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Executive Summary

In this deliverable, we describe both the underlying concepts and the technical realization of our final version
of the Executable Scenario Workbench (Deliverable D3.4). In Deliverable D3.1, we formulated a methodology
of scenario-based development for multi-robot applications and described the design dimensions involved in
constructing these scenarios. Here, we report on three concrete tools conforming to our proposed methodology
and each addressing a particular design dimension, namely, environment, robot specification, and acceptance
criteria.

In the following introductory section, we will give an overview of our methodology and the three developed
tools, as well as how they conform to the aforementioned methodology. We will also discuss in this section
the relevance of these tools to the requirements listed in Task 3.2 of the SESAME proposal. Afterwards, we
include descriptions of the developed tools in the form of tutorials that are automatically generated from their
respective documentation.
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1 Introduction

The Executable Scenario (ExSce) Workbench is the collection of tools to handle ExSce models which conform
to the ExSce metamodels. This Deliverable presents the final version of the ExSce Workbench and hence is an
evolution – i.e. it contains the results – of the initial version from D3.2. The deliverable contains direct results
of the associated Task T3.3 and indirect contributions from Task T3.2 (the ExSce metamodels). Additionally,
the scenario management tools and metamodels are part of the ExSce Workbench, but are detailed in their own
Deliverable D3.3. The majority of this document represents an automatically-generated snapshot of the living
documentation in the model and tooling repositories that will be linked in the respective sections.

To recapitulate from our previous deliverable D3.1, the ExSce’s ingredients are as follows:

Executable Scenario Concept Executable Scenarios (ExSce) are model-based narrative descriptions of
robotic missions guiding the engineering of MRS applications. An ExSce supports the definition of sce-
narios, composed of mission-relevant and mission-plausible information. On the one hand, by mission-
relevant information we refer to, among others, the environment and its dynamics, time and events,
objects (e.g., inspected building) and subjects (e.g., human operators) and their potential behaviour. On
the other hand, the mission-plausible information describes acceptance criteria that enable the verifica-
tion and validation of MRS requirements. Both, mission-plausible and mission-relevant information are
computer-interpretable models and hence enable the transformation into artefacts which can be executed
in different contexts such as in simulators or on real robots.

Executable Scenario Methodology To put the ExSce concept into action, the ExSce methodology enables
the structured development of MRS from stakeholders’ scenarios. Hence, it comprises both a tailorable
process model and associated tools that guide and support the stakeholders in (i) specifying scenarios;
(ii) transforming them to executable artefacts; (iii) executing those artefacts; (iv) assuring the quality of
the MRS in those scenarios; and (v) generalizing those scenarios.

Executable Scenario Workbench The ExSce Workbench is a collection of tools that supports stakeholders
in carrying out one or more activities of the ExSce Methodology.

D3.1 has also outlined and analysed various design dimensions that underlie the ExSce and are required for
constructing such scenarios. For this document, the functional design dimensions of robot and environment
as well as the non-functional design dimension of quality assurance, together with the methodology and mod-
elling dimension will be relevant. The former, functional dimensions, while self-explaining, are extremely
complex. Introducing the sometimes subjective interpretation of when an MRS has successfully executed
a customer’s task adds even more complexity ontop. The methodology refers to the different phases in the
ExSce workflow, of which we will focus mostly on the specification and transformation phases. As for the
latter dimension of modelling — that is the whole model-driven engineering perspective — the levels of real-
ization (the “real” entities), models (some abstraction of a real entity) and metamodels (the concepts available
for building models) are discussed here.

We build upon the results of Deliverable D3.2 where we had described two concrete (meta)models and associ-
ated tools that conform to the ExSce methodology and address particular design dimensions. This included an
environment specification as part of the scenario building (the FloorPlan DSL), and a kinematic chain specifi-
cation (comp-rob2b) that is required for any MRS to physically interact with their environments. Following
the methodology outlined in our first deliverable, these metamodels are decoupled from specific systems and
missions, which allows their reuse in specifying MRS missions with similar features.

FloorPlan DSL1 is a domain-specific language (DSL) for specifying floor plans of indoor environments as
required by several of SESAME’s use cases. The DSL conforms to the geometry metamodel because it is re-
quired to describe spatial relations and geometric shapes of objects like rooms or doors. Additionally, this DSL

1https://github.com/sesame-project/FloorPlan-DSL
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allows a user to describe variability of the environment, e.g. the thickness of walls or the width of doors. Such a
variability specification is provided via probability attachments which forms another cross-cutting metamodel
on its own. We have substantiated the design of this language with developer interviews with domain experts
in robotic navigation. From concrete FloorPlan DSL models we generate 3D boundary representations in for-
mats that are understood by a wide range of simulators. Those results have already been used by YORK and
LOMTC for simulating environments. The DSL and its grammar is only targeted at human users. Thus, we
additionally generate composable models from such models that are instead meant as an interchange format
between various tools.

comp-rob2b23 is a methodology for creating composable models. In software engineering it has been known
for several decades that composition should be preferred over inheritance. Still, inheritance remains the means
to introduce explicit extension points in most model-based approaches. Here, we specifically demonstrate our
methodology and its benefits in specifications of robotic kinematic chains. Just like environment specifications,
kinematic chains conform to the geometry metamodels, but compose it with motion constraints like joints
or kinematic chains in addition to dynamics that introduce concepts like inertia. While we introduce those
concepts for describing kinematic chains, they are by no means restricted to that application and must remain
reusable in other applications. Another core contribution of comp-rob2b is the reification of behaviour in
terms of algorithms. Such a first-class representation of computations enables, for example, their manipulation
also at runtime or code generation towards various backend libraries. Finally, we have implemented tools that
work with the previous composable models for visualization and code generation.

1.1 Updates for the final version of the ExSce Workbench

We have extended both of the above metamodels and tools to be part of the final ExSce Workbench. The
FloorPlan DSL features a new tool to support model-to-model transformation from FloorPlan models into the
JSON-LD4 format for better conformance to the composable models methodology. Additionally, we have
developed a new companion tool for the FloorPlan DSL which consumes these JSON-LD models and enables
the modelling and placement of stateful, dynamic objects in existing indoor environments that the robots can
interact with (see 5 for more details).

With kindyngen6 we have implemented a new tool to synthesize and generate correct-by-construction kine-
matics and dynamics solvers for kinematic chains. Our composable design enables vendors to hook their
custom computations, for example controllers or estimators, into the conventionally atomic computations that
make up such solvers. Those “extensions” have access to and can reuse the solver’s overall state and can
consequently avoid duplicating computations. Structurally, the tool consists of two parts. First, a synthesizer
that transforms a kinematic chain model and a solver specification into an algorithm model. Second, a code
generator that transform the algorithm model into C code.

Additionally, we have realized bdd-dsl7, a tool and metamodels to capture acceptance criteria for MRS
using Behaviour-Driven Development (BDD) [1]. BDD complements the ExSce by introducing the scenario
view on the robotic system using a Given-When-Then cascade. The “Given” clause captures the pre-conditions
including the robotic system and its state, the “When” clause describes an event that the system should react
to, while the “Then” clause specifies the desired or expected behaviour. However, applying traditional BDD
approaches to MRS applications can be challenging due to the complex interplay of multiple variability di-
mensions and domains involved in describing robotic scenarios. To address these challenges more effectively,
bdd-dsl introduces a metamodel for defining composable BDD scenario templates that can be customized to

2https://github.com/comp-rob2b/modelling-tutorial
3https://github.com/comp-rob2b/modelling-tools
4https://json-ld.org/
5https://github.com/hbrs-sesame/floorplan-object-modelling-and-placement
6https://github.com/hbrs-sesame/kindyngen
7https://hbrs-sesame.github.io/bdd-dsl/
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specific robotic use cases. The metamodel design takes inspiration from a similar approach used for managing
data structures [2] and is further supported by an analysis of competition rulebooks to identify the variability
dimensions that may arise when evaluating robotic scenarios.

While the tools and metamodels of the scenario management are also part of the ExSce Workbench we refrain
from including them into this Deliverable and instead refer the interested reader to the dedicated Deliverable
D3.3.

The ExSce Workbench has contributed to and supported several scientific publications [3]–[6].

1.2 Relations to Other Deliverables

The metamodels, models, and tools developed for the ExSce Workbench targets specific uses cases and stake-
holders activities in the ExSce Methodology. As such, they serve as concrete suggestions and examples of how
to represent and compose models for different aspects of a Multi-Robot Systems (MRS) scenario. The realiza-
tion of concrete models, however, requires contribution from developers to support their specific use cases and
scenarios. In the Multi-Robot Collaborative Rescue Mission (D2.5), for example, specification of the robot
models, kinematic and dynamics constraints, and missions can be created from our current metamodels. Spec-
ifying temporal dependencies between tasks and different robot behaviours requires development additional
metamodels, the process of which can benefit from applying our ExSce Methodology. In another example, ac-
ceptance criteria produced as the result of safety (D4.6) & security (D5.6) analysis performed in the respective
deliverables can be modelled using bdd-dsl as BDD scenarios.

1.3 Status of SESAME tasks and requirements

To conclude the introduction, we review the work progress along the SESAME tasks and requirements. We
also show how the developed (meta)models and tools directly address several requirements listed in Task 3.2
of the SESAME project proposal.

We had already completed the following tasks for the initial version of the ExSce Workbench (cf. D3.2):

• FloorPlan DSL enables us to successfully model environments. Such specifications also capture vari-
ability in such environments (T3.2).

• From the above environment models, we can generate 3D shape representations that are supported by a
wide range of simulators (T3.2).

• We have introduced a methodology for creating composable models which facilitates the separation of
concerns and, hence, allows us to reuse models and metamodels.

• comp-rob2b has demonstrated that methodology for creating robot models of kinematic chains and
their algorithms. The concepts are designed in such a way that they are reusable in domains beyond
kinematic chains (T3.2).

With the final version we have completed the remaining, previously open and work-in-progress tasks:

• We carried out the evaluation of the models and tools of the FloorPlan DSL and published the results in
[3].

• FloorPlan-DSL is extended to allow modelling dynamic elements and composing with existing indoor
environments, as demonstrated in the door modelling tutorial8.

• kindyngen9 extends comp-rob2b with tools to synthesize computation models from solver specifi-
cations for rigid-body dynamics, as well as to generate executable implementations from the synthesized
models.

8https://github.com/hbrs-sesame/floorplan-object-modelling-and-placement
9https://github.com/hbrs-sesame/kindyngen
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• bdd-dsl includes metamodels and tooling to specify acceptance criteria (T3.3) as BDD scenarios, as
well as, tools to transform such specifications into the Gherkin format for integrating with existing test-
ing frameworks. Initial versions of instrumentation for verifying simulated executions is also available
and will be further improved in the future.

• ExSce workflow and process management (T3.4) and provenance data acquisition for scenario general-
ization (T3.5) is reported in the ExSce Management deliverable (D3.3).

• Our approach to introduce collaborative intelligence (T2.5) to MRS for utilizing past “experiences” to
support latter executions is reported in D2.6.

The following sections will describe the (meta)models and tools in further detail, explain the underlying mod-
elling concepts and provide tutorials of how to use them.
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2 Composable robot models - A modelling tutorial for kinematic
chains and their behaviour

2.1 Introduction

The objective of this tutorial is to demonstrate how to create composable models for robots. Here, we focus
on a simple kinematic chain with one degree of freedom (DoF) because (i) kinematic chains are the smallest
viable world models that robots employ and hence go beyond toy examples; (ii) they provide many building
blocks that are also relevant for other domains; (iii) they demonstrate the challenges in modelling and how to
address them with composable models; and (iv) kinematic chains with more than one DoF are structurally very
similar to the 1-DoF chain.

The following figure (Figure 1) depicts the kinematic chain example that we will study below. It consists of
the two links link1 and link2 as well as the revolute joint joint1.

link1

joint1

lin
k2

Figure 1: Kinematic chain example

2.1.1 JSON-LD

Here we choose to represent our models and metamodels with JSON-LD10. JSON-LD is a W3C standard to
encode linked data in JSON and hence, it bridges between the widely-used JSON format and the Semantic
Web11 with all its established tools.

JSON-LD introduces several keywords that recur in the models so that we briefly explain them here. First, each
model can be identified by an identifier, an Internationalized Resource Identifier (IRI), with the @id property.
Second, one or more types (also IRIs) can be associated with a model by using the @type property. Third,
@context indicates a context which describes the mapping between the JSON world and the Semantic Web
world. In other words, the context defines the metamodels that a model conforms to. Common contexts or
elements can be hoisted out of a model to a composition model (e.g. the “document root”). Finally, a graph
can be reified using the @graph keyword.

2.2 Skeleton

The first step is to create the “skeleton12” or “stick figure” for the bodies in the kinematic chain. By skeleton,
we mean the bare minimum structure to which we attach further models. Here, the skeleton consists of points,

10https://www.w3.org/TR/json-ld/
11https://www.w3.org/standards/semanticweb/
12https://github.com/comp-rob2b/modelling-tutorial/blob/main/models/skeleton.

json
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vectors and frames as shown in the following diagram (Figure 2). The arrows indicate that the origins of both
frames coincide, but for better readability both frames are spatially separated in the figure.

{link1-root}

{link1-joint1}

joint1

{link2-root}

Figure 2: Skeleton of the kinematic chain example

Note that the links’ spatial extent or shape is not part of the skeleton. Instead, it is one of the possible attach-
ments to entities in the skeleton. All attachments, some of them discussed below, are independent of each other
and only refer to the common elements defined in the “skeleton”.

2.2.1 Point

The point is the most primitive entity in any space. In the context of robotics the purposes of points are multi-
fold. They are the building block of further geometric entities e.g. line segments, vectors or frames as we will
see below. Points also play various roles in encoding spatial relations or dynamic quantities. For instance,
they are required to define positions, or they represent the point of observation/measurement for twists and
wrenches.

The following example shows a point — that is meant to represent the origin of the “link1-joint1” frame —
that lives in 3D Euclidean space as indicated by its type. As (Euclidean) space consists of an infinite amount
of points, the interpretation of this model is that it designates one particular instance.

1 {
2 "@id": "rob:link1-joint1-origin",
3 "@type": [ "3D", "Euclidean", "Point" ]
4 }

The types 3D, Euclidean and Point are examples of what we call semantic constraints in that they im-
plicitly encode constraints (that can however be looked up in the definition of the type). This contrasts with
structural constraints which define a specific representation of a model and allow checking for well-formedness
in terms of the presence or absence of certain properties in that model.

Additionally, the three types in the above model demonstrate multi-conformance. That means that a model can
conform to more than one metamodel or type. This is a feature that lacks in many established model-driven
engineering approaches. Also note that in the step from JSON to JSON-LD all strings in the type array get
converted to IRIs so that one can choose to look up their meaning.

2.2.2 Vector

Euclidean space distinguishes two types of vectors:

• Free vectors that possess only a direction and a magnitude.
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• Bound vectors that are composition relations between two Euclidean points (the start and end point).
Bound vectors are also vectors and hence possess a direction and magnitude.

The following model exemplifies a bound vector that will represent the x-direction of the “link1-joint1” frame.
Hence, we also impose the constraint that it should be of unit length (this constraint is valid only in metric
spaces such as Euclidean space). Also note that we omit the end point because here it is not relevant to the
application.

1 {
2 "@id": "rob:link1-joint1-x",
3 "@type": [ "3D", "Euclidean", "Vector",
4 "BoundVector", "UnitLength" ],
5 "start": "rob:link1-joint1-origin"
6 }

Similar to the previous example, neither the Vector type nor the UnitLength type impose a structural
constraint. We notice some mismatch in the terminology: one would usually not refer to “unit length” as a
“type”. It is actually a constraint that this model must conform to. Especially in the setting of defining a frame
and later a standard basis of a vector space (see below), “unit length” must at some point be axiomatically
grounded.

In contrast to the previous two types, the BoundVector does have an impact on the structure of the model
in that it does require the start property to be present. The metamodel defines the start property to be a
symbolic pointer (an IRI) and the model shown here lets it refer to the point defined in the previous example.

2.2.3 Frame

A frame (of reference) in Euclidean space is an attachment point for orientation or pose specifications. In n-
dimensional space it can be represented by n+1 non-coplanar points (a simplex) or by n vectors that all share
a common start point. All points are constrained to remain at a fixed distance which means that a frame is the
most simple rigid body. Moreover, we will work with orthonormal frames which means that all vectors are of
unit length and form right angles with respect to each other. In three-dimensional space a frame also indicates
orientation or handedness, i.e. a frame can either be left-handed or right-handed.

The model below exemplifies the frame “link1-joint1” which represents the attachment point of “joint1”
on the first link. Additionally, in this model we chose to structurally represent the frame with the
OriginVectorsXYZ type which requires the origin property that points to the common start point of the
vectors and the three properties that represent the vectors themselves with the names vector-x, vector-y
and vector-z as defined by the type.

1 {
2 "@id": "rob:link1-joint1",
3 "@type": [ "3D", "Euclidean", "Frame", "RigidBody",
4 "Orthonormal", "RightHanded",
5 "OriginVectorsXYZ" ],
6 "origin": "rob:link1-joint1-origin",
7 "vector-x": "rob:link1-joint1-x",
8 "vector-y": "rob:link1-joint1-y",
9 "vector-z": "rob:link1-joint1-z"

10 }

We notice that the OriginVectorsXYZ forces the names of the vectors to be x, y and z. But this is just a
choice, albeit a common one. Other conventions to denominate the vectors are x0, x1 and x2 or just represent
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them as an ordered list. To support such further representations a different type (potentially originating from
another metamodel) would be required.

Another objective of frames is to map geometric entities such as points or vectors to their coordinate represen-
tation i.e. they define coordinate systems as we will discuss below.

2.2.4 Simplicial complex

With the above geometric entities instantiated, we can now model the first part of a link: it is simply a collection
of all those entities that are part of the link. In accordance with mathematics we call this composition structure
a simplicial complex as illustrated in the following diagram (Figure 3).

Figure 3: Graphical illustration of a simplicial complex as a collection of simplices

In three dimensions it can consist of points, line segments, triangles (“2D frames”) and tetrahedra (“3D
frames”) which are the 0-, 1-, 2- and 3-dimensional simplices, respectively. Since the simplicial complex
is a transitive relation all constituents of the simplices will be part of the simplicial complex, too. The follow-
ing model shows the simplicial complex associated with “link1”.

1 {
2 "@id": "rob:link1",
3 "@type": [ "SimplicialComplex", "RigidBody" ],
4 "simplices": [
5 "rob:link1-root",
6 "rob:link1-joint1",
7 "rob:link1-joint1-origin",
8 "rob:link1-joint1-x",
9 "rob:link1-joint1-y",

10 "rob:link1-joint1-z"
11 ]
12 }

This example also imposes a rigid-body constraint on the simplicial complex to model that no relative motion
occurs between any of the simplices, i.e. the material exhibits infinite stiffness. While not yet implemented
here, our modelling approach is also open to support soft bodies where the relative motion between some
or all simplices is described by constitutive equations that characterize mechanical material properties. The
rigid-body is indeed one of the most simple constitutive equations.

The simplicial complex with a rigid-body constraint is commonly used to simplify numeric computations that
solve the equations of motion for complex mechanisms because it enables a simplified representation of inertia.
Such a lumped parameter representation will be attached to a link in the discussion of dynamics below.
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2.3 Spatial relations

The first type of “declarative” spatial relations defined in the spatial relations model13 represents the collinearity
of two lines or rather vectors. Namely, the z-vectors of the “link1-joint” and “link2-root” frames. The reason
for this constraint relation is that a revolute joint requires a common axis that is fixed to both rigid bodies and
around which the rotation occurs. The following model exemplifies this constraint for “joint1”.

1 {
2 "@id": "rob:joint1-common-axis",
3 "@type": "LineCollinearity",
4 "lines": [
5 "rob:link1-joint1-z",
6 "rob:link2-root-z"
7 ]
8 }

The second type of “imperative” spatial relations comprises the position, in its linear, angular and composite
version as well as its first- and second-order time derivatives of velocity and acceleration, respectively. The
following diagram (Figure 4) depicts the three pose relations (i.e. the composition of positions and orientations
represented as an arrow with a solid head) that are of interest in the kinematic chain example.

Pose(of=link1-joint1, wrt=link1-root)

Pose(of=link2-root, wrt=link1-joint1)

Pose(of=link2-root, wrt=link1-root)

Figure 4: Pose relations attached to the skeleton

The lower-left pose crosses the link, the lower-right pose crosses the joint and the upper pose is the composition
of the two previous poses. The following model exemplifies the textual representation of the former pose. A
pose relates two frames which we call the of frame and the with-respect-to frame. An additional
property of every position-based spatial relation is the quantity kind as used in dimensional analysis. Here, we
reuse the QUDT14 ontology to represent quantity kinds. For any pose there will always be two quantity kinds,
namely the Angle to represent the orientation part of the pose and the Length to represent the position part.

1 {
2 "@id": "rob:pose-link1-joint1-wrt-link1-root",
3 "@type": "Pose",
4 "of": "rob:link1-joint1",

13https://github.com/comp-rob2b/modelling-tutorial/blob/main/models/spatial-
relations.json

14https://www.qudt.org/

30 June 2023 Version 1.0
Confidentiality: Public Distribution

Page 9

https://github.com/comp-rob2b/modelling-tutorial/blob/main/models/spatial-relations.json
https://www.qudt.org/
https://github.com/comp-rob2b/modelling-tutorial/blob/main/models/spatial-relations.json
https://github.com/comp-rob2b/modelling-tutorial/blob/main/models/spatial-relations.json
https://www.qudt.org/


D3.4 Executable Scenario Workbench (Final Version)

5 "with-respect-to": "rob:link1-root",
6 "quantity-kind": [ "Angle", "Length" ]
7 }

A pose is sufficient to describe the relative position of any two points that belong to two different rigid bodies.
Hence, even if the pose only relates two frames it follows that it also characterizes the pose between the rigid
bodies (or simplicial complices) that those frames are a part of.

By separating the pose from the frames which it relates, we enable a modeller to associate multiple poses with
a frame. This is a more faithful representation of poses than treating them as properties of frames as is often
found in state-of-the-art modelling approaches. However, it also allows creating cycles of poses. Whenever
such a situation occurs, the poses accumulated along each path in the cycle must be consistent. While we have
chosen the pose as an example, all arguments in this paragraph hold for any spatial relation.

2.3.1 Coordinates

To perform computations a numeric representation of the spatial relations is required as shown in the model15

for Cartesian coordinates.

The following example shows the coordinates for the pose across the “link1”. Since that pose remains static, its
coordinates can be provided during the robot’s design, for example, by a robot manufacturer. For poses across
motion constraints such as joints the concrete coordinate values will most likely only be available during the
robot’s runtime and will be acquired by some sensor.

1 {
2 "@id": "rob:pose-link1-joint1-wrt-link1-root-coord",
3 "@type": [ "3D", "Euclidean", "PoseReference",
4 "PoseCoordinate", "DirectionCosineXYZ",
5 "VectorXYZ" ],
6 "of-pose": "rob:pose-link1-joint1-wrt-link1-root",
7 "as-seen-by": "rob:link1-root",
8 "unit": [ "UNITLESS", "M" ],
9 "direction-cosine-x": [ 0.0, 0.0, 1.0 ],

10 "direction-cosine-y": [ 0.0, 1.0, 0.0 ],
11 "direction-cosine-z": [ 1.0, 0.0, 0.0 ],
12 "x": 1.0,
13 "y": 2.0,
14 "z": 3.0
15 }

The model represents Cartesian coordinates, hence the Euclidean type. Moreover, it references the pre-
viously defined pose relation via the of-pose property as required by the PoseReference structural
constraint. A different option (not shown in the example) is to directly embed the coordinate representation
into the pose relation. This, however, is in general not advisable because the same physical pose can be rep-
resented by an infinite amount of coordinate representations, i.e. spatial relations are properties of coordinate
representations but not vice versa. The next property required by any coordinate representation is the coordi-
nate system that the spatial relation is measured or expressed in as represented by the as-seen-by symbolic
pointer. Additionally, coordinates must be accompanied by a unit of measurement which must conform to
and complements the quantity kind in the spatial relation. Finally, in the model above we choose to represent

15https://github.com/comp-rob2b/modelling-tutorial/blob/main/models/cartesian-
coordinates.json
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the pose by three direction cosines, the columns of the rotation matrix, and a vector with the entries named as
x, y and z.

A wide range of coordinate representations of positions, orientations and poses exist such as cylindrical, spher-
ical or projective/homogeneous coordinates, all of which require their own model and metamodel representa-
tions. Similarly, velocity and acceleration representations demand for further metamodels. Discussing those
metamodels, however, is out of scope for this document.

2.4 Dynamics

The equations of motion for mechanical systems are of second-order, i.e. the Newton-Euler equations for a rigid
body relate acceleration and force via the body’s inertia. Hence, for solving those equations a specification of
the inertia is required as shown in the dynamics model16.

The following diagram (Figure 5) graphically represents three types of inertia attachments: a point mass m, a
rotational inertia modelled by the principal moments of inertia Ixx and Iyy as well as a density over a volume∫
V ρ(r⃗)dV .

∫V ρ( r )dV

I
xx I

yy

m

Figure 5: Different inertia attachments

The textual model below gives an example of an inertia attachment to the second link in the kinematic chain.
The so-called rigid-body inertia composes linear inertia (mass) and rotational inertia into the same model.
While this inertia specification is attached to a rigid body via the of-body property we chose to merge the
coordinate-free representation with the coordinates. The coordinate-free version of rotational inertia requires
a reference-point property and an invariant quantity-kind of MomentOfInertia. Here, the
coordinates are then expressed in units of [kg ·m2] with respect to the as-seen-by frame that references the
second link’s root frame and plays the role of a coordinate system. Three properties, namely xx, yy and zz
represent the concrete values. A similar representation is used for mass, it is just independent of a reference
point or coordinate frame.

1 {
2 "@id": "rob:link2-inertia",
3 "@type": [ "RigidBodyInertia", "Mass",
4 "RotationalInertia",
5 "PrincipalMomentsOfInertiaXYZ" ],
6 "of-body": "rob:link2",
7 "reference-point": "rob:link2-root-origin",
8 "as-seen-by": "rob:link2-root",
9 "quantity-kind": [ "MomentOfInertia", "Mass" ],

10 "unit": [ "KiloGM-M2", "KiloGM" ],
11 "xx": 0.1,

16https://github.com/comp-rob2b/modelling-tutorial/blob/main/models/dynamics.
json
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12 "yy": 0.1,
13 "zz": 0.1,
14 "mass": 1.0
15 }

2.5 Kinematic chain

The kinematic chain model17 shows two types of motion constraints. The joint is the simplest motion con-
straint between attachments such as frames on two bodies. In the following example we recognize this by the
between-attachments property. More specifically the joint is a revolute joint as already mentioned be-
fore. Hence, two more properties are required: the common-axis around which the relative motion occurs
and the origin-offset that defines the distance or position of the two frames’ origins along the common
axis.

1 {
2 "@id": "rob:joint1",
3 "@type": [ "Joint", "RevoluteJoint" ],
4 "between-attachments": [
5 "rob:link1-joint1",
6 "rob:link2-root"
7 ],
8 "common-axis": "rob:joint1-common-axis",
9 "origin-offset": "rob:joint1-offset"

10 }

The kinematic chain is a composite motion constraint with a set of joints as its property as seen below. For the
1-DoF example obviously only one joint is required. The kinematic chain imposes a semantic constraint that
all referenced joints must be part of the same graph.

1 {
2 "@id": "rob:kin-chain1",
3 "@type": "KinematicChain",
4 "joints": [ "rob:joint1" ]
5 }

2.5.1 Coordinates

For a real robot the joint configuration can often, but not always, be directly acquired from sensors such as
encoders associated with a joint. The model of such a sensor would be a higher-order relation that refers to the
same attachments that are also used by the joint. In this tutorial however, we rely on a fixed value to represent
the joint position as realized by the joint coordinates model18.

2.6 Operators and algorithms

Most modelling approaches for kinematic chains stop with a structural model similar to what we have discussed
up to now. Such a model would then be interpreted by software to configure a solver for kinematics or dynamics
queries. Hence, the source code of that software describes the kinematic chain’s behaviour.

17https://github.com/comp-rob2b/modelling-tutorial/blob/main/models/chain.json
18https://github.com/comp-rob2b/modelling-tutorial/blob/main/models/joint-

coordinates.json
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In contrast, here we also establish an explicit model of such behaviour. This model19 exemplifies a be-
havioural model of a simple forward position kinematics algorithm. To this end it employs two opera-
tors. The ForwardPositionKinematics for a single joint, as shown in the following textual repre-
sentation, requires two input properties, namely a model of the joint and the joint-space-motion
as discussed in the context of the kinematic chain. Given those two inputs, the operator computes the
cartesian-space-motion as output which here is a symbolic pointer to a pose relation.

1 {
2 "@id": "rob:fpk1",
3 "@type": "ForwardPositionKinematics",
4 "joint": "rob:joint1",
5 "joint-space-motion": "rob:q1",
6 "cartesian-space-motion": "rob:pose-link2-root-wrt-link1-joint1"
7 }

The second operator, ComposePose, composes the pose over the first link and the pose over the joint, the
latter of which is computed by the forward position kinematics operator above. This results in the relative pose
of the most distal frame “link1-root” with respect to the most proximal frame “link0-root”.

Both of the previous operators describe what to compute. However, the order of those computations is still
missing: clearly, the forward position kinematics must be evaluated before the composition of the poses
as there exists a data dependency between both of them. We call the model of such an ordered computa-
tion a Schedule. A schedule has an ordered list of symbolic pointers to the individual operators in the
trigger-chain property. The model below shows the schedule for the full forward kinematics algorithm.

1 {
2 "@id": "rob:schedule1",
3 "@type": "Schedule",
4 "trigger-chain": [ "rob:fpk1", "rob:compose-pose1" ]
5 }

2.7 Discussion about composable models

In this tutorial we have discussed how to build composable models for robots. Specifically, the tutorial has
focused on the description of a kinematic chain’s structure, including geometry, dynamics and motion con-
straints, as well as its behaviour in terms of a kinematics algorithm. While the example is a simple 1-DoF
kinematic chain the concepts transfer to more complex chains with tree structures or parallel structures and
more complex algorithms such as solvers for problems involving velocities, accelerations or dynamics.

While we have discussed how to construct the models, we have not described why they are composable. We
consider the following points as core contributors towards composability:

• The first class comprises the structure of models and metamodels:

• Every model has an identifier, the @id, and hence can be referenced from other models. In other
words every model is reified. The reification of relations enables higher-order relations and indeed
the majority of models are actually higher-order composition structures.

• The identifiers in the form of symbolic pointers also contribute to the loose coupling of models:
symbolic pointers do not impose type constraints and additionally they separate the specification
of the symbolic pointer from it resolution.

19https://github.com/comp-rob2b/modelling-tutorial/blob/main/models/fpk-
algorithm.json
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• In contrast to the more common, human-facing domain-specific languages (DSL), composable
models appear in some sense inverted. DSLs frequently feature a single top-level concept (with
vagues or sometimes even ambiguous names such as “package” or “document”). Then any further
concept must be placed somewhere hierarchically below that top-level concept. As a consequence
any change to the lower concepts propagates up in the hierarchy, meaning that the whole meta-
model must be developed in lock-step. Once all changes are incorporated a new version of the
language can be released. In contrast, composable models are not restricted towards the “top”.
Metamodels can originate from diverse sources that can remain loosely coupled and developed
independently.

• A further contributor is the conscious design of models and metamodels, often following established
best practices:

• Good metamodels should be normalized, as in database normalization, which means that they
separate domain concepts as much as possible and leave no implicit assumptions both in the
structure and in the meaning of the involved terminology. As a result, a model should specify
exactly what is required, neither more nor less.

• Closely related to the normalization is the clear separation of (intrinsic) properties and (extrinsic)
attributes. The former should be part of models whereas the latter are usually better represented
as (reified) relations.

• In most models above we have already seen the utility of multi-conformance, i.e. a model can
conform to more than one constraint as imposed by a single type. Most state-of-the-art modelling
approaches support only single conformance of models to metamodels. That means a model
has a single type and all the model’s properties are defined in a single metamodel. To emulate
behaviour similar to multi-conformance, those approaches rely on subsumption (is-a) relations
on the metamodel level.

• Finally, a key feature of composable models is the open-world assumption:

• For composable models there does not exist the global schema to check for well-formedness.
Instead, it is up to the tools to decide which structural constraints they must enforce or check. For
example, a simple viewer may treat joints as primitives in its context while a code generator most
likely requires knowledge about the types of joints. Implementation-wise the SHACL20 W3C
standard nicely complements this effort by supporting composable well-formedness constraints.

• Recall that multiple entities like coordinate, shape or inertia representations can be attached to
a kinematic chain. But it is not the decision of the kinematic chain model to “close the world”,
i.e. to decide which of those representations to use in a specific context. Instead, this decision is
left to some higher-order or application-level model.

• When multiple JSON objects have the same @id they all refer to the same entity. Hence, a model
can be logically separated. Note that we have not made use of this feature here.

20https://www.w3.org/TR/shacl/
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3 FloorPlan DSL

3.1 How to specify an indoor environment

The ExSce-FloorPlan DSL is a domain-specific language and tooling for specifying and generating indoor
environments. In this tutorial we are going to go over the most important concepts to model a concrete floor
plan.

Figure 6: Environment generated with the tooling with concepts annotated

The goal of this tutorial is to create the environment above. We will go over concepts such as Spaces, Entry-
ways, and other features in order to specify a specific environment.

3.1.1 Concepts available

Let’s do a review of the most important concepts when modelling an indoor environment:

• Spaces: these are the central concepts when modelling. This concept allows you to model any space in
a floor plan: a room, a hallway, an intersection, a reception, and any other space that is surrounded by
walls.

• Walls: walls surround the spaces, and these are not modelled directly. When modelling a space, you
select the shape of the space, and the walls are created automatically when interpreting the model.

• Entryways and Windows: These are openings in the walls that allow you to connect two spaces.
• Column and Dividers: These are features of the environments that are usually located freely in space or

next to walls. Both cases can be modelled using the language.

3.1.2 Modelling

Modelling an indoor environment consists of declaring the Spaces, Entryways, Windows, Columns, and Di-
viders; and specifying their location in the environment. Each of these concepts is modelled by specifying its
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shape and other attributes such as thickness or height. Specifying the location is simple, but requires some
background.

The location of any space or feature is specified by a translation and rotation with regards to a frame of
reference. There are multiple frames of references that can be chosen for this. Apart from the world frame,
each space has N + 1 frames of references that can be selected, where N is the number of walls.

For each wall in the space, there is a frame located in the middle of the wall, with the x axis going along
the wall and the y axis perpendicular to the wall. From the perspective of being inside the room looking into
one of the walls: Positive values in the x axis are located from the centre to the right, and negative values in
the opposite direction. Whereas the positive direction from the y axis moves away from you and the negative
direction moves closer. The frame is located at floor level, meaning that for the z axis only positive values are
above the floor.

Figure 7: Frames available when modelling

The image above illustrates a room with all of its frames. Each wall has an index, so you can select the frame
of reference by specifying the index of the desired wall: <name of space>.walls[<index>]. You
can also select the center frame of the space by just referring to the name: <name of space>. You may
also select the world frame with the world keyword.

A space requires two frames in order to specify a location: A reference frame where the translation and rotation
are specified from, and the frame that will get translated and rotated.

Using the world frame You can select the world frame as your frame of reference by using the keyword
world. You may only use this frame for locating spaces. Any other feature or entryway must be specified by
either the center frame or one of the walls. Should be noted that you can use the this keyword to reference a
frame when you are inside the scope of the space that frame belongs to.

1 location:
2 from: world
3 to: this
4 pose:
5 translation: x:3.0 m, y:4.0 m
6 rotation: 45.0 deg
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Figure 8: Pose of a space with regard to the world frame

Using two wall frames You can also use two wall frames to define locations. When you model a location
using two wall frames, the default behaviour is to do an extra 180 degree rotation of the space you are locating
so that the two spaces are not overlapping. Depending on the two walls that are chosen, the results can be
different, as illustrated in the two next examples

1 location:
2 from: my_room.walls[1]
3 to: second_room.walls[0]
4 pose:
5 translation: x:0.0 m, y:0.0 m
6 rotation: 0.0 deg
7 spaced

1 location:
2 from: my_room.walls[1]
3 to: second_room.walls[1]
4 pose:
5 translation: x:0.0 m, y:0.0 m
6 rotation: 0.0 deg
7 spaced

The flag spaced is used to tell the interpreter to calculate the combined thickness of the two walls, and space
the two rooms accordingly. When not present, the two rooms are not spaced correctly, as seen in the next
figure.

Similarly, the default alignment behaviour can be disabled by using the not aligned flag, so that the two
rooms overlap.

1 location:
2 from: my_room.walls[1]
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Figure 9: Pose of two spaces when walls are used as reference frames

Figure 10: Pose of two spaces when another wall is used as a reference frame
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Figure 11: Two spaces not spaced correctly, as the spaced flag was not included

3 to: second_room.walls[1]
4 pose:
5 translation: x:0.0 m, y:0.0 m
6 rotation: 0.0 deg
7 not aligned

3.1.3 Features

The language enables the modelling of doorways, windows, columns, and dividers. Features such as columns
or dividers are always defined within a space scope, so you can use the “this” keyword to refer to the walls
inside the space.

1 Column wall_column:
2 shape: Rectangle width=0.5 m, length=0.3 m
3 height: 2.5 m
4 from: this.walls[3]
5 pose:
6 translation: x:7.0 m, y:0.0 m, z: 0.0 m
7 rotation: 0.0 deg

Entryways and windows are specified outside of the scope of the space, after all the spaces in the floorplan
have been specified. These features create the openings in the walls required to connect two spaces or one
space with the “outside”.

1 Entryway doorway:
2 in: my_room.walls[0] and second_room.walls[1]
3 shape: Rectangle width=1.0 m, height=1.8 m
4 pose:
5 translation: x: -1.0 m, y: 0.0 m, z: 0.0 m
6 rotation: 0.0 deg
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Figure 12: Two spaces not aligned as the not aligned flag was used

Whenever an entryway or window is located in a wall shared by two spaces, you must specify the two walls that
will be opened by the entryway or window (my_room.walls[0] and second_room.walls[1]).
However, The location is specified with regards to the first frame specified, in the example above it would be
my_room.walls[0].

3.2 Modelling the example

Now that we have reviewed all of the important concepts, we can put them together in a model. The finished
model for this tutorial is available here21. In this section we will go over the model section by section with
some explanations when needed.

1 Floor plan: hospital
2

3 Space reception:
4 shape: Polygon points:[
5 (-7.0 m, 6.0 m),
6 (7.0 m, 6.0 m),
7 (7.0 m, -3.0 m),
8 (4.0 m, -6.0 m),
9 (-4.0 m, -6.0 m),

10 (-7.0 m, -3.0 m)
11 ]
12 location:
13 from: world
14 to: this
15 pose:
16 translation: x:0.0 m, y:-5.0 m
17 rotation: 45.0 deg

21../models/examples/hospital.floorplan

Page 20 Version 1.0
Confidentiality: Public Distribution

30 June 2023

../models/examples/hospital.floorplan
../models/examples/hospital.floorplan


D3.4 Executable Scenario Workbench (Final Version)

Each floor plan has a name, which gets used to identify all the artefacts that get generated. The reception
space has a custom polygon as shape, so we specify all the points to bound it. Every pair of points is a wall,
with the last point and the first point being the final wall to close the polygon (i.e. no need to repeat the first
point at the very end). From the world frame, this space is translated -5 metres in the y axis and rotated 45
degrees w.r.t. the z axis.

1 ...
2 wall thickness: 0.40 m
3 wall height: 3.0 m
4 features:
5 Column central_left:
6 shape: Rectangle width=0.5 m, length=0.5 m
7 height: 3.0 m
8 from: this
9 pose:

10 translation: x:-2.5 m, y:0.0 m
11 rotation: -35.0 deg
12 ...

The reception space will have a wall thickness of 0.4 metres and a wall height of 3 metres. These values
don’t have to be specified for every space, as default values will be set later for all spaces. Nested in the feature
concept, columns and dividers can be specified. The reference frame for these is always part of the space
(either the space frame or a wall frame of the reception space)

1 Space hallway:
2 shape: Rectangle width=5.0 m, length=14.0 m
3 location:
4 from: reception.walls[0]
5 to: this.walls[2]
6 pose:
7 translation: x:2.0 m, y:0.0 m
8 rotation: 0.0 deg
9 spaced

10 ...
11

12 Space room_A:
13 ...
14

15 Space room_B:
16 ...

The hallway is located using two wall frames, and the flag spaced is present so that the interpreter calculates
spacing necessary to avoid overlapping in between the spaces. Two other spaces also get defined in a similar
way.

1 Entryway reception_main:
2 in: reception.walls[3]
3 shape: Rectangle width=2.5 m, height=2.0 m
4 pose:
5 translation: x:0.0 m, y: 0.0 m, z: 0.0 m
6 rotation: 0.0 deg
7

8 Entryway reception_hallway:
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9 in: reception.walls[0] and hallway.walls[2]
10 shape: Rectangle width=4.0 m, height=2.0 m
11 pose:
12 translation: x: 2.0 m, y: 0.0 m, z: 0.0 m
13 rotation: 0.0 deg
14

15 ...
16 Window hallway_window_1:
17 in: hallway.walls[1]
18 shape: Rectangle width=3.0 m, height=1.5 m
19 pose:
20 translation: x: 3.0 m, y: 0.0 m, z: 0.8 m
21 rotation: 0.0 deg

Two entryways and one window are modelled, each with a unique name. In the case of the second entryway,
since it connects two spaces we must specify the two walls where the entryway is located. Notice that for
windows we have to specify a translation in the z axis.

1 Default values:
2 Wall thickness: 0.23 m
3 Wall height: 2.5 m

At the very end of the model the default values for all the spaces must be specified.

3.2.1 How to generate 3D files and occupancy grid maps

Once all requirements are installed, as specified here22, you can get artefacts generated. To interpret the model
and get artefacts, you only need to run one command:

1 blender --python src/exsce_floorplan/exsce_floorplan.py --background
2 --python-use-system-env -- <path to model>

The -- after the variable paths are important to distinguish the blender parameters and the parameters for the
tooling. You will obtain an occupancy grid map and a .stl file with the 3D mesh of the environment.

3.3 Concepts of the FloorPlan DSL

3.3.1 Space

Space concepts are the main concepts in a floor plan. They can be used to describe any room or hallway as
long as it is bounded by walls. The concept is agnostic to the functionality of the space itself. i.e. you can
model a reception, a hallway, a storage room, a sleeping room, a waiting area, and any other space with the
same concept.

Attributes:

• name: name for the space, should be unique.

22https://github.com/sesame-project/FloorPlan-DSL
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• shape: A shape that describes the boundaries of the space. The boundaries of the space will become the
walls.

• location: A location description:

• from: The frame of reference for the location, can be world to refer to the world frame or
<space> to refer to the space frame of another space (i.e. the centre of a rectangle or circle), or
<space>.walls[<index>] to refer to a wall of a space.

• to: The frame of the space that you are locating. All walls and features of the space will keep their
pose with regards to this frame. The value can be this to refer to the space frame of this space
(i.e. the space you are modelling), or this.walls[<index>] to refer to one of the walls

• pose: A pose description. It contains a translation in the x and y axis, and a rotation w.r.t. the z
axis.

• spaced (optional, recommended): A flag to tell the interpreter that it must calculate the correct
space between the two spaces to ensure no overlap.

• not aligned (optional): A flag to tell the interpreter to not perform the default behaviour of aligning
two spaces when two wall frames are used.

• wall thickness (optional): The wall thickness for the walls of the space, when the desired value is
different than the default.

• wall height (optional): The wall height for the walls of the space, when the desired value is different
than the default.

• features: A set of features.

1 Space <name>:
2 shape: <shape>
3 location:
4 from: <frame>
5 to: <frame>
6 pose:
7 translation: x: 0.0 m, y:0.0 m
8 rotation: 0.0 deg
9 {spaced}

10 {not aligned}
11 {wall thickness: 0.0 m}
12 {wall height: 0.0 m}
13 {features:
14 <feature>
15 }

3.3.2 Shapes

Rectangle (for Space or Feature)

Attributes:

• width: Float, in metres
• length: Float, in metres

1 Rectangle width=0.0 m, length=0.0 m

Rectangle (for Entryway or Window)

Attributes:
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• width: Float, in metres
• height: Float, in metres

1 Rectangle width=0.0 m, height=0.0 m

Polygon (for Space or Feature)

Attributes:

• points: Set of Points, the points are specified w.r.t to the space frame of the polygon, which is aligned
with the world frame (no rotation on any axis).

1 Polygon points:[
2 <points>,
3 ]

Point

Attributes:

• x: Float, in metres
• y: Float, in metres

1 (0.0 m, 0.0 m)

3.3.3 Entryway

The entryway concept is used to model the space for doorways and other openings between rooms and the
outside.

Attributes:

• Name: name for the entryway, should be unique.
• in: wall reference (<space>.walls[<index>]). The frame associated with this wall will be used

as the reference frame for the location of the entryway. When an entryway is between two spaces, both
walls have to be specified. The first frame remains as a reference frame.

• shape: Shape for the entryway.
• pose: A pose description. It contains a translation in the x and z axis, and a rotation w.r.t. the y axis.

Translations in the y axis should be avoided for appropriate results.

1 Entryway <name>:
2 in: <wall reference 1> {and <wall reference 2>}
3 shape: <shape>
4 pose:
5 translation: x: 0.0 m, y: 0.0 m, z: 0.0 m
6 rotation: 0.0 deg
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3.3.4 Window

Attributes:

• Name: name for the window, should be unique.
• in: wall reference (<space>.walls[<index>]). The frame associated with this wall will be used

as the reference frame for the location of the window. When a window is between two spaces, both
walls have to be specified. The first frame remains as a reference frame.

• shape: Shape for the window.
• pose: A pose description. It contains a translation in the x and z axis, and a rotation w.r.t. the y axis.

Translations in the y axis should be avoided for appropriate results.

1 Window <name>:
2 in: <wall reference 1> {and <wall reference 2>}
3 shape: <shape>
4 pose:
5 translation: x: 0.0 m, y: 0.0 m, z: 0.0 m
6 rotation: 0.0 deg

3.3.5 Floor Features

Features are common in the floor of a floor plan.

Column

Attributes:

• Name: name for the column, should be unique.
• shape: Shape for the column.
• height: Height of the column, in metres.
• from: Frame of reference, it can be: space frame of the space (this) or wall reference

(this.walls[<index>])
• pose: A pose description. It contains a translation in the x and y axis, and a rotation w.r.t. the z axis.

1 Column <name>:
2 shape: <shape>
3 height: 0.0 m
4 from: <frame>
5 pose:
6 translation: x:0.0 m, y:0.0 m
7 rotation: 0.0 deg

Divider

Attributes:

• Name: name for the divider, should be unique.
• shape: Shape for the divider.
• height: Height of the divider, in metres.
• from: Frame of reference, it can be: space frame of the space (this) or wall reference

(this.walls[<index>])
• pose: A pose description. It contains a translation in the x and y axis, and a rotation w.r.t. the z axis.
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1 Divider <name>:
2 shape: <shape>
3 height: 0.0 m
4 from: <frame>
5 pose:
6 translation: x:0.0 m, y:0.0 m
7 rotation: 0.0 deg

3.4 How to introduce variations into the environment

The objective of this tutorial is to demonstrate how to specify variations of FloorPlan DSL models and generate
new concrete environments.

The variations of an environment are specified with the Variation DSL in a separate model. We create a new
file and give it a name with the appropiate format: <file_name>.variation. The first line of the model
imports the concrete environment where we will introduce the variations. The variation model is available
here23.

1 import "hospital.floorplan"

We can then declare the spacial attributes we wish to associate to one of the three probability distributions:
normal, discrete, and uniform:

1 <attribute>: normal(mean=<mean value, in meters>, std=<standard deviation, in
meters>)↪→

2 <attribute>: discrete([
3 (<weight 1>, <value, in meters>),
4 (<weight 2>, <value, in meters>),
5 ...
6 (<weight n>, <value, in meters>)
7 ]) // Important: all the weights must sum to 1
8 <attribute>: uniform([<value 1, in meters>, <value 2, in meters>, ... , <value

m, in meters>])↪→

We can refer to attributes through refences to the corresponding spaces or features. We need to provide the
FQN of the attribute inside of the scope of the refence.

1 hallway: {
2 location.pose.translation.x : normal(mean=0.0, std=5.0)
3 wall_thickness : discrete([
4 (0.2, 0.14),
5 (0.4, 0.35),
6 (0.4, 0.51)
7 ])
8 }

For features such as columns and dividers, we need to provide the FQN that include the space they belong to:

23../models/examples/hbrs.variation
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1 reception.divider_central: {
2 height : normal(mean=1.0, std=0.2)
3 location.pose.rotation : discrete([
4 (0.8, 0.0),
5 (0.2, 0.20)
6 ])
7 }

After we have specified all the probability distributions, we can generate as many variations as we desired:

1 textx generate <input model> --target exsce-floorplan-dsl --variations <number
of variations> --output <output folder>↪→

Each resulting concrete environment will follow the format <name of model>_<seed
number>.floorplan and can be found at the specified output folder. These models are ready to
be transformed into 3D models and other artefacts as shown in the previous tutorial. At the moment the
generator does not check for the soundness of the resulting floor plan, nor for uniqueness.

3.5 Tutorial: modelling objects with movement constraints and placing them
in indoor environments

This chapter contains 3 tutorials with the objective of building an understanding of the composable modelling
approach, and how it is used to extend the use case of the FloorPlan DSL. The first tutorial covers the concepts
behind modelling a common object with a motion constraint: a door. Then, in the second tutorial we place an
instance of the door in the floor plan generated by the FloorPlan DSL. The final tutorial covers the modelling
of states, and how we can assign an initial state to a door instance. These tutorials build upon ideas presented
in the modelling kinematic chains tutorial24; as well as ideas presented in the modelling an indoor environment
tutorial25.

3.5.1 Background

Composable modelling enables the creation of semantic rich models that are easily extendible and reusable.
We use JSON-LD26 to represent our models and metamodels, as the format allows composition by linking
models through unique identifiers. Composable models expressed in JSON-LD consist of a @graph with
elements that conform to one or multiple metamodels, which are specified in a @context. Each element is
a JSON object with a unique identifier (@id), a list of metamodel concepts it conforms to (@type), and a
set of properties conforming to the metamodel concepts. For example, a composable model of a vector can
be modelled by (i) giving the model a unique id, (ii) selecting the list of relevant concepts for a bound vector
in 3D space, and (iii) referring to a 3D Point model for the start property. This model of a vector can be
referred to by its identifier by another model in the graph.

1 {
2 "@id": "vector-joint-door-hinge-joint-x",
3 "@type": [ "3D", "Euclidean", "Vector", "BoundVector", "UnitLength" ],
4 "start": "point-door-hinge-origin"
5 }

24https://github.com/comp-rob2b/modelling-tutorial
25https://github.com/sesame-project/FloorPlan-DSL/blob/main/docs/Tutorial.md
26https://www.w3.org/TR/json-ld/
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The FloorPlan DSL can transform the TextX27 models into composable models. This has the ability to extend
the possible applications for the models. For instance, the tool used in this tutorial is a companion tool that
allows to model objects with movement constraints and place them in the indoor environments described in the
FloorPlan DSL. This companion tool was developed using the RDFLib28, which is used to navigate the graph
and interpret the models. While there is no tutorial on creating such a tool, the companion tool presented in
this repository is well documented and can be used as a guide for developing new tools.

The companion tool presented not only consumes the composable models from the FloorPlan DSL, but also re-
uses other metamodels from the ExSce workbench in order to model dynamic objects. These are the kinematic
chain metamodel and the finite state machine metamodel. The kinematic chain metamodel is used to model the
motion constraints of the dynamic objects that will be placed in the indoor environments. Whereas the finite
state machine metamodel is used to model the states of these dynamic objects and their transitions. The states
are used to specify the starting state of an object in the simulation. While the robot can interact with these
dynamic objects, there is no dynamic change of state based on events or timers.

3.5.2 How to: Model a Door

Figure 13: A door model

A door is an object with a motion constraint. It has a hinge that attaches the door to the doorway, and which
constraints its movement to a swing action that allows for opening and closing. In this tutorial we will review
the modelling process to create a door with our tool.

A door can be modelled as a kinematic chain, with two links representing the doorway and the door itself. A
revolute joint represents the hinge, and it joins the two links and constrains the movement of the door with
regards to the doorway. All the following model snippets, as well as the complete json-ld model of the door is
available here29.

27https://textx.github.io/textX/3.1/
28https://rdflib.readthedocs.io/en/stable/
29../input/object-door.json
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The first elements to model are the geometric skeleton of the door. Those are points, vectors, and frames.
For our door we need to model 5 frames: the door-object frame is the root of the object. This frame
is later used to specify a pose in the world with an object instance. The door is made up of two links
and a joint. Each link can have multiple frames associated with it. In this case, one at the centre of each
link (door-holder-frame and door-body-frame), and two frames of coincident origins for the joint
(door-holder-hinge and door-body-hinge). For these last two, we model the frame not only as
an entity with an origin point, but also its three direction vectors. This allows specifying the axis of the joint
where the motion is constrained to.

Figure 14: All the frames required to model the door

1 {
2 "@id": "point-joint-door-hinge-origin",
3 "@type": [ "3D", "Euclidean", "Point" ]
4 },
5 {
6 "@id": "vector-joint-door-hinge-joint-x",
7 "@type": [ "3D", "Euclidean", "Vector", "BoundVector", "UnitLength" ],
8 "start": "point-door-hinge-origin"
9 },

10

11 {
12 "@id": "frame-joint-door-hinge",
13 "@type": [
14 "3D",
15 "Euclidean",
16 "Frame",
17 "Orthonormal",
18 "RigidBody",
19 "RightHanded",
20 "OriginVectorsXYZ"
21 ],
22 "origin": "point-joint-door-hinge-origin",
23 "vector-x": "vector-joint-door-hinge-joint-x",
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24 "vector-y": "vector-joint-door-hinge-joint-y",
25 "vector-z": "vector-joint-door-hinge-joint-z"
26 }

These elements are the building blocks for the spatial relations necessary to position the links and joints in
space. The pose is specified for each frame with regards to another frame. This representation is coordinate
free, as coordinates are associated with another entity that refers to the pose, as shown in this snippet:

1 {
2 "@id": "pose-frame-joint-door-hinge-wrt-frame-door-holder-origin",
3 "@type": "Pose",
4 "of": "frame-joint-door-hinge",
5 "with-respect-to": "frame-door-holder-origin",
6 "quantity-kind": [ "Angle", "Length" ]
7 },
8 {
9 "@id": "coord-pose-frame-joint-door-hinge-wrt-frame-door-holder-origin",

10 "@type": [
11 "PoseReference",
12 "PoseCoordinate",
13 "VectorXYZ"
14 ],
15 "unit": ["M", "RAD"],
16 "of-pose": "pose-frame-joint-door-hinge-wrt-frame-door-holder-origin",
17 "as-seen-by": "frame-door-holder-origin",
18 "x": -0.025,
19 "y": 0.025,
20 "z": 0,
21 "theta": 0
22 }

To model the pose of each link and joint, only 4 pose descriptions are necessary, and they are illustrated here:

For each link in the kinematic chain there is also inertia, visual geometry, and collision geometry information
that is required. The joint of the door also requires some information about the zero configuration, its maximum
and lowest values, and optionally the states that it can be.

For the link, we must model the rigid body inertia. This is straightforward as it only requires calculating the
moment of inertia values, for which there are calculator tools available. In the simulator, in this case Gazebo30,
each link is represented visually and physically with a polytope. The polytope can be modelled in various ways.
For our example we model the polytope using the "GazeboCuboid" type, which describes a cuboid by its
length in the x, z, and y directions. We then link this cuboid model to the visual and physics representation of
the door body using the "LinkVisualRepresentation" and "LinkPhysicsRepresentation".

1 {
2 "@id": "inertia-door-body",
3 "@type": [
4 "RigidBodyInertia",
5 "Mass",
6 "RotationalInertia",
7 "PrincipalMomentsOfInertiaXYZ"
8 ],

30https://gazebosim.org/
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Figure 15: All the pose relations and coordinate references required for the door model

Figure 16: Models required for each link and joint in the kinematic chain
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9 "of-body": "door-body",
10 "reference-point": "point-door-body-origin",
11 "as-seen-by": "frame-door-body-hinge",
12 "quantity-kind": [ "MomentOfInertia", "Mass" ],
13 "unit": [ "KiloGM-M2", "KiloGM" ],
14 "xx": 0.4069,
15 "yy": 0.3322,
16 "zz": 0.0751,
17 "mass": 1.0
18 },
19 {
20 "@id": "polytope-door-body",
21 "GazeboCuboid""@type": ["Polytope", "3DPolytope", "GazeboCuboid"],
22 "unit": "M",
23 "x-size": 0.05,
24 "y-size": 0.93,
25 "z-size": 1.98
26 },
27 {
28 "@id": "link-visual-door-body",
29 "@type": ["LinkWithPolytope", "LinkVisualRepresentation"],
30 "link": "door-body",
31 "polytope": "polytope-door-body"
32 },
33 {
34 "@id": "link-physics-door-body",
35 "@type": ["LinkWithPolytope", "LinkPhysicsRepresentation"],
36 "link": "door-body",
37 "polytope": "polytope-door-body"
38 }

The modelling of the joint and the rest of the kinematic chain is explained in more detail in this tutorial31.

3.5.3 How to: Place an object in the FloorPlan

Placing an object instance in the simulation world requires modelling a new frame of reference. We model a
frame with its origin, where the frame is co-located with the object frame of the object instance. This way, by
specifying a pose to this frame of reference we can give a pose to the object instance in the world. This relation
between the frame of reference of the instance and the object frame of the object is implicit and is enforced by
the script that interprets the models. For now we only need to model the frame of reference, and later refer to
it when modelling the object instance. The instance placement model is available here32, and is the source for
the following snippets.

1 {
2 "@id": "geom:point-location-door-1",
3 "@type": "Point"
4 },
5 {
6 "@id": "geom:frame-location-door-1",
7 "@type": "Frame",
8 "origin": "geom:point-location-door-1"
9 },

31https://github.com/comp-rob2b/modelling-tutorial#kinematic-chain
32../input/object-door-instance-1.json
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Figure 17: Frames and pose modelled to place an object instance in the world

Since we are using the composable models, we can use any frame from the FloorPlan DSL model to specify
the pose relation. For instance, the frame of id frame-left_long_corridor-wall-1 comes from the
floor plan model. We can obtain the composable models from the FloorPlan DSL by using the TextX generator:

1 textx generate <model_path> --target json-ld

We can then model the pose relation using one of the frames of the floor plan model. Modelling a pose works
in the same way as in modelling the object: we model a coordinate free pose, and then link to it to specify
coordinates.

1 {
2 "@id": "pose-frame-location-door-1",
3 "@type": "Pose",
4 "of": "frame-location-door-1",
5 "with-respect-to": "frame-left_long_corridor-wall-1"
6 }
7 {
8 "@id": "door:coord-pose-frame-location-door-1",
9 "@type": [

10 "PoseReference",
11 "PoseCoordinate",
12 "VectorXYZ"
13 ],
14 "of-pose": "door:pose-frame-location-door-1",
15 "as-seen-by": "geom:frame-left_long_corridor-wall-1",
16 "unit": [
17 "M",
18 "degrees"
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19 ],
20 "theta": -90.0,
21 "x": 20.50,
22 "y": 0.1,
23 "z": 0.0
24 },

In our "ModelInstance" entity we can link together the instance frame, the object to be instantiated, and
in which world it is instantiated. Optionally, we can also specify an initial state for the objects.

1 {
2 "@id": "door-instance-1",
3 "@type": "ObjectInstance",
4 "frame": "frame-location-door-1",
5 "of-object": "door",
6 "world": "brsu_building_c_with_doorways",
7 }

After running our tool, we obtain the SDF model file for the object, and a world file (also specified in SDF) for
Gazebo. The input parameter for our tool is the folder that contains all the json-ld models. For this example,
all the json-ld models are available here33.

1 python3 main.py <input folder>

Figure 18: Screenshot of Gazebo showing the doors positioned inside the entryways

3.5.4 How to: Model a state machine and specify intial states

It might be of interest for a test that a door is at a specific state. A finite state machine, such as the one picture
above, can be used to model all the states the door can be in and the transitions between them. With kinematic

33../input/
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Figure 19: Finite state machine for a door

chains, such as the door, the states can refer to joint positions. A fully closed door is a door where the joint
position is set to 0 radians, whereas a fully opened door has the joint position set at 1.7 radians. We compose
the joints positions with the states model to specify the pose of the door at a specific state. The object state
model is available here34.

Figure 20: Door states with their joint positions

1 {
2 "@id": "door-fully-opened",
3 "@type": "State"
4 },
5 {
6 "@id": "joint-pose-door-fully-opened",
7 "@type": [
8 "JointReference",
9 "JointPosition",

10 "RevoluteJointPosition",
11 "RevoluteJointPositionCoordinate",
12 "JointLowerLimit"
13 ],
14 "of-joint": "joint-door-hinge",
15 "quantity-kind": "Angle",
16 "unit": "RAD",
17 "value": 1.6
18 },
19 {

34../input/object-door-states.json
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20 "@id": "joint-state-door-fully-opened",
21 "@type": "JointState",
22 "joint": "joint-door-hinge",
23 "pose": "joint-pose-door-fully-opened",
24 "state": "door-fully-opened"
25 },

With the state definitions, we can now add an initial state to the object instance. This will add a Gazebo
plugin35 to the SDF model so that the door is set up to the correct state at start-up.

1 {
2 "@id": "door-instance-2",
3 "@type": "ObjectInstance",
4

5 "start-state": "door-fully-opened"
6 }

35https://github.com/hbrs-sesame/floorplan-gazebo-initial-state-plugin
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4 Solver synthesis and generation: kindyngen

4.1 Introduction

kindyngen is a toolchain to transform composable models36 of kinematic chains and queries thereupon into
correct-by-construction solver code. Example solvers are forward position/velocity/acceleration kinematics or
forward/inverse/hybrid dynamics. Additionally, the kindyngen toolchain enables to interleave those familiar
algorithms with additional computations, including control or estimation that reuses the kinematic chain state
as the most simple world model available to a robot.

Structurally, the kindyngen toolchain consists of two parts. First, the kindynsyn synthesizer to compute a
kinematics or dynamics algorithm given a kinematic chain model. Second, the code generator that transforms
the kindynsyn output to code. For now the target language for the code generator is C (supported by various
software libraries).

4.1.1 Composability

Both, the synthesizer and the code generator are composable. On the one hand, they require the composable
building blocks which we call steps (for the synthesizer) and fragments (for the code generator). On the other
hand, a top-level context represents the overall composition. This composition includes the solver configura-
tion (for the synthesizer) and an application template (for the code generator) that contains, for example, the
main function.

4.1.2 Tutorials

In following tutorials we will provide a developer with the basic understanding of the kindyngen toolchain.
This includes an overview of the terminology as well as the architecture. Afterwards we start with configuring
solvers using the built-in functionality of kindyngen. Finally, the objective is to demonstrate how a devel-
oper can extend the toolchain with custom functionality. For this tutorial we focus on the specification of a
Cartesian level controller and how it maps to the robot’s joint-level hardware interface.

4.2 Installation

4.2.1 Synthesizer

The following dependencies are required and can either be installed with the operating system’s package man-
ager or pip (see below):

• Python37

• rdflib38

• pySHACL39

• numpy40

36https://github.com/comp-rob2b/modelling-tutorial
37https://www.python.org/
38https://github.com/RDFLib/rdflib
39https://github.com/RDFLib/pySHACL
40https://numpy.org/
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First, clone the repository and change into the cloned folder:

1 git clone https://github.com/comp-rob2b/kindynsyn.git
2 cd kindynsyn

(Optional) To avoid cluttering the operating system’s Python installation it is advisable to use a virtual envi-
ronment:

1 python3 -m venv .venv
2 source ./.venv/bin/activate

Now, install the synthesizer via pip (the -e flag indicates an editable installation to avoid repeated installation
steps after changes to the code). This will also install the required dependencies:

1 pip3 install -e .

Note: the virtual environment can be deactivated again, at the very end, via:

1 deactivate

4.2.2 Code generator

The following dependencies are required for the code generator:

• Java41

• Apache Ant42

• StringTemplate43

• STSTv444 (from Git!)
• GNU Make45

For convenience, we provide a step-by-step installation guide for the latter two dependencies. Note, that
STSTv4 comes with a pre-bundled version of StringTemplate. Hence, the steps for StringTemplate can be
considered optional and are only relevant if one plans to use a more recent StringTemplate version.

StringTemplate can either be installed46 from the pre-compiled version47 or it can be built from source:

1. Download the latest version and extract it to a directory <st>
2. Change to the directory cd <st>
3. For version 4.3.3 execute sed "s/1.6/1.8/g" -i build.xml
4. Compile using ant
5. This creates a JAR file <jar> (e.g. ST-4.3.4.jar) in the <st>/dist folder

41https://openjdk.org/
42https://ant.apache.org/
43https://www.stringtemplate.org/
44https://github.com/jsnyders/STSTv4
45https://www.gnu.org/software/make/
46https://github.com/antlr/stringtemplate4/blob/master/doc/java.md#installation
47https://www.stringtemplate.org/download.html
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STSTv4 must be built48 from the Git version (to support nested JSON arrays49):

1. Clone the source code: git clone https://github.com/jsnyders/STSTv4.git
2. Change into the repository: cd STSTv4
3. Build with ant
4. Copy the launch script template: cp stst.sh.init stst.sh
5. Adapt the STST_HOME variable in the launch script
6. (Optional) To use StringTemplate from above adapt the CP variable: sed

"s#\$STST_HOME/lib/ST-4.0.8.jar#<st>/dist/<jar>#g" -i stst.sh
7. Fix the launch script: sed "s#lib/stst.jar#build/jar/stst.jar#g" -i stst.sh
8. Make the launch script executable: chmod +x stst.sh

4.2.3 Generated code

The following dependencies are required to build and execute the generated code:

• GCC50

• CMake51

• dyn2b52

• robif2b53

Make sure that the latter dependencies are accessible to the generated CMake script. That can be achieved via
a local or system-wide installation, but also using CMake’s package registry (to avoid the installation). To this
end, both projects can be configured with a -DENABLE_PACKAGE_REGISTRY=On option.

4.3 Background

The kinematics and dynamics of manipulators are among the oldest problems in robotics. Their objective is to
answer queries such as “where is a robot’s end-effect with respect to the base” or “how much torque to apply
to the joints to achieve a desired end-effector motion”. Efficient solvers to such queries dispatch computations
along the kinematic chain to propagate physical quantities such as positions, velocities, acceleration, forces or
inertia in so-called sweeps or traversals.

We have recently identified and described common problems in the design of such solvers and their integration
in overall robotic software architectures [7]. The figure above shows a typical control loop for a manipulator.
It features

• the position (Kp) and velocity (Kv) controllers via the green elements
• a forward position kinematics (FPK), forward velocity kinematics (FVK) and an acceleration-

constrained hybrid dynamics (ACHD) solver via the red boxes
• the environment as the robot and its external disturbances via the blue elements

Due to the cyclic nature of the control loop there exists a mutual dependency between the controller and the
solver. Therefore, solvers repeat computations: the FVK solver internally solves the FPK problem while the
ACHD contains the computations of the FVK and hence also the FPK. Thus, in the above paper we suggest
refactoring the solvers so to

48https://github.com/jsnyders/STSTv4#install-instructions
49https://github.com/jsnyders/STSTv4/commit/6f72c8cc19b773bab015ef9cf58cabd2cb2984c8
50https://gcc.gnu.org/
51https://cmake.org/
52https://github.com/comp-rob2b/dyn2b
53https://github.com/rosym-project/robif2b
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Figure 21: Solver and control loop [7]

• Interleave further computations, such as control or estimation, with the solvers
• Reuse existing state by treating the kinematic chain and its state as the robot’s simplest world model
• Propagate the motion drivers (acceleration constraints, external forces and feedforward joint forces)

separately and then compose them flexibly during the last outward, solver sweep

The figure below demonstrates how the refactored control loop from the previous figure could look like.
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Figure 22: Refactored solver and control loop [7]

For our previous work we had developed an ad-hoc proof-of-concept implementation. Hence, with
kindyngen we provide a toolchain that allows to generate correct-by-construction applications from mod-
els. Here, we focus on the Recursive Newton-Euler Algorithm [8] as the dynamics solver where we separate
the propagation of the inertial force from the external force.

4.4 kindyngen’s architecture

4.4.1 Synthesizer: kindynsyn

kindynsyn is a Python library that relies on RDFlib54 to represent composable kinematic chain models in
memory and perform queries on those graphs. Especially, for non-trivial queries the SPARQL55 interface pro-
vides a powerful and standardized way to interact effectively with the graph. Hence, kindynsyn is a graph

54https://rdflib.dev/
55https://www.w3.org/TR/sparql11-query/
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rewriting56 software, in that it consumes one graph model (of a kinematic chain and a query thereupon) to pro-
duce another graph model (the solver algorithm). By exploiting domain-specific knowledge about kinematic
chains and their solvers, it can efficiently synthesize the solver algorithms. As output, the synthesizer produces
a JSON-based intermediate representation57 (IR) of the synthesized algorithm.

The core of kindynsyn is a graph traversal which can be controlled by extension modules. Inspired by ter-
minology of the Gremlin58 graph query language, we call these extensions steps because they represent the
individual “instructions” of the overall graph traversal program. In kindynsyn a step declares an expan-
sion query (for example, to define how to find the “root” frame on the next segment in a kinematic chain),
or expander, to control which nodes and edges the graph traversal should visit next. Additionally, the step
associates domain-specific computations (for instance, “map a joint position to a Cartesian pose”) pertain-
ing to the nodes and edges with the expander. Note, that steps only declare but don’t execute the expansion
queries. This design originates from our observation that the query execution is on of the slower computations.
Hence, kindynsyn groups all steps with the same expander to reduce the number of overall query execu-
tions. This approach resembles modern web development where React components59 declare their required
data via GraphQL queries60 with the overall objective of minimizing the slow client-server interaction.

4.4.2 Code generator

A template-based code generator backend consumes kindynsyn’s IR. In kindyngenwe opt for StringTem-
plate61 as the template engine and the StringTemplate Standalone Tool62 as its frontend. Its author has reported
on StringTemplate’s benefits63 over the more popular template engines such as Cheetha64, Django’s65 templat-
ing system, Genshi66 or Jinja67. A more hands-on paper draft is also available68.

To summarize, the main reasons for choosing StringTemplate are:

• It enforces the separation of “business logic” from “display” by only introducing a minimal amount of
control flow (if-then-else conditional, template application/map69 operator, template inclusion) in the
templates. This contrasts with the afore-mentioned, popular template engines that often embed Turing-
complete languages.

• A template is composed of rules (akin to, or dual to, rules in formal grammars70) where each rule has a
unique identifier. This aligns with our modelling approach for composable models71.

However, the benefit of the IR is that it decouples the synthesizer from the code generator. Hence, one could
swap over the code generator to a more popular template engine.

56https://en.wikipedia.org/wiki/Graph_rewriting
57https://en.wikipedia.org/wiki/Intermediate_representation
58https://tinkerpop.apache.org/docs/current/reference/#the-graph-process
59https://react.dev/reference/react/components
60https://graphql.org/
61https://www.stringtemplate.org/
62https://github.com/jsnyders/STSTv4
63Terence John Parr, “Enforcing strict model-view separation in template engines”, in Proc. of the International Con-

ference On World Wide Web (WWW), 2004.
64https://cheetahtemplate.org/
65https://www.djangoproject.com/
66https://genshi.edgewall.org/
67https://palletsprojects.com/p/jinja/
68Terence John Parr, “A Functional Language For Generating Structured Text”, available https://www.cs.

usfca.edu/~parrt/papers/ST.pdf, 2006.
69https://en.wikipedia.org/wiki/Map_(higher-order_function)
70https://en.wikipedia.org/wiki/Formal_grammar
71https://github.com/comp-rob2b/modelling-tutorial
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4.5 Tutorial: Configuring solvers

4.5.1 Forward position kinematics

In the previous section72 we have shown the common parts of the tutorial to synthesize a solver. Here, we will
investigate the variation points (solver configuration and translator) for one of the most simple solvers – the for-
ward position kinematics (FPK) – as implemented in fpk.py73. It relies on two steps that are already part of
the kindynsyn library, the PositionPropagationStep and the PositionAccumulationStep.
The former emits all models of data and functions to the graph that are required to compute the pose between
the root frames of two adjacent segments. In the example figure below, we see the three relevant pose relations:

• Pose(of=link1-joint1, wrt=link1-root): this pose originates from the kinematic chain
model and determines the joint’s location on the link.

• Pose(of=link2-root, wrt=link1-joint): this pose is the joint’s active contribution and
must be computed at runtime given the current joint position as well as the joint model. In other words,
it represents the solution to the joint’s forward position kinematics. This forward position kinematics
operator is the first function emitted by the PositionPropagationStep.

• Pose(of=link2-root, wrt=link1-root): this pose is the composition of the previous
two poses. Hence, the associated composition operator is the second function emitted by the
PositionPropagationStep.

Pose(of=link1-joint1, wrt=link1-root)

Pose(of=link2-root, wrt=link1-joint1)

Pose(of=link2-root, wrt=link1-root)

Figure 23: Pose relations associated with two segments

The PositionAccumulationStep emits one more composition operator to compute the current seg-
ment’s pose with respect to the robot’s base. For example, related to the figure above and assuming that the
robot’s base is chosen as the frame link0-root, the step would . . .

• . . . compute Pose(of=link2-root, wrt=link0-root) . . .
• . . . given the Pose(of=link1-root, wrt=link0-root), and . . .
• . . . given the output from the previous PositionPropagationStep

In code this is implemented as follows:

72getting_started.md
73https://github.com/comp-rob2b/kindyngen/kindynsyn_tutorial/fpk.py
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1 ...
2 def solver_configurator(g, cache, ROB, slv_algo):
3 frm_world = ROB["world-frame"]
4

5 # Instantiate factories
6 geom_rel = SpatialRelations(g)
7 geom_coord = SpatialRelationsCoordinates(g)
8 geom = SpatialRelationsWithCoordinates(geom_rel, geom_coord)
9 kc = KinematicChainOperators(g)

10

11 # Instantiate "standard" solver steps
12 index = ChainIndexStep(g, cache, frm_world)
13 j_mot = JointStep(g, cache, slv_algo)
14 pos_prop = PositionPropagationStep(g, cache, slv_algo, geom, geom_coord, kc)
15 pos_acc = PositionAccumulationStep(g, cache, slv_algo, geom, geom_coord)
16

17 # Configure solver
18 out_1 = SweepConfig(
19 direction=SweepDirection.OUTWARD,
20 steps=[index, j_mot, pos_prop, pos_acc])
21

22 return SolverConfig(sweeps=[out_1])

Apart from the already mentioned PositionPropagationStep and PositionAccumulationStep,
we see two auxiliary steps:

• ChainIndexStep: this represents an index or cache of frequently-used entities from the kinematic
chain model such as the IDs of the segment’s frames or the segment’s joint. Later steps can refer to this
cache instead of directly interacting with the graph.

• JointStep: this represents another cache, but this time for the joint state of the kinematic chain, i.e. it
retains the joints’ motion (q, q̇, q̈) and force variables (τ ).

All steps are parameterized with the rdflib graph g and the SPARQL cache. Additionally, they receive as
arguments various factories that contain adaptors to emit data into the rdflib graph. That data can represent
spatial relations, their coordinate representation but also operators thereupon.

At the end we compose all steps into a SweepConfig, the declarative representation of a “sweep template”.
We call it a “sweep template”, because steps could only be conditionally instantiated at very specific nodes in
the graph (this will be discussed in a following tutorial). Here, we only need a single outward sweep with the
steps ordered as shown. The order is relevant because of the (data) dependency relations between the steps.
For example, the indices or caches must be setup before being accessed by further steps and, similarly, the
relative segment-to-segment pose must be known before it can be accumulated with the global root-to-segment
pose. The overall solver can consist of multiple sweeps that are composed in the SolverConfig.

Since we have only used concepts that are built-in to kindynsyn, no additional translators will be required
for IRGen. Thus, we can simply return an empty list of translators:

1 def translator_configurator():
2 return []

Now we can execute the synthesizer and code generator as explained before:
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1 cd <kindyngen>
2 python kindynsyn_tutorial/runner.py fpk
3 cd <kindyngen>/code_generator
4 make tutorial-dyn2b
5 cd <kindyngen>/gen
6 cmake .
7 make
8 ./main

However, this program does neither produce any robotic behaviour nor any visible output because the solver is
not connected to any consumers or sinks. We will address this in the next tutorial.

4.5.2 Recursive Newton-Euler inverse dynamics

The tutorial module also features a more complicated, RNE inverse dynamics solver in rne.py74. We notice
how the RNE extends the FPK by adding . . .

• . . . more steps to first, outward sweep. Those steps effectively compute the forward velocity kinematics
and the forward acceleration kinematics.

• . . . a second, inward sweep. This sweep propagates inertial forces inwards, from the leafs to the root.

1 def solver_configurator(g, cache, ROB, slv_algo):
2 ...
3 vel_prop = VelocityPropagationStep(g, cache, slv_algo, geom, geom_coord, kc)
4 acc_prop = AccelerationPropagationStep(g, cache, slv_algo, geom, geom_coord,

kc)↪→

5 rbi = RigidBodyInertiaStep(g, cache, slv_algo, dyn)
6 f_nrt = InertialForceStep(slv_algo, dyn_coord, dyn)
7 nrt_prop = QuasiStaticInertialForcePropagationStep(slv_algo, dyn_coord, dyn,

kc, kc_stat)↪→

8

9 out_1 = SweepConfig(
10 direction=SweepDirection.OUTWARD,
11 steps=[index, j_mot, j_dyn, pos_prop, pos_acc, vel_prop, acc_prop])
12 in_1 = SweepConfig(
13 direction=SweepDirection.INWARD,
14 steps=[rbi, f_nrt, nrt_prop])
15

16 return SolverConfig(sweeps=[out_1, in_1])

To build the associated artefacts execute:

1 cd <kindyngen>
2 python kindynsyn_tutorial/runner.py rne
3 cd <kindyngen>/code_generator
4 make tutorial-dyn2b
5 cd <kindyngen>/gen
6 cmake .
7 make
8 ./main

Again, the program does not produce any visible output.

74https://github.com/comp-rob2b/kindyngen/kindynsyn_tutorial/rne.py
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4.6 Tutorial: solver sweep & robot interface

The previous tutorial configured various solvers using only built-in functionality. In this tutorial we compose
new functionality onto the RNE solver: a solver sweep that accumulate joint forces from multiple sources (see
my_solver75) and an interface to a robot (see my_robot_interface76).

4.6.1 Solver sweep

Synthesizer

Vocabulary First, any package should define the relevant graph concepts – the vocabulary – using an rdflib
DefinedNamespace (see namespace.py77). The DefinedNamespace raises a warning when an
“undefined” term is used. Alternatively, rdflib’s Namespace allows defining concepts on-the-fly, without
raising such a warning.

1 class MY_SLV(DefinedNamespace):
2 AccumulateJointForce: URIRef
3

4 sources: URIRef
5 destination: URIRef
6

7 _NS = Namespace("https://example.org/my-solver#")

Here, we require the type AccumulateJointForce with imposes two properties sources – to represent
the list of symbolic pointers to the input joint forces – and destination – to represent the symbolic pointer
to the accumulated joint force. The vocabulary is identified via the IRI https://example.org/my-
solver#.

Step & traverser The following code snippet shows an excerpt from my_solver_steps.py78 to de-
fine a custom step class.

1 class MySolverStep:
2 def __init__(self, g, algo, source_classes):
3 self.g = g
4 self.algo = algo
5 self.source_classes = source_classes
6

7 def traverse(self):
8 disp = Dispatcher(condition=None, configure=None,
9 compute=self.compute_edge)

10

11 return Traverser(expander=q_expand, edge=[disp])
12 ...

The class has a constructor (__init__ function) with the following parameters:

75https://github.com/comp-rob2b/kindyngen/kindynsyn_tutorial/my_solver
76https://github.com/comp-rob2b/kindyngen/kindynsyn_tutorial/my_robot_interface
77https://github.com/comp-rob2b/kindyngen/kindynsyn_tutorial/my_solver/

namespace.py
78https://github.com/comp-rob2b/kindyngen/kindynsyn_tutorial/my_solver/my_

solver_steps.py
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1. g: the rdflib graph that contains the kinematic chain model to which the steps can compose custom data
blocks or function blocks.

2. algo: a dictionary with the two entries data and func, both of which are lists to pass any instantiate
data block or function block back to the synthesizer (cf. Synthesizing a solver algorithm79).

3. source_classes: a list of all classes from which the solver sweep should get and accumulate the
joint forces.

The traverse function turns this class into a kindynsyn step via duck typing80. It first instantiates a
Dispatcher with takes three arguments. First, a condition which must be a SPARQL query or None and
must evaluate to true for the dispatcher to activate. In kinematics and dynamics solvers, one often must
perform special computations at the kinematic chains root or its leaves. This allows, for example, initializing
the root’s acceleration to gravitational acceleration or initializing the to-be-propagated forces at leave segments.
Then the dispatcher declares which functions to call, i.e. where to dispatch to. We foresee two types of
functions: configure and compute. The former is meant to declare or allocate any required data blocks,
whereas the latter should emit function blocks to perform actual computations at runtime.

Once one or more dispatchers are configured, we can connect them to (i) a graph expansion query; and (ii)
either the nodes of this expansion or the edges (only the edge version is shown above) using a Traverser
instance. The node vs. edge difference is relevant for kinematics and dynamics solvers because some compu-
tations pertain to frame entities (the nodes) whereas other pertain to the relation between frames (the edges).
An example of the former is the computation of inertial forces from known accelerations. An example of the
latter is the propagation of physical quantities such as positions, velocities or accelerations from one frame to
another.

In the above example we reuse the q_expand query to expand the graph. It is defined as follows:

1 PREFIX geom-ent:
<https://comp-rob2b.github.io/metamodels/geometry/structural-entities#>↪→

2 PREFIX kc-ent:
<https://comp-rob2b.github.io/metamodels/kinematic-chain/structural-entities#>↪→

3

4 SELECT ?child ?parent WHERE {
5 ?node ˆgeom-ent:simplices / geom-ent:simplices ?joint_prox .
6 FILTER (?node != ?joint_prox)
7 ?joint_prox ˆkc-ent:between-attachments / kc-ent:between-attachments ?child

.↪→

8 FILTER (?joint_prox != ?child)
9 BIND(?node as ?parent)

10 }

First, the query defines two namespaces to allow for shorter notation (the PREFIX lines) and then starts the
query definition via the SELECT ... WHERE statement that declares two return arguments named ?child
and ?parent. We explain how the core query works along the following figure. The query is applied to a
?node whose ID kyndynsyn passes to the query (in the example figure this would be the frame l1-fr1).
Then the query follows any edge geom-ent:simplices in the opposite direction (indicated by the caret
character ˆ) to end up at a simplicial complex – the most simple version of a rigid body or link – which
would be l1 in the figure. From there it follows the geom-ent:simplices edge to end up at l1-fr1,
l1-fr2 and l1-fr3. The first FILTER statement removes the start node from this set, so that the next line
tries to follow any sequence of kc-ent:between-attachments, first in the inverse direction then in the
forward direction, from the nodes l1-fr2 and l1-fr3. This query is only applicable to l1-fr3 but leads

79https://github.com/comp-rob2b/docs/getting_started.md#synthesizing-a-solver-
algorithm

80https://en.wikipedia.org/wiki/Duck_typing
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to the nodes l1-fr3 and l2-fr1. Hence, the second FILTER statement removes the previously-visited
node l1-fr3 from the set so that only l2-fr1 remains as the ?child. Finally, the query assigns (BIND)
the ?node parameter to the ?parent parameter which is an expected output.

l1-fr1 l1-fr2 l1-fr3 l2-fr1 l2-fr2

l1 l2j1

between-attachmentssimplices      simplices 

frame link joint

Legend:

trav.
start

trav.
end

traversal

Figure 24: Expansion query

Whenever this expansion query produces any non-empty output, i.e. it finds a node to expand to, kindynsyn
will trigger the dispatchers as defined in the associated Traverser.

Computation: emitting closures Now we look into the compute_edge function for the joint force
accumulator:

1 def compute_edge(self, state, parent, child):
2 sources = []
3 for source_class in self.source_classes:
4 sources.append(state[child][source_class].tau)
5

6 jnt = state[child][JointState]
7 acc = self.accumulate_joint_force(sources, jnt.tau)
8

9 self.algo["func"].extend([acc])

The first parameter is a state dictionary that, for each node, can contain structural state of the kinematic chain or
computational state associated with the synthesized algorithm. The state parameter has a two-fold role. On the
one hand, within a step, it can transfer data (“variable definitions”) from the configuration to the computation.
On the other hand, it can transfer data between different steps, as is the case in this example.

In the expansion query above we saw that we only visit frames, but here we want to perform a computation on
a joint which lies between two frames. This is the reason for dispatching to an edge handler and also why there
are a parent and child parameter, both of which contain the graph ID (URIRef) of the respective node.
Note, that depending on the direction of the sweep that the steps should be invoked in, the number of children
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differs. For an outward sweep each child is visited separately and hence the function takes a single parent as
well as a single child (cf. example above). Instead, for an inward sweep the parent is visited and hence accepts
a single parent as well as a list of children.

In the beginning, the function iterates over all defined states’ source_classes. It collects the joint torque
(tau) for each of those classes from the state associated with the child. Next, it obtains a handle to the
JointState for the child, which will be used as the destination to emit the accumulated joint forces to as
realized by the following accumulate_joint_force function (see below). Finally, the accumulation
operator is appended to the list of function that form the overall synthesized algorithm.

accumulate_joint_force is an auxiliary function to emit data (here, a model of the accumulation op-
erator) into the graph:

1 def accumulate_joint_force(self, sources, destination):
2 lst = BNode()
3 collection.Collection(self.g, lst, sources)
4

5 id_ = uuid_ref()
6 self.g.add((id_, RDF["type"], MY_SLV["AccumulateJointForce"]))
7 self.g.add((id_, MY_SLV["sources"], lst))
8 self.g.add((id_, MY_SLV["destination"], destination))
9 return id_

To this end, the function transforms the list of sources (from where joint forces should be accumulated) to the
rdflib list representation. Then it creates a new identifier, a Universally Unique Identifier81 (UUID), for the
operator and associates it with its type, the sources and destination as defined in the vocabulary.

IR generator The next objective is to implement a custom translator from the graph to the IR. The code is
available in the my_solver_gen.py82 module:

1 class AccumulateJointForceTranslator:
2 @staticmethod
3 def is_applicable(g, node):
4 return set([MY_SLV["AccumulateJointForce"]]) <= set(g[node :

RDF["type"]])↪→

5

6 @staticmethod
7 def translate(g, node):
8 l = list(collection.Collection(g, g.value(node, MY_SLV["sources"])))
9

10 sources = list(map(lambda v: escape(qname(g, v)), l))
11 destintation = escape(qname(g, g.value(node, MY_SLV["destination"])))
12

13 return {
14 "represents": str(node),
15 "name": escape(qname(g, node)),
16 "operator": "ex-accumulate-joint-force",
17 "sources": sources,
18 "destination": destintation
19 }

81https://en.wikipedia.org/wiki/Universally_unique_identifier
82https://github.com/comp-rob2b/kindyngen/kindynsyn_tutorial/my_solver/my_

solver_gen.py
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Each translator must provide two methods (either as true method or static method83): is_applicable and
translate. Both methods take two arguments, the overall rdflib graph g from which to obtain data and the
current (candidate) node to be translated. The former method returns a boolean result to indicate whether the
translator can handle this node (e.g. by inspecting its type or other properties). The latter method performs the
actual translation. Here, the translation entails the creation of a Python dictionary that can straightforwardly
be mapped to JSON. Hence, we transform the list representation and shorten (via the qname function) as well
as escape identifiers (e.g. http:// would not be a valid variable name in C or Python).

Code generator The code generator fragment (my_solver.stg84) for the joint force accumulator is
extremely simple and consists of the following three lines:

1 ex-accumulate-joint-force(args) ::= <<
2 <args.destination>[0] = <args.sources:{s | <s>[0]}; separator=" + ">
3 >>

The first line defines the rule with a single (composite) argument args. Note that rule’s name must match
the operator name in the IR. << and >> are the rule delimiters. The second line determines the actual
code that should be emitted. < and > represent instructions specific to StringTemplate. In particular does
<args.destination> access the destination field in the args object and emit the associated value.
The sources field is actually a list. Hence, we want to apply a sub-template to each entry of that list which
StringTemplate realizes with the map operator :. In the following braces follows an anonymous template
rule with a single argument s which just emits that argument followd by the string [0], i.e. an array index
operation in C. Finally, we want to add all entries in the array which we achieve by separating them with the
string +.

As a concrete example, the following JSON object . . .

1 {
2 "operator": "ex-accumulate-joint-force",
3 "sources": [ "a", "b" ],
4 "destination": "c"
5 }

. . . would result in c[0] = a[0] + b[0].

4.6.2 Robot interface

The robot interface85 does not introduce new concepts beyond those from the above solver sweep. To this end,
we keep the description in this tutorial brief. The module introduces two new steps, one for reading positions
or velocities from the robot and the other to write control torques to the robot. Additionally, it provides the
associated vocabulary and the IR generator backend.

However, we introduce two code generators. The first one (cf. robif_print.stg86) sets static values for
the joint position and velocity measurements (not shown here), but prints the control torques to the terminal
via the following rule:

83https://docs.python.org/3/library/functions.html#staticmethod
84https://github.com/comp-rob2b/kindyngen/models/templates/fragments/my_solver.

stg
85https://github.com/comp-rob2b/kindyngen/kindynsyn_tutorial/my_robot_interface
86https://github.com/comp-rob2b/kindyngen/models/templates/fragments/robif_

print.stg
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1 ...
2 joint-force-from-solver(args) ::= <<
3 <print-variable(args.source, variables)>
4 >>

The second code generator (cf. robif2b.stg87), on the contrary, implements a proper interface to a robot
using the robif2b library. Here, the control torque interface defines the following two rules that establish
the data exchange between the solver and the library:

1 robif2b-variables() ::= <<
2 double eff_cmd[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
3 ...
4 struct robif2b_kinova_gen3_nbx rob = {
5 ...
6 .jnt_trq_msr = eff_msr,
7 ...
8 };
9 >>

10 ...
11

12 joint-force-from-solver(args) ::= <<
13 eff_cmd[<args.destination-index>] = <args.source>[0]
14 >>

NOTE:
The robif2b code generator fragment hardcodes the connection details and user credentials for now and
may require adaptations for the real robot at hand. A more advanced version should provide those parameters
via explicit models.

4.6.3 Application template

The application context, i.e. the top-level code generator rule, for printing the resulting torques to the terminal
is located in tutorial_dyn2b_slv_print.stg88 and defines the main function as follows:

1 import "../models/templates/fragments/algorithm_c.stg"
2 import "../models/templates/fragments/dyn2b.stg"
3 import "../models/templates/fragments/my_solver.stg"
4 import "../models/templates/fragments/robif_print.stg"
5 import "../models/templates/fragments/print.stg"
6

7

8 application(data-types, variables, input, output, local, closures, schedule) ::=
<<↪→

9 <dyn2b-include()>
10 <robif-print-include()>
11 <print-include()>
12

13 int main()

87https://github.com/comp-rob2b/kindyngen/models/templates/fragments/robif2b.
stg

88https://github.com/comp-rob2b/kindyngen/models/templates/applications/
tutorial_dyn2b_slv_print.stg
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14 {
15 <local:{id | <define-variable(id, variables.(id))>}:stmt(); separator="\n">
16

17 <schedule:schedule(closures):stmt(); separator="\n">
18

19 return 0;
20 }
21 >>

We see StringTemplate import instructions to load the fragments (e.g. the my_solver.stg and the
robif_print.stg as described in this tutorial). application is the name of the generator rule with the
listed arguments. Next, some fragments require include directives for C’s pre-processor. Finally, the key lines
in the C main function are a definition of all required variables that are listed in the rule’s local argument and
the emission of the schedule, i.e. all instructions that represent the overall solver, by applying the schedule
rule to the schedule argument.

4.6.4 Build and execute

To build the associated artefacts execute:

1 cd <kindyngen>
2 python kindynsyn_tutorial/runner.py rne_slv_robif
3 cd <kindyngen>/code_generator

Now there are two code generator targets available. The first one prints the resulting torques to the terminal . . .

1 make tutorial-dyn2b-slv-print

. . . whereas the second one interfaces with a real robot using the robif2b library:

1 make tutorial-dyn2b-slv-robif2b

Upon either choice compile the code and execute the resulting software as before:

1 cd <kindyngen>/gen
2 cmake .
3 make
4 ./main

The program should either print some values to the terminal or execute a plain gravity compensation behaviour
on a connected, real robot.

4.7 Cartesian control

Most users of a robot want to describe tasks in Cartesian space. Hence, in this tutorial we will implement a
simple, linear impedance controller89 to regulate the artificial force to be exerted on the robot’s end-effector.
Here, we connect this controller to the robot’s end-effector via the RNE’s external force interface. The objective
is to apply a torque on the end-effector so that it should rotate when not constrained.

89An impedance controller maps from the motion domain to the force domain. The impedance relations are known as
stiffness (position to force), damping (velocity to force) and inertia (acceleration to force).
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4.7.1 Controller design

The controller should realize a desired (maximum) end-effector velocity while simultaneously limiting the
force. We achieve this by a constant damping controller where the damping D is calculated from a maximum
force (fmax) and a maximum velocity (vmax). The commanded force (fcmd) is computed given the measured
velocity (vmsr) via the following formula:

fcmd = fmax +D · vmsr = fmax −
fmax

vmax
vmsr

The resulting behaviour is best understood by first considering the two “extreme” cases and then the general
case:

• vmsr = 0: the controller commands the maximum permissible force. If the system is not in a contact
situation it will accelerate, otherwise it will only exert the maximum force onto the environment.

• vmsr = vmax: the controller commands no force and, hence, does not accelerate the system. Most likely
external effects such as friction will brake the system.

• Otherwise: the controller commands a force that is proportional to the difference from the maximum
velocity, offset by the maximum permissible force. The damping represents the proportionality factor.

The following figure depicts this behaviour.

f max

f

vvmax

D = −
f max
vmax

vmsr

f cmd

Figure 25: Impedance controller

4.7.2 Traverser: mounting the controller in the graph

The synthesizer steps live in the my_contoller_steps.py90 module. Here, the traverser is similar to the
ones from the previous tutorial, but it (i) relies on a custom expansion query; and (ii) employs an additional
configuration method:

90https://github.com/comp-rob2b/kindyngen/kindynsyn_tutorial/my_contoller/my_
controller_steps.py
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1 ctrl_expand = """
2 PREFIX ex-ctrl: <https://example.org/ctrl#>
3

4 SELECT ?child ?parent WHERE {
5 ?node ˆex-ctrl:attached-to ?child .
6 BIND(?node as ?parent)
7 }
8 """
9

10 ...
11

12 def traverse(self):
13 return Traverser(
14 expander=ctrl_expand,
15 edge=[Dispatcher(None, self.configure_ede, self.compute_edge)]
16 )

A controller is assumed to point to a frame via the ex-ctrl:attached-to property. Hence, the expansion
query tries to find such a controller by following that property in the opposite direction (ˆ).

4.7.3 Configuration: declaring and caching data

Previously we have already encountered the state parameter of the configuration and compute functions that
relied on built-in state representations. For the controller we want to introduce a custom state to capture the
controller’s output. We achieve this by adding a dataclass91 with the single field wrench (of type URIRef or
None) that has a default value of None:

1 @dataclass
2 class MyCartesianControllerState:
3 wrench: URIRef | None = field(default=None)

We connect the controller’s output (fcmd) to the external force exerted on the end-effector. To this end, during
the configuration, we first declare the wrench data. Then we tag it as an external force specification, so that the
RNE’s external force propagation can find it:

1 def configure_edge(self, state, parent, child):
2 par = state[parent][ChainIndexState]
3

4 wrench = self.dyn.wrench(acts_on=par.bdy, as_seen_by=par.frm_prox,
5 number_of_wrenches=1)
6

7 ext = uuid_ref()
8 self.g.add((ext, RDF["type"], SPEC["ExternalForce"]))
9 self.g.add((ext, SPEC["force"], wrench))

10 ...

Note, that (i) the wrench is expressed locally to the link (as_seen_by=par.frm_prox); and (ii) only
consists of a single number of wrench instances (number_of_wrenches=1).

Next, we cache that data so that it is efficiently accessible during the computation:

91https://docs.python.org/3/library/dataclasses.html
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1 ...
2 s = MyCartesianControllerState()
3 s.wrench = wrench
4

5 state[child][MyCartesianControllerState] = s
6 ...

Finally, don’t forget to register the wrench data with the algorithm so that the according data blocks can be
generated in the algorithm representation:

1 ...
2 self.algo["data"].extend([wrench])

4.7.4 Computation: emitting closures

The computation introduces no new concepts beyond the previous tutorial and is only listed for completeness:

1 def compute_edge(self, state, parent, child):
2 vel = state[parent][VelocityPropagationState]
3 ctrl = state[child][MyCartesianControllerState]
4

5 damp = self.my_damper(
6 velocity_twist=vel.xd_tot,
7 wrench=ctrl.wrench)
8

9 self.algo["func"].extend([damp])
10

11 def my_damper(self, velocity_twist, wrench):
12 id_ = uuid_ref()
13 self.g.add((id_, RDF["type"], EX_CTRL["Damping"]))
14 self.g.add((id_, EX_CTRL["max-velocity"], Literal(0.1)))
15 self.g.add((id_, EX_CTRL["max-force"], Literal(2.0)))
16 self.g.add((id_, EX_CTRL["velocity-twist"], velocity_twist))
17 self.g.add((id_, EX_CTRL["wrench"], wrench))
18 return id_

NOTE:
In the interest of keeping the tutorial more concise and focused on the software, we have opted for a
(too) simplistic controller model and synthesizer implementation. In particular, the max-velocity and
max-force properties are just configured numbers and hence lack . . .

• . . . a value per degree of freedom
• . . . a coordinate-free representation
• . . . physical units and a reference to a coordinate frame
• . . . semantic checks (because of the previous two points)
• . . . reification as a runtime-accessible data block.

The modules in the kindynsyn package contain more complete modules that try to avoid such issues.
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4.7.5 Solver and translator configurator

The synthesizer that includes the controller (see rne_slv_robif_ctrl.py92) is an extension with respect
to the previous tutorial. First, we require an additional propagation step of the external forces and need to
include those external forces in the joint force accumulation:

1 ...
2 ext_prop = QuasiStaticExternalForcePropagationStep(g, cache, slv_algo,
3 dyn_coord, dyn, kc, kc_stat)
4

5 my_slv = MySolverStep(g, slv_algo, [
6 QuasiStaticInertialForcePropagationState,
7 QuasiStaticExternalForcePropagationState
8 ])
9 ...

Notice that this accumulation was the main reason for introducing this custom solver step in the previous
tutorial.

Next, we can attach a controller to the end-effector using the attached-to property and instantiate the
controller step:

1 ...
2 g.add((ROB["my-ctrl"], EX_CTRL["attached-to"], ROB["link7-root"]))
3 my_ctrl = MyCartesianControllerStep(g, slv_algo, dyn)

Then, accomodate for the two new steps in the sweep configuration by appending . . . 1. . . . the controller to
the first outward sweep 2. . . . the external force propagation to the inward sweep

1 out_1 = SweepConfig(
2 direction=SweepDirection.OUTWARD,
3 steps=[..., my_ctrl])
4 in_1 = SweepConfig(
5 direction=SweepDirection.INWARD,
6 steps=[..., ext_prop])
7 ...

Finally, don’t forget to append a translator instance to the return value of the translator_configurator
function:

1 def translator_configurator():
2 return [
3 ...
4 MyCartesianControllerTranslator()
5 ]

92https://github.com/comp-rob2b/kindyngen/kindynsyn_tutorial/rne_slv_robif_
ctrl.py
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4.7.6 Code generator

The code generator template for the ex-damping type controller lives in the my_controller.stg93

fragment and simply emits a function call:

1 ...
2 ex-damping(args) ::= <<
3 my_controller(<args.max-velocity>, <args.max-force>, <args.velocity-twist>,

<args.wrench>)↪→

4 >>

Additionally, the fragment contributes the implementation of the controller as discussed before but only applies
that controller to the “angular-z” degree of freedom:

1 ...
2 controller-definition() ::= <<
3 void my_controller(
4 double max_velocity,
5 double max_force,
6 const double *restrict velocity,
7 double *restrict force)
8 {
9 const double DAMPING = -max_force / max_velocity;

10

11 for (int i = 0; i \< 3; i++) {
12 force[DYN2B_WRENCH3_LIN_OFFSET + i] = 0.0;
13 force[DYN2B_WRENCH3_ANG_OFFSET + i] = 0.0;
14 }
15

16 double v = velocity[DYN2B_WRENCH3_ANG_OFFSET + DYN2B_Z_OFFSET];
17 force[DYN2B_WRENCH3_ANG_OFFSET + DYN2B_Z_OFFSET] = max_force + DAMPING * v;
18 }
19 >>

4.7.7 Build and execute

To build the associated artefacts execute:

1 cd <kindyngen>
2 python kindynsyn_tutorial/runner.py rne_slv_robif_ctrl
3 cd <kindyngen>/code_generator

Now there are two code generator targets available. The first one prints the resulting torques to the terminal . . .

1 make tutorial-dyn2b-slv-print-ctrl

. . . whereas the second one interfaces with a real robot using the robif2b library:

93https://github.com/comp-rob2b/kindyngen/models/fragments/my_controller.stg
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1 make tutorial-dyn2b-slv-robif2b-ctrl

Upon either choice compile the code and execute the resulting software as before:

1 cd <kindyngen>/gen
2 cmake .
3 make
4 ./main
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5 Model-Based BDD for Robotics

bdd-dsl94 is one of the tools within the ExSce Workbench ecosystem developed to support the specification
and execution of acceptance tests for robotic applications using the Behaviour-Driven Development (BDD)[1]
methodology.

To this end, we employ the JSON-LD schema95 to define the BDD concepts as described in the original
article[1], concepts necessary for specifying robotic scenarios, and the relations needed to compose them into
concrete test scenarios. These concepts and relations are based on our analysis of rulebooks from several
robotic benchmarks and competitions, the results of which is reported in [6].

5.1 Metamodels for Specifying BDD Scenarios for Robotic Applications

5.1.1 Metamodel Design

Quick Review of Behaviour-Driven Development (BDD) Requirements in Test-Driven Development
(TDD) are often represented using User Stories, typically in the following format:

As a [Stakeholder role]
I want [Feature]
So that [Benefit]

In his original blog post [1] introducing BDD, North proposed to represent acceptance criteria for each user
story as a list of scenarios capturing the expected behaviours of the system, each using the following formula-
tion:

1 Given [Precondition]
2 When [Event/Action]
3 Then [Expected Outcome]

This formulation extends user stories with narratives, each consist of initial condition(s), events or actions that
signal the start of the behaviour, and the criteria that characterizes what constitute a successful behaviour. We
consider the Given-When-Then formulation a good metamodel because of its simple concepts, which are
both easy to understand and flexible to different interpretations and extensions. Furthermore, BDD approaches,
e.g. with the popular Gherkin syntax96, has wide support in the software engineering community for test
automation in many program languages and frameworks. This can reduce the effort in generating executable
implementations for verifying BDD acceptance criteria in the future.

Specifying Robotic Scenarios A challenge of applying BDD to any complex domains is to deal with the
myriad variations that may exist for the same scenario. Alferez et al.[2] proposed to define scenario templates
for common system behaviours, e.g. in their use case for operations on different data structures. Concrete BDD
scenarios can then be generated from these templates depending on the particular data object being tested.

We aim to apply a similar idea for representing robotic scenarios, whose variability dimensions can be vastly
more numerous and complex compared to the application investigated by Alferez et al.[2]. To this end, we
analysed rulebooks from several robotic benchmarks and competitions[6] to identify common elements used

94https://hbrs-sesame.github.io/bdd-dsl/
95https://json-ld.org/
96https://cucumber.io/docs/gherkin/reference/
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Figure 26: A Feature Model of Robotic Competitions

to describe test scenarios at these events. We consolidate our findings is a Feature Model97, shown in Figure 26.
This serves as the basis for the metamodels described below.

5.1.2 Metamodel Description

We choose to represent our metamodels and models for specifying BDD scenarios with the JSON-LD
Schema98. The metamodels described below can be found in the following files:

• agent.json99: Metamodel for specifying agents in a scenario
• environment.json100: Metamodel for specifying elements in the environment of a robotic scenario
• task.json101: Metamodel for specifying task-related concepts and relations in a robotic scenario
• event.json102: Metamodel for specifying event-driven coordination of robot behaviours
• bdd.json103: Metamodel for specifying BDD templates and their variants

For an overview of main JSON-LD keywords used in our models, please take a look at our modelling tuto-
rial104. More details on this standard can be found on the official online documentation105. For brevity, we use
compact IRIs106 (i.e. use : to separate prefix and suffix) when referring to metamodels concepts and relations
below. Prefixes in this section:

• agn: https://hbrs-sesame.github.io/metamodels/agent#
• env: https://hbrs-sesame.github.io/metamodels/environment#
• task: https://hbrs-sesame.github.io/metamodels/task#
• evt: https://hbrs-sesame.github.io/metamodels/coordination/event#
• bdd: https://hbrs-sesame.github.io/metamodels/acceptance-criteria/bdd#

97https://en.wikipedia.org/wiki/Feature_model
98https://json-ld.org/
99https://hbrs-sesame.github.io/metamodels/agent.json

100https://hbrs-sesame.github.io/metamodels/environment.json
101https://hbrs-sesame.github.io/metamodels/task.json
102https://hbrs-sesame.github.io/metamodels/coordination/event.json
103https://hbrs-sesame.github.io/metamodels/acceptance-criteria/bdd.json
104https://github.com/comp-rob2b/modelling-tutorial#json-ld
105https://www.w3.org/TR/json-ld/
106https://www.w3.org/TR/json-ld/#compact-iris
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Agent

• agn:Agent: we adopt the definition from the IEEE Standard Ontologies for Robotics and Automa-
tion[9] (cf. prov:Agent107): “Something or someone that can act on its own and produce changes in the
world.”

• agn:of-agent: composition relation with a agn:Agent instance.
• agn:has-agent: aggregation relation with a agn:Agent instance.

Environment

• env:Object: Physical objects in the environment which an agent may interact with. Note that in-
stances of env:Object are not limited to objects that the agent can move around like bottles or cups,
but can also include typically stationary objects like tables or sofas.

• env:Workspace: Abstract space in which an agent may operate. Instances can be areas surrounding
objects like tables or kitchen counters, or rooms in a flat. A env:Workspace instance may contain
other instances, e.g. a living room can contain a workspace surrounding the coffee table.

• env:has-object, env:has-workspace represents aggregation relation to objects and
workspaces.

• env:of-object represents composition relation to an object, e.g. a property of an object.

Task

• task:Variation: possible variations of a scenario. A task:Variation instance can be asso-
ciated with a bdd:ScenarioVariable via the bdd:of-variable relation, in which case the
instance denotes possible variations of the variable.

• task:can-be: represents an aggregation relation from a task:Variation instance to the possible
entities of the variation.

Coordination

• evt:Event: a time instant, conforms with time:Instant108 from the Time Ontology in OWL
(cf. prov:InstantaneousEvent109).

• evt:has-event: aggregation relation with a evt:Event instance.

BDD Scenario Templates and Variants

• bdd:Scenario: represents a BDD scenario.
• bdd:of-scenario: composition relation to bdd:Scenario
• bdd:GivenClause, bdd:WhenClause, bdd:ThenClause: represents the three basic elements

of a BDD formulation.
• bdd:given, bdd:when, bdd:then: composition relations that link a bdd:Scenario to exactly

one instance of bdd:GivenClause, bdd:WhenClause, bdd:ThenClause, correspondingly.
• bdd:WhenEvent: associates a bdd:WhenClause and a evt:Event instances using the
bdd:of-clause and evt:has-event relations, respectively. Note that different interpretation
exists that explain the semantics of the When clause in BDD. In the current iteration of bdd-dsl, we
choose to simply associate When with evt:Event instances to denote the start of the behaviour being
tested.

• bdd:ScenarioVariant: aggregate instances of task:Variation with relation
bdd:has-variation; has a composition relation bdd:of-scenario with a bdd:Scenario
instance.

107https://www.w3.org/TR/prov-o/#Agent
108https://www.w3.org/TR/owl-time/#time:Instant
109https://www.w3.org/TR/prov-o/#InstantaneousEvent
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• bdd:UserStory: aggregate instances bdd:ScenarioVariant with relation
bdd:has-criteria.

• bdd:ScenarioVariable: represents points of variation for a scenario.
• bdd:of-variable: composition relation to a bdd:ScenarioVariable.
• bdd:IsHeldPredicate, bdd:IsNearPredicate: domain-specific predicates relevant to a

pickup task.
• bdd:TimeConstraint: constraint on when the predicate of bdd:FluentClause must hold.
• bdd:FluentClause: represents a BDD clause as a [flu-

ent(https://en.wikipedia.org/wiki/Fluent_(artificial_intelligence))], i.e. a condition evaluated at a point
in time. A fluent clause has aggregation relations with one predicate, e.g. a bdd:IsHeldPredicate
instance, and one bdd:TimeConstraint instance. The relations are bdd:predicate and
bdd:time-constraint, respectively.

• bdd:clause-of: aggregation relation between bdd:FluentClause instances and instance of
bdd:GivenClause and bdd:ThenClause. This relation allows for extending a BDD scenario
template with any number of clauses.

• bdd:ref-object, bdd:ref-workspace, bdd:ref-agent: A bdd:FluentClause in-
stance can associate with a bdd:ScenarioVariable instance via these relations, which constrain
the semantic of the variable in the context of the bdd:FluentClause instance.

5.2 Tutorial: Modelling and Generating Gherkin features for A Simple
Pickup task

This tutorial will first showcase how concepts from our metamodels110 can be used to model acceptance criteria
of a simple pickup task as Behaviour-Driven Development (BDD) scenarios, as well as how variations of
such scenarios can be introduced in the model. An example is then presented to show how to transform this
model into a Gherkin feature for integration with appropriate BDD toolchains, e.g. behave111 for the Python
language.

5.3 Example: BDD Scenario for a Robotic Pickup Task

Consider a simple robotic pickup task, where a robot must pick an object from a surface. A typical BDD
scenario for such a task, when realized in the Gherkin format, may look something as follows:

1 Scenario: pickup scenario
2 Given an object is located on the table
3 When the robot starts picking
4 Then the object is held by the robot

In robotics, even such a simple task can vary in many dimensions: the objects to be picked up, the operational
space in which the task take place, the robotic systems that carry out the task, or the mechanisms available for
verifying the different BDD clauses. While some mechanisms are available in Gherkin to deal with variations
of scenarios, applying existing BDD approaches like Gherkin directly to robotic scenarios remains challenging.
These challenges are discussed in more details in our workshop paper [6]. The rest of this tutorial will present
the process of composing a scenario template for such a pickup task, as well as how to introduce variations
to the template for concrete scenarios. Finally, we will show how Gherkin feature files similar to the snippet
above can be generated from the scenario variant model using our library.

110https://hbrs-sesame.github.io/bdd-dsl/docs/bdd-concepts.md
111https://behave.readthedocs.io
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5.3.1 Specifying BDD Acceptance Criteria for A Pickup Task

Figure 27: Partial example of a BDD scenario template and variant for the pickup task.

As mentioned in the description of our metamodels in Section 5.1, our models are graphs represented using
the JSON-LD schema. Figure 27 shows part of such a graph, which consists of a BDD scenario template and
corresponding variants for a simple pickup task. The motivation for this template-variant design is discussed
in more details Section 5.1.1. Complete JSON-LD models for the scenario template112 and variant113, along
with their generated visualization114 are publicly available for download. The rest of this section will walk
through the process of composing these models from our metamodels.

Specifying Scenario Templates First, we define the skeleton of the BDD scenario for the pickup
task: a bdd:Scenario having composition relation to exactly one instance of bdd:GivenClause,
bdd:WhenClause, and bdd:ThenClause.

1 { "@id": "pick-given", "@type": "bdd:GivenClause" },
2 { "@id": "pick-when", "@type": "bdd:WhenClause" },
3 { "@id": "pick-then", "@type": "bdd:ThenClause" },
4 {
5 "@id": "scenario-pick", "@type": "bdd:Scenario",
6 "bdd:given": "pick-given",
7 "bdd:when": "pick-when",
8 "bdd:then": "pick-then"
9 }

Next, we define bdd:ScenarioVariable instances, which are points of variation of the scenario template.
Here, we may change the object, workspace, and agent in different variants of the pickup scenario.

112https://hbrs-sesame.github.io/models/acceptance-criteria/bdd/templates/
pickup.json

113https://hbrs-sesame.github.io/models/acceptance-criteria/bdd/pickup-
variants.json

114https://hbrs-sesame.github.io/bdd-dsl/assets/img/bdd_graph.svg
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1 {
2 "@id": "pick-object", "@type": "bdd:ScenarioVariable",
3 "bdd:of-scenario": [ "scenario-pick" ]
4 },
5 {
6 "@id": "pick-workspace", "@type": "bdd:ScenarioVariable",
7 "bdd:of-scenario": [ "scenario-pick" ]
8 },
9 {

10 "@id": "pick-robot", "@type": "bdd:ScenarioVariable",
11 "bdd:of-scenario": [ "scenario-pick" ]
12 }

Having defined the variables, we can now create bdd:FluentClause instances and attach them to
pick-given and pick-then using the bdd:clause-of relation to extend scenario-pick with
concrete clauses. Here, we have made a choice to represent BDD clauses as fluents115, i.e. time-dependent
predicates. The composable design allows us to make this choice without limiting our metamodel to this single
representation. Other representations of BDD clauses can still be attached to pick-given and pick-then
using the bdd:clause-of relation. More details on composable design can be found on the corresponding
discussion on our kinematic chain modelling tutorial116. Furthermore, the bdd:clause-of relation can be
used to attach any clauses to pick-given and pick-then, allowing extending scenario-pick with
any number of use-case specific clauses.

1 { "@id": "pred-obj-held-by-robot", "@type": "bdd:IsHeldPredicate" },
2 { "@id": "after-pick", "@type": "bdd:TimeConstraint" },
3 {
4 "@id": "fluent-obj-held-by-robot",
5 "@type": "bdd:FluentClause",
6 "bdd:clause-of": [ "pick-then" ],
7 "bdd:predicate": "pred-obj-held-by-robot",
8 "bdd:time-constraint": "after-pick",
9 "bdd:ref-object": "pick-object",

10 "bdd:ref-agent": "pick-robot"
11 }

In the example above, we define fluent-obj-held-by-robot, which asserts that the object is held by
the robot at the end of the picking behaviour. This bdd:FluentClause instance is a composition linking
to several elements in the template:

• Predicate pred-obj-held-by-robot is an instance of the domain-specific
bdd:IsHeldPredicate concept for representing the fact that a robot is holding an object.

• Instances of bdd:ScenarioVariable, namely pick-object and pick-robot, which are sub-
jects of pred-obj-held-by-robot in this context.

• Instance after-pick of type bdd:TimeConstraint which represents when
pred-obj-held-by-robot should hold true.

The use of bdd:IsHeldPredicate implies a constraint that the subjects of
pred-obj-held-by-robot must represent objects and agents in the scenario. Here, the use of
bdd:ref-object and bdd:ref-agent indicates that pick-object is the object and pick-robot
is the agent in this context.

115https://en.wikipedia.org/wiki/Fluent_(artificial_intelligence)
116https://github.com/comp-rob2b/modelling-tutorial
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Additionally, the model at this point contains no assumption about how the fact that a robot is holding an object
can be verified. Further transformations and/or generations can be introduced to produce concrete, executable
implementations for verification.

Specifying A Concrete Scenario Variant The BDD scenario template defined above can now be ex-
tended with concrete variations, e.g. for generating concrete Gherkin feature files as shown in Section 5.3.2.
This is done via linking the bdd:ScenarioVariable instances above to concrete instances of objects,
workspaces and agents. For example, consider the use case where we want to test the pickup behaviour in the
robotics lab at Bonn-Rhein-Sieg University using battery cells sent from AVL117 (An use case partner of the
SESAME project), as well as some objects readily available in the lab.

Specifying Concrete Agents, Environment, and Coordination Models We first need concrete mod-
els of the objects, workspaces, and agents that we may test with:

1 { "@id": "bottle", "@type": "env:Object" },
2 { "@id": "pouch1", "@type": [ "bdd:Object", "avl:PouchCell" ] },
3 { "@id": "cylindrical1", "@type": [ "bdd:Object", "avl:PrismaticCell" ] },
4 { "@id": "dining-table-ws", "@type": "env:Workspace" },
5 { "@id": "kinova1", "@type": [ "agn:Agent", "kinova:gen3-robots" ] },
6 { "@id": "kinova2", "@type": [ "agn:Agent", "kinova:gen3-robots" ] }

We also need a coordination model which defines the event that denotes the start of the pickup behaviour,
which we can associate with pickup-when.

1 { "@id": "pickup-start", "@type": "evt:Event" }

Specifying Variations Using the task:Variation concept, we can associate the
bdd:ScenarioVariable instances above with possible entities via the task:can-be relation:

1 {
2 "@id": "obj-variation", "@type": "task:Variation",
3 "bdd:of-variable": "pick-object",
4 "task:can-be": [ "bottle", "pouch1", "cylindrical1" ]
5 },
6 {
7 "@id": "ws-variation", "@type": "task:Variation",
8 "bdd:of-variable": "pick-workspace",
9 "task:can-be": [ "dining-table-ws" ]

10 },
11 {
12 "@id": "robot-variation", "@type": "task:Variation",
13 "bdd:of-variable": "pick-robot",
14 "task:can-be": [ "kinova1", "kinova2" ]
15 }

The pick-when can be associated with the concrete event pickup-start.

117https://www.avl.com
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1 {
2 "@id": "pick-when-event", "@type": "bdd:WhenEvent",
3 "bdd:of-clause": "pick-when", "evt:has-event": "pickup-start"
4 }

We can now define variant scenario-pick-brsu as a composition of the task:Variation in-
stances, and user story us-obj-transport as a composition of scenario variants, one of which is
scenario-pick-brsu.

1 {
2 "@id": "scenario-pick-brsu", "@type": "bdd:ScenarioVariant",
3 "of-scenario": "scenario-pick",
4 "task:has-variation": [
5 "obj-variation", "ws-variation", "robot-variation"
6 ]
7 },
8

9 {
10 "@id": "us-obj-transport", "@type": "bdd:UserStory",
11 "bdd:has-criteria": [ "scenario-pick-brsu" ]
12 }

bdd-dsl provide the load_metamodels utility method for initializing a rdflib.Graph118 object with
our metamodels119. Models can then be loaded to the graph with the parse120 method:

1 from bdd_dsl.utils.json import load_metamodels
2

3 g = load_metamodels()
4 g.parse("path/to/model.json", format="json-ld")

5.3.2 Generating Gherkin Features from BDD Models

After creating scenario variants and templates, we can transform these models into other formats for use with
existing tools. For example, we can generate from our BDD user stories Gherkin feature files, which has wide
support for test automation in most programming languages, e.g. behave121 library in Python. In the following
example, we use the Jinja122 template engine for the final text generation step.

Extracting Relevant Information and Transforming BDD Models Extracting the relevant infor-
mation from a rdflib.Graph object can be done with SPARQL queries123. Additionally, JSON-LD Fram-
ing124 can force a specific tree layout to the graph structure of the model, which can be easier to generate to
text targets, as will be shown.

118https://rdflib.readthedocs.io/en/stable/apidocs/rdflib.html#graph
119https://github.com/hbrs-sesame/metamodels
120https://rdflib.readthedocs.io/en/stable/apidocs/rdflib.html#rdflib.graph.

Graph.parse
121https://behave.readthedocs.io
122https://jinja.palletsprojects.com/
123https://rdflib.readthedocs.io/en/stable/intro_to_sparql.html
124https://www.w3.org/TR/json-ld-framing/
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bdd-dsl provides several utilities for querying and framing models composed using our metamodels. The
following example shows how BDD user stories akin to the example above can be transformed using the
library’s Python API:

1 from pyld import jsonld
2 from bdd_dsl.models.queries import BDD_QUERY
3 from bdd_dsl.models.frames import BDD_FRAME
4 from bdd_dsl.utils.json import query_graph, process_bdd_us_from_graph
5

6 bdd_result = query_graph(g, BDD_QUERY)
7 model_framed = jsonld.frame(bdd_result, BDD_FRAME)
8

9 # alternatively, there's also an utility function that executes the above
10 # as well as doing some further cleanup of the result
11 cleaned_bdd_data = process_bdd_us_from_graph(g)

The code snippet above should produce the following JSON when run on the above model:

1 "data": [{
2 "name": "us-obj-transport",
3 "criteria": [{
4 "name": "scenario-pick-brsu",
5 "scenario": {
6 "name": "scenario-pick",
7 "then": {
8 "clauses": {
9 "name": "fluent-obj-held-by-robot",

10 "agents": { "name": "pick-robot" },
11 "objects": {"name": "pick-object"}
12 },
13 },
14 "when": {
15 "name": "pick-when",
16 "trans:has-event": { "name": "pickup-start" }
17 }
18 },
19 "variations": [
20 {
21 "name": "obj-variation",
22 "entities": [
23 {"name": "bottle"}, {"name": "pouch1"}, {"name": "cylindrical1"}
24 ],
25 "trans:of-variable": {"name": "pick-object"}
26 },
27 ...
28 ]
29 }]
30 }]

Generating from Jinja Templates The extracted and transformed JSON data can be used to automati-
cally render feature files using Jinja125 with the template below:

125https://jinja.palletsprojects.com/api/
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1 Feature: {{ data.name }}
2 {% for scenario_data in data.criteria %}
3 Scenario Outline: {{ scenario_data.name }}
4 {% for clause in scenario_data.given_clauses %}
5 {{ clause|safe }}{% endfor %}
6

7 When "{{ scenario_data.when_event }}"
8 {% for clause in scenario_data.then_clauses %}
9 {{ clause|safe }}{% endfor %}

10

11 Examples:
12 |{% for var_name in scenario_data.variables %} {{ var_name }} |{% endfor %}
13 {% for entity_data in scenario_data.entities %}|{%
14 for entity_name in entity_data %} {{ entity_name }} |{% endfor %}
15 {% endfor %}
16 {% endfor %}

The up-to-date version of this template is available online126 for download. bdd-dsl also provides utilities
to further process the transformed data shown above before performing the final text transformation with Jinja.
The code snippet below should generate one feature file for each bdd:UserStory instance.

1 from bdd_dsl.utils.jinja import load_template, prepare_gherkin_feature_data
2

3 # load Jinja template
4 feature_template = load_template("feature.jinja", "/template/directory")
5

6 # loop through data transformed using the code snippet in the previous section
7 for us_data in processed_bdd_data:
8 us_name = us_data["name"]
9 prepare_gherkin_feature_data(us_data)

10 # the rendered text can be written normally to a file to produce
11 # the Gherkin feature
12 feature_content = feature_template.render(data=us_data)

The generation result should produce be a valid Gherkin feature file like shown below:

1 Feature: us-obj-transport
2

3 Scenario Outline: scenario-pick-brsu
4 Given "<pick_object>" is located at "<pick_workspace>"
5 When "pickup-start"
6 Then "<pick_object>" is held by "<pick_robot>"
7

8 Examples:
9 | pick_object | pick_workspace | pick_robot |

10 | env:brsu/bottle | env:brsu/dining-table | agn:brsu/kinova1 |
11 | env:avl/cylindrical1 | env:brsu/dining-table | agn:brsu/kinova2 |
12 ...

The generated feature files can then be used with existing BDD frameworks, e.g. behave127, for test automation.
Currently, the tools necessary to generate executable implements to verify the generated scenarios in simulation
are still under development. Once ready, this tutorial will be extended to include usage of these new tools.

126https://hbrs-sesame.github.io/models/acceptance-criteria/bdd/feature.jinja
127https://behave.readthedocs.io
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