusing on KIOS use case, one can select a public dataset on Kaggle for 

Aerial Semantic Segmentation Drone Dataset . The main task is to detect person(s) in 

the image and initiate further actions based on the detection to make sure the UAV 

operates in a safe manner. In the design time different approaches can be used to 

evaluate the performance of ML component and with regards to semantic segmentation 

algorithms, mean Intersection over Union (mIoU) can be a method to assess the 

algorithm. The following figure shows A) original image sample, B) its ground truth 

and C) the UNET segmentation with mIoU measure. 

 

Figure 6 An example of measuring mIoU for an image segmentation task in design time (test sample is 
from Aerial Semantic Segmentation Drone Dataset) 

In runtime evaluation, there's no established ground truth for gauging performance. We 

propose using the high-scoring super pixels from SMILE as a provisional ground truth 

and computing the mIoU between the SMILE mask and the machine learning 

segmentation outcomes for real-time assessment. It's important to note that generating 

SMILE explainability for an image may take several minutes, so it currently offers 

sporadic real-time explainability measurements. Additionally, SMILE is not equipped to 

directly support image segmentation algorithms. For instance, in our example, we 

adapted the machine learning model output to produce a binary classification - either a 

person is detected or not. The following figure shows A) a test sample is from Aerial 

Semantic Segmentation Drone Dataset, B) Detection Super pixel as stated in SMILE 

procedure in D4.5 and C) Creating an explainability mask. 
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Figure 7 A) a test sample is from Aerial Semantic Segmentation Drone Dataset, B) Detection Super 
pixel as stated in SMILE procedure in D4.5 and C) Creating an explainability mask. 

5.2 PERFORMANCE EVALUATION OF SMILE 

We have performed a number of experiments to evaluate the performance of SMILE 

compared to common alternatives (LIME and SHAP and, for images, BayLIME). One 

way to evaluate an explanation is to compare the outcome to human intuition: a 

trustworthy explanation should be consistent with the explanations of humans who have 

proper expert knowledge and an understanding of the model. For example, if both an 

ML model and a doctor assess the same MRI scan image, both should highlight the 

same features of the image as the reason for their diagnosis. 

In order to test this, we have reproduced the experiment used by [7]. Figure 8-(A) shows 

the comparison of human feature impact estimates versus those provided by LIME, 

SHAP, and SMILE. The experiment is based on a model that assigns a sickness score of 

2 for fever and cough, 5 when only one symptom is present, or 0 otherwise; a third 

unrelated symptom, congestion, is also included. As can be seen in the figure, both 

SMILE and SHAP are consistent with the human explanations, providing positive 

values for fever and cough and zero for congestion. However, LIME's explanations 

were not consistent: LIME not only provided negative values for fever and cough but 

also assigned small negative values for congestion, which is an unrelated symptom.  

Figure 8-(B) show the results of LIME, SHAP and SMILE for a XgBoost model trained 

on the COMPAS dataset. Although all models have the Fidelity score of 1, there is a 

disagreement between them which cannot be justified without having the ground truth. 

One way to obtain the ground truth is to make a model intentionally biased toward a 

specific feature and see how these methods respond. For example, in Figure 8-(C), a 

racist model is provided, and as can be seen, all three explainers have shown the race as 

the main feature. In SMILE, other features have very small values and that is because of 

the effect of local perturbations (the two circles in Figure 8-(B)). In practice, there is a 

trade-off between being robust to manipulations like adversarial attacks and focusing on 

specific feature explanations. The trade-off can be tuned using number of local 

perturbations in the algorithm.  

Last but not least is Figure 8-(D), which shows an adversarial attack on explainability. 

As discussed in [8], specific models are designed to fool LIME and SHAP explanations 

towards an unrelated feature. The same approach is used to test SMILE as well. As 

illustrated in this figure, the LIME approach has been fooled by the attack while SHAP 

and SMILE both show a degree of robustness to the attack.  
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Figure 8 Comparing SHAP, LIME and SMILE (A) and their Consistency with Human Intuition, (B) 
COMPAS Dataset and XgBoost Model without Adversarial Attack, (C) against Adversarial Attack and a 
Racist Model, (D) against Adversarial Attack and a Model with Unrelated Feature 
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Explainability in images is particularly challenging compared to simple tabular data, 

because the features are all part of the image rather than numbers conveniently 

separated into discrete sets. Explaining the diagnosis of an illness from a scan image 

means breaking down the image into those parts that either support or contradict the 

given diagnosis, whereas the task of explaining a diagnosis made on the basis of 

variables representing discrete symptoms is much smaller in scope. Fortunately, 

because SMILE widens the range of values being inspected as part of the explanation, it 

frequently produces a more accurate, holistic explanation of a prediction about an 

image, e.g. by encapsulating more of those parts of the image that support the prediction 

and not including those parts of the image that are irrelevant or misleading.  

Moreover, the current version of LIME uses a perturbation function that simply turns 

super-pixels on and off and then compares their corresponding perturbation vectors 

using cosine metrics. On the other hand, because SMILE compares the original and 

perturbed images, it not only makes it more accurate but also allows the algorithm to 

use different types of perturbations, like adding noise, etc.  

Space constraints mean we cannot provide multiple examples here, but to demonstrate 

the capabilities of SMILE, we present here the results of a dog classification using the 

Inception_V3 model. Figure 9-(A) delineates a comparison between LIME, BayLIME 

and SMILE. BayLIME is another extension of LIME that focuses on improving the 

surrogate model by replacing its weighted linear regressor model with a Bayesian 

regressor model.  The top-left image shown in this Figure is the original, which is given 

to the model. This example is that used in [9], in which four different settings -- 

non_Bay, which is similar to the original LIME approach; Bay_non_info_prior, 

Bay_info_prior, and BayesianRidge_inf_prior_fit_alpha -- are all considered. The 

results of these settings are shown in the central four images, and on the right the 

SMILE result is shown. As can be seen, SMILE largely outperforms both the original 

LIME and BayLIME, successfully identifying the dog as the most important feature 

while not identifying any irrelevant sections of the image as being important. 

Figure 9-(B) shows the heat-map for SMILE explainability for the dog image 

classification considering cosine, Kuiper, Kolmogorov-Smirnov, Wasserstein, Anderson 

Darling, and Cramer-Von Mises distances respectively. The provided heat-map shows 

that ECD-based explainability can provide more accurate results. 
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Figure 9 (A) Comparing SMILE with LIME and BayLIME for dog classification and its explainability for 
inceptionV3 model. (B) Heatmap Comparison between SMILE Distance Measure for Image 
Classification.} 

5.3 DISCUSSION ON SMILE FOR EXPLAINABILITY 

As SESAME forges ahead in revolutionizing multi-robot systems, putting emphasis on 

aspects like safety, security, efficiency, and explainability, integrating SMILE into its 

framework could prove to be invaluable. SMILE‟s model-agnostic nature and capability 

to analyse various forms of data make it an ideal candidate for enhancing the 

explainability aspect of the multi-robot systems developed through SESAME‟s 
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innovations, particularly in conjunction with the Executable Digital Dependability 

Identities (EDDI). 

EDDI, in SESAME, focuses on ensuring the dependability of multi-robot systems by 

carrying verifiable models that encompass safety and security hazards, their causes, 

effects, and possible corrective actions. SMILE‟s capabilities to produce reliable and 

robust local explanations for diverse data types, including images and text, could be 

seamlessly integrated into EDDI‟s framework. Through this integration, stakeholders 

could obtain rich insights into how the multi-robot systems are making decisions, the 

underlying factors that contribute to the systems‟ behaviour, and the interdependencies 

among various elements within the system. Moreover, the safety and security analyses 

within EDDI could be supplemented with explanations generated by SMILE, 

facilitating a deeper understanding of the root causes of potential hazards and the 

effectiveness of the mitigation strategies deployed by the robots. 

A key area where SMILE‟s integration can further enhance SESAME is robustness. 

SMILE‟s ability to analyse a larger portion of input data can potentially provide 

SESAME with a more comprehensive understanding of ML components and their 

behaviour in multi-robot systems. 

Given that SESAME places emphasis on efficiency and productivity, it is crucial to also 

address SMILE‟s computational complexity. Strategies like optimizing calculations by 

offloading them to GPUs or employing approximations such as Sinkhorn distance, a 

faster approximation of the Wasserstein distance that SMILE uses, can be considered. 

This will align SMILE with SESAME‟s real-time requirements and ensure that the 

added computational complexity does not become a bottleneck in the system. 

In SESAME‟s quest for advancements in multi-robot systems, the need for 

explainability is paramount to foster trust in the deployed systems. Incorporating 

SMILE as an explainability tool into the SESAME framework can be a significant leap 

towards achieving transparency, safety, and security in the deployment of multi-robot 

systems. Through rigorous testing and validation across SESAME‟s various use cases, 

such as those focusing on robustness, productivity, and security, the benefits of 

integrating SMILE can be empirically assessed, and its contribution to the 

trustworthiness and dependability of multi-robot systems can be quantified. 

5.4 SMILE CODE AVAILABILITY 

Regarding the research reproducibility, codes and functions supporting this paper are 

published online at GitHub: https://github.com/Dependable-Intelligent-Systems-

Lab/xwhy. 

6. SUMMARY 

In this deliverable, we present tools developed or improved upon in SESAME, with 

which EDDI state or behaviour can be explained during development or runtime. The 

tools discussed are going to be available as open-source from the SESAME project 

GitHub repository at https://github.com/sesame-project/explainable_eddis, alongside 

documentation and examples.  

https://github.com/Dependable-Intelligent-Systems-Lab/xwhy
https://github.com/Dependable-Intelligent-Systems-Lab/xwhy
https://github.com/sesame-project/explainable_eddis
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