C}gEESAME

SECURE AND SAFE MULTI-ROBOT SYSTEMS

Project Number 101017258

D3.3 Executable Scenario Management

Version 1.0
30 June 2023
Final

Public Distribution

Bonn-Rhein-Sieg University

Project Partners: Aero41, ATB, AVL, Bonn-Rhein-Sieg University, Cyprus Civil Defence, Domaine
Kox, FORTH, Fraunhofer IESE, KIOS, KUKA Assembly & Test, Locomotec,
Luxsense, The Open Group, Technology Transfer Systems, University of Hull,
University of Luxembourg, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
SESAME Project Partners accept no liability for any error or omission in the same.

© 2023 Copyright in this document remains vested in the SESAME Project Partners.

D3.3 Executable Scenario Management

%%ESAME

Project Partner Contact Information

Aero41
Frédéric Hemmeler
Chemin de Mornex 3

ATB
Sebastian Scholze
Wiener Strasse 1

1003 Lausanne 28359 Bremen

Switzerland Germany

E-mail: frederic.hemmeler@aero41.ch E-mail: scholze @atb-bremen.de
AVL Bonn-Rhein-Sieg University

Martin Weinzerl
Hans-List-Platz 1

Nico Hochgeschwender
Grantham-Allee 20

8020 Graz 53757 Sankt Augustin

Austria Germany

E-mail: martin.weinzerl @avl.com E-mail: nico.hochgeschwender@h-brs.de
Cyprus Civil Defence Domaine Kox

Eftychia Stokkou Corinne Kox

Cyprus Ministry of Interior 6 Rue des Prés

1453 Lefkosia 5561 Remich

Cyprus Luxembourg

E-mail: estokkou@cd.moi.gov.cy E-mail: corinne @domainekox.lu
FORTH Fraunhofer IESE

Sotiris Ioannidis
N Plastira Str 100
70013 Heraklion

Daniel Schneider
Fraunhofer-Platz 1
67663 Kaiserslautern

Greece Germany

E-mail: sotiris @ics.forth.gr E-mail: daniel.schneider @iese.fraunhofer.de
KIOS KUKA Assembly & Test

Maria Michael Michael Laackmann

1 Panepistimiou Avenue
2109 Aglatzia, Nicosia

Uhthoffstrasse 1
28757 Bremen

Cyprus Germany

E-mail: mmichael@ucy.ac.cy E-mail: michael.laackmann@kuka.com
Locomotec Luxsense

Sebastian Blumenthal Gilles Rock

Bergiusstrasse 15 85-87 Parc d’ Activités

86199 Augsburg 8303 Luxembourg

Germany Luxembourg

E-mail: blumenthal @locomotec.com E-mail: gilles.rock@luxsense.lu

The Open Group Technology Transfer Systems

Scott Hansen
Rond Point Schuman 6, 5™ Floor
1040 Brussels

Paolo Pedrazzoli
Via Francesco d’Ovidio, 3
20131 Milano

Belgium Ttaly

E-mail: s.hansen @opengroup.org E-mail: pedrazzoli @ttsnetwork.com
University of Hull University of Luxembourg

Yiannis Papadopoulos Miguel Olivares Mendez

Cottingham Road 2 Avenue de I’Universite

Hull HU6 7TQ 4365 Esch-sur-Alzette

United Kingdom Luxembourg

E-mail: y.i.papadopoulos @hull.ac.uk E-mail: miguel.olivaresmendez @uni.lu
University of York

Simos Gerasimou & Nicholas Matragkas

Deramore Lane

York YO10 5GH

United Kingdom

E-mail: simos.gerasimou@york.ac.uk
nicholas.matragkas @york.ac.uk

Version 1.0
Confidentiality: Public Distribution

30 June 2023

LrgQEESAME D3.3 Executable Scenario Management

Document Control

Version Status Date
0.1 Version ready for internal review 26 June 2023
0.2 Fixed links to models and public repositories 27 June 2023
0.3 Updates from internal feedback 28 June 2023
0.4 Updates from feedback from FHF 29 June 2023
1.0 Final version 30 June 2023
30 June 2023 Version 1.0 Page iii

Confidentiality: Public Distribution

D3.3 Executable Scenario Management

%@;ESAME

Table of Contents

1 Introduction 1
1.1 Provenance e e
1.2 Metamorphic testing L e e
2 Case Study: Navigation tasks for a multi-robot system 4
2.1 System Under Test e e e e 4
2.2 Environment. oo i e e e e e e e 4
23 Tasks . ..o e e e 5
24 MEIICS « . v v v e e e e e e e e e 5
3 Executable Scenarios 7
3.1 Specification e e e e e 7
311 MISSION . . v v v e e e e e e 8
3.1.2 Robots e 10
3.1.3 Environment e e e e e e e 10
32 EXECULION o ot e e e e e e e 12
32,1 Metricsand Monitorsol e e e e e e e e e 14
33 TestOracles o e e 16
3.3.1 Relationships e e 16
332 Oracles e e e e 17
4 Metamorphic Relations 19
4.1 Inputtransformations L. e 19
411 MISSION . . . v v vt e e e e e e e e 19
4.1.2 Task . . . L 21
4.1.3 Environment oL i e e e e e e e e e e e e e 22
4.1.4 RoODOtS e e e 22
42 Outputrelations e e e e e e e e e 26
4.2.1 Estimating metriCS v v v vt e e e e e e e e e e e e e e 28
5 Queriable Scenario Execution 30
5.1 Observed oUtputs e e e e e e e e 30
5.2 0racles e 31
52.1 Getoracleconfig L 31
522 Updatebaseline L 31
53 Clustering o o e e e e e 32
5.3.1 Robotsimilarity L 32
Page iv Version 1.0 30 June 2023

Confidentiality: Public Distribution

%EESAME D3.3 Executable Scenario Management

5.32 Pathsegments. 33

5.33 MEtriCS . . . v v v e e e e e e 33

6 ExSce Management Tutorials 35
6.1 Modelling and executing a scenario to record provenancedata 35
6.1.1 Defining abase scenario e e e e e 35

6.1.2 Execute a scenario and collect baselinedata 36

6.1.3 Transformationto PROV 37

6.2 Defining a baseline oracle and validating new executions 38

6.3 Generating New SCENATIOS+« v v v v vt e e e e e e e e 40
6.3.1 Manually defining anew scenario e 40

6.3.2 Generating new scenarios by applying input transformations 40

7 Generalization of the ExSce Management 42
7.1 ExSce Workbench e 42
7.2 Simulation-based testing e e e e e e 42

7.3 Generalizing to other use Cases e e e e e 43
References 45
30 June 2023 Version 1.0 Page v

Confidentiality: Public Distribution

D3.3 Executable Scenario Management %?ESAME

List of Figures

1 Key PROV concepts and relationships (from [1]) 1

2 A simple example of the PROV concepts and relations modelling an executable scenario and
executiondata oLl 2

3 Example of a metamorphic relation for a simple navigation task. 7" is the input transformation,

and Rtheoutputrelation. L 3
4 Environment occupancy grid forthe casestudy oL oL 5
5 Tasks generated by the Floorplan DSL 5
6 Overview of the PROV concepts and relations used in the ExSce Management 7
7 Scenario execution for ROS-based systems., 12

8 Oracles for a ROS-based multi-robot system are based on simple monitors that subscribe to the
topics used as the data source. e e 14

9 Points of reference used to estimate the task_duration and distance_travelled metrics when
no available data existS L e e e e 28

10 The Executable Scenario Management process. In blue, activities and artefacts for user-defined
scenarios. In white, the activities and artefacts that are part of the metamorphic testing. 35

11 Transformations of the BDD tools in the ExSce Worbench (in blue) for the ExSce Management
approach L e e e e 42
Page vi Version 1.0 30 June 2023

Confidentiality: Public Distribution

%%ESAME D3.3 Executable Scenario Management

Executive Summary

In this deliverable, we describe how the ExSce Management enables the storage and querying of provenance
data for scenario executions. In the first section, we will give an overview of what provenance is, and the
concepts and relations available in the W3C PROV specification used in the ExSce Management. In addition,
we will briefly introduce metamorphic testing which is used to generate new scenarios and as a test oracle,
validating whether a run “passes or fails” the test.

A case study based on the PAL use case is used as a running example throughout the deliverable to demonstrate
how the ExSce management is used to model and manage the scenarios of a multi-robot system performing
navigation tasks. We use the publicly available software of the PAL robots, which is based on ROS1, and
uses the default navigation stack. Extending our specification to include currently unavailable components
(e.g. task planner and task allocation) or ROS2 only requires that the relevant concepts can be transformed into
(and conform to) the PROV specification.

First, we describe how scenario specifications are modelled and conform to the PROV specification. Execu-
tion data is obtained from transforming bag files into PROV documents, which can then be queried as new
scenarios are generated. This includes scenario meta-information such as derivations from other scenarios,
simulation timestamps and various metrics for the entire run and individual path segments. Oracles are mod-
elled as relations between a so-called “base” scenario, resulting in two main types: baseline and metamorphic
oracles. On one hand, baseline oracles compare new runs of a scenario against its past runs to account for
non-determinism, noise and unexpected behaviours. On the other hand, metamorphic oracles are based on a
different scenario from which the scenario in question was derived.

Secondly, we describe how input transformations can be used to generate new scenarios and the type of output
relations that we consider as part of the metamorphic relations. This is enabled by the storage of the PROV
data on a property graph using Neo4;j, which is allows us to query and compose both input transformations and
output relations. The PROV data of these transformations is also stored in the database, enabling stakeholders
to trace how scenarios were derived, i.e., which operations generated which artefacts (e.g., task specifications)
and which was the resulting scenario.

Finally, we present a tutorial to summarize how to employ the ExSce Management approach and tools using
the PAL case study as an example and we discuss how the ExSce Management approach generalizes in the
context of other ExSce tools, SESAME deliverables and use cases.

Please note that the contents of this deliverable were automatically converted from the ExSce Management
documentation'. For the latest version, please visit the website.

'https://hbrs-sesame.github.io/exsce_management/

30 June 2023 Version 1.0 Page vii
Confidentiality: Public Distribution

https://hbrs-sesame.github.io/exsce_management/
https://hbrs-sesame.github.io/exsce_management/
https://hbrs-sesame.github.io/exsce_management/

%%ESAME D3.3 Executable Scenario Management

1 Introduction

1.1 Provenance

At its core, provenance describes the historical ownership of an object. In computer science, provenance refers
to the lineage of data, that is, how data is created and used. In the ExSce workbench, provenance allows us to
answer questions such as “Which scenario was used as a basis to generate scenario X7, “Which data was used
to compute this metric?” “How many runs of scenario X pass the acceptance criteria?”’, “What would be the
acceptance criteria for a new scenario with this specification?”. Provenance describes agents, such as robots,
and activities, such as executions or “runs”, that produce, influence or deliver an entity, such as an object
or data. In short, the ExSce workbench conforms to the W3C PROV specification? as a means to describe
scenarios, their executions and their corresponding acceptance criteria; describe what data was collected and
how it was used for the acceptance criteria on each run; and as part of the process to verify and validate that a
system meets its requirements.

wasDerivedFrom

wasAttributedTo

wasGeneratedBy

wasAssociatedWith
Activity

Figure 1: Key PROV concepts and relationships (from [1])

Here, we provide a small overview of the PROV models (cf. Figure 1). There are three main concepts: Entities
represent physical, digital or conceptual things; activities are used to represent actions or processes that gen-
erate or change entities; and agents are responsible for or play a role in activities. The basic relationships
between these concepts describe how activities use entities or generate new ones, and which agent was respon-
sible (wasassociatedwith) for an activity. wasattributedTo describes which agent played a role in the activity
that generated that entity and wasperivedrrom describes that the existence or properties of an entity are due to
another entity. A p1an is a special type of entity that describes the steps an agent followed while performing an
activity. Figure 2 below shows a simple example of PROV models in the context of the ExSce Management.

nttps://www.w3.org/TR/prov-overview/

30 June 2023 Version 1.0 Page 1
Confidentiality: Public Distribution

https://www.w3.org/TR/prov-overview/
https://www.w3.org/TR/prov-overview/

D3.3 Executable Scenario Management %EESAME

T el D dEE AT
tiago1:gazebo_model) tiago1:software-confiy tiago1:hardware-confi
| tisgolig < tem g > e

a hadMember ; hadViember
proviype ros:GazeboModel [tiago1:agent j (robottiagol e ~ taskdelivery_ayaml
B — R V\ > —

N N

rosip

provitype prov:SoftwareAgent provitype exscezrobol pke
roscrelative_path

robot:tiagol_bundle

task:delivery_a.yaml_bundle

run_1234:delivery_ayaml exscescenario.c

rovitype exsce:task_execution 1
F v | run:run_1234 | proviype exsce:

\ exsce:scenario_c_bundle

wasGeneratedBy

T run_1234:1234bag D

run:run_1234_bundle

ros:Bags
ath runs/

exsce:1234.bag_bundle

Figure 2: A simple example of the PROV concepts and relations modelling an executable scenario and execution data

1.2 Metamorphic testing

One of the challenges of testing (autonomous) robotic systems lies in the difficulty of defining whether the
result of a test is correct or not[2]. A fest oracle is the procedure by which determines whether the behaviour
of the System Under Test (SUT) is the correct one, in principle comparing an “expected outcome” with the
observed one. However, for complex software, it is challenging to predict what the expected outcome for a
given input should be [3], e.g. how long a robot should take to complete a task depends on many factors.
Furthermore, changes to the test inputs, even slight variations, can greatly influence the outcome.

Metamorphic testing [4] is a testing technique that leverages the relationships between the outputs of a system,
instead of fully formalising its input-output behaviour. This is particularly well-suited for robotic systems,
which often consider the robot(s) as a blackbox when it comes to testing. As a simple example, consider a robot
and a task that consists of navigating from waypoint A to waypoint B. A metamorphic relation, illustrated in
Figure 3, consists of an input transformation and an output relation. An input transformation, such as reverting
the order of the waypoints, generates a new test case. An output relationship compares the outputs of this pair
of test cases, e.g. the robot travels (roughly) the same distance when it navigates from A to B than from B
to A. In metamorphic testing, a test oracle validates that the output relationship holds for a pair of test cases,
i.e. rather than specifying the robot should travel exactly 5Sm from A to B, which might also depend on and
vary because of robot parameters or properties (e.g. its kinematics), the test oracle checks that travelling from
A to B and viceversa is (roughly) the same distance. Consider also that due to non-determinism and noise,
robotic systems can exploit metamorphic relations even without user-defined input transformations, since the
each run will have slightly different “inputs” (e.g. due to sensor noise); assuming we want the robot to behave
the same regardless of those variations, we can define the output relation as invariant, e.g. distance to obstacles
should always remain above some limit.

Page 2 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%?ESAME

D3.3 Executable Scenario Management

Metamorphic

relation

—> f(z1)

3
A B
T
TN
OO |
A B

—> f(=)

Figure 3: Example of a metamorphic relation for a simple navigation task. 7" is the input transformation, and R the output relation.

30 June 2023

Version 1.0
Confidentiality: Public Distribution

Page 3

D3.3 Executable Scenario Management %?‘:ESAME

2 Case Study: Navigation tasks for a multi-robot system

In this section, we present a case study of a multi-robot system performing navigation tasks to be used as a
running example in the rest of this document.

2.1 System Under Test

Table 1 summarizes the mobile robots in the multi-robot system considered for this case study:

Table 1: Caption: Robots considered in this case study

Robot ID Model Base
tiagol tiago pmb2
tiago2 tiago pmb2
tiago3 tiago omni_base
tiago4 tiago omni_base
pmbl pmb2 -

pmb2 pmb2 -

omnil omni_base -

omni2 omni_base -

Their software is based on the Robot Operating System?® (specifically, ROS1), and the examples shown in
this document use their publicly available packages and simulation*. For a given test, a pre-defined mission
consists of multiple tasks (i.e. there is no task planner). In turn, each task consists of a list of actions, and each
action has a list of waypoints to be visited. The task allocation is done manually (testers choose which robots
perform which tasks) and off-line (tasks are pre-assigned before the test starts). The robots use move_base and
amcl for their navigation stack.

2.2 Environment

These robots are tasked with navigating between various locations in the ground floor of the Hochschule Bonn-
Rhein-Sieg, as shown in Figure 4 below. The occupancy grid and gazebo models have been generated by the
Floorplan DSL”.

3https://www.ros.org/
*nttp://wiki.ros.org/Robots/TIAGo/Tutorials
Shttps://github.com/sesame-project/FloorPlan-DSL/

Page 4 Version 1.0 30 June 2023
Confidentiality: Public Distribution

https://github.com/sesame-project/FloorPlan-DSL/
https://www.ros.org/
http://wiki.ros.org/Robots/TIAGo/Tutorials
https://github.com/sesame-project/FloorPlan-DSL/

%%ESAME D3.3 Executable Scenario Management

Figure 4: Environment occupancy grid for the case study

2.3 Tasks

In addition to some user-defined tasks, we make use of the tasks generated for the environment by the Floorplan
DSL. Figure 5 below shows all available routes:

Figure 5: Tasks generated by the Floorplan DSL

2.4 Metrics

The testers are interested in validating the following aspects.

30 June 2023 Version 1.0 Page 5
Confidentiality: Public Distribution

D3.3 Executable Scenario Management %?‘:ESAME

Performance:

e Mission duration - The overall time it takes for the selected robots to successfully complete all their
tasks.

e Number of waypoints visited - How many waypoints each robot completed successfully.

e Distance travelled - How much did each robot travel.

e Task duration - How much time did it take a robot to complete all its tasks.

Safety:

e Robots must not exceed a maximum speed of 1.0 m/s
e Robots will maintain a distance of at least 10cm to all other obstacles.
e The distance between robots will be of 10cm at minimum.

Page 6 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%%ESAME D3.3 Executable Scenario Management

3 Executable Scenarios

3.1 Specification

We consider the scenario specification as the description of the test input data, meaning we model the scenario
components to the level of granularity that is relevant for our tests and what inputs we wish to vary. A scenario
specification for our case study consists of the following basic ingredients:

e A unique ID,

e a mission that includes the tasks to be executed, their ordering, and their (static) task allocation,

o the robots which have been assigned to this mission, and

e the environment in which the scenario is to be executed, including the starting position of each robot
and any obstacles.

Topic Derit rol Output Metric

hadMember

wasDerivedFrom
used Rosbag Area bundle
hadMember Task wasDerivedFrom: Pose
wasGeniratedBy ' H wasGeneratedBy

Test Run

Robot bundle

used : i H
H Robot agent -wasAssociatedWith:

used : '

Oracle ROS Params | H
Hardware config

Luse Concrete Scenario t @hadMember Action
Software config

Task Execution

wasinfluencedBy ~ WasEndedBy wasStartedBy

Gazebo World
hadMember
Occupancy Grid

Figure 6: Overview of the PROV concepts and relations used in the ExSce Management

The specifications used in this example are available here®. Note that although we currently only support

YAML for the specification in our case study, the way in which a scenario is specified does not matter as
long as a corresponding model-to-model transformation between the specification and the PROV models is
available. Figure 6 shows an overview of the PROV concepts and relations described in this section. In this
section, we show both the YAML-based specification, and the resulting transformation (conforming to the
PROV meta-models described in this section) to PROV-N (a notation of PROV aimed at human consumption,
e.g. Listing 1). In practice, we use the prov® library, which can serialize PROV documents to JSON.

Shttps://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_c.yaml
"https://yaml.org/
8https://prov.readthedocs.io/en/latest/prov.html#

30 June 2023 Version 1.0 Page 7
Confidentiality: Public Distribution

https://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_c.yaml
https://yaml.org/
https://prov.readthedocs.io/en/latest/prov.html
https://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_c.yaml
https://yaml.org/
https://prov.readthedocs.io/en/latest/prov.html#

D3.3 Executable Scenario Management

%%ESAME

bundle exsce:scenario_c_bundle
entity (exsce:scenario_c,

hadMember (exsce:
hadMember (exsce:
hadMember (exsce:
hadMember (exsce:

scenario_c,
scenario_c,
scenario_c,
scenario_c,

[prov:type= 1)

mission:mission_c)
env:brsu_building_c_with_doors)
robot:tiagol)

robot:tiago2)

endBundle

Listing 1: A scenario is modelled as a PROV collection, which has a mission, the environment and the robots as members.

3.1.1 Mission

For our case study we consider two types of missions: those that can be executed in parallel (each robot
executes one task at a time) or sequential (only one robot is executing a task at any given time).

mission:
id: mission_c
type: parallel
allocation:
- robot: tiagol
pkg: metamorphic_testing
file_path: config/tasks/delivery_a.yaml
- robot: tiago2
pkg: metamorphic_testing
file_path: config/tasks/delivery_b.yaml
- robot: tiagol
pkg: metamorphic_testing
file_path: config/tasks/navigate_home_1.yaml
- robot: tiago2
pkg: metamorphic_testing
file_path: config/tasks/navigate_home_2.yaml

Listing 2: Mission specification in YAML format

The mission is a collection that models the specific instance of the tasks chosen and to which robot they were
allocated to. The tasks are modelled separately to enable their reuse (they can be assigned multiple times to the
same or another robot), and as we mentioned before, to abstract their concrete, domain or application-specific
representation. Similarly, this allows us to use, for example, the tasks generated by the Floorplan DSL?.

bundle exsce:scenario_c_bundle
entity(mission:mission_c, [prov:type= , exsce:missionType=]
entity (mission_c:tiagol-task_01, [prov:type= 1)
entity(mission_c:tiago2-task_01, [prov:type= 1)
entity (mission_c:tiagol-task_02, [prov:type= 1)
entity(mission_c:tiago2-task_02, [prov:type= 1)

hadMember (mission:
hadMember (mission:
hadMember (mission:
hadMember (mission:

mission_c,
mission_c,
mission_c,
mission_c,

mission_c:tiagol-task_01)
mission_c:tiago2-task_01)
mission_c:tiagol-task_02)
mission_c:tiago2-task_02)

wasDerivedFrom (mission_c:tiagol-task_01, task:delivery_a.yaml, [prov:type=
1)
wasDerivedFrom (mission_c:tiago2-task_01, task:delivery_b.yaml, [prov:type=
1)
wasDerivedFrom(mission_c:tiagol-task_02, task:navigate_home_1.yaml, [prov:type=

wasDerivedFrom (mission_c:tiago2-task_02,

endBundle

1)

1)

Listing 3: PROV models to represent a mission.

task:navigate_home_2.yaml,

[prov:type=

https://github.com/sesame-project/floorplan-dsl-replication-package

Page 8

Version 1.0
Confidentiality: Public Distribution

30 June 2023

https://github.com/sesame-project/floorplan-dsl-replication-package
https://github.com/sesame-project/floorplan-dsl-replication-package

%}:ESAME D3.3 Executable Scenario Management

Tasks In this example, the tasks have been implicitly included as part of the allocation. Note also that there
are different levels of abstraction, the scenario specification does not constrain sow tasks should be specified,
allowing us to reuse the scenario specification, and likely any task-agnostic transformations, for other types of
systems with different task specification formats (given that there is a model to model transformation of the
task to PROV).

A task is an entity which is derived from its subtask; each subtask in turn, is derived from the poses it contains
as waypoints.

bundle task:delivery_a.yaml_bundle

entity (task:delivery_a.yaml, [prov:type= , ros:pkg= , ros:
relative_path= 1)

entity (task:delivery_a.yaml-subtask_001, [prov:type= 1)
wasDerivedFrom(task:delivery_a.yaml, task:delivery_a.yaml-subtask_001, -, -, -, [prov:role=

1)
wasDerivedFrom(delivery_a.yaml-subtask_001:w_001; task:delivery_a.yaml-subtask_001, pose:c022-w001

-R0.00_P0.00_Y2.27, -, -, -, I[prov:role= 1)
wasDerivedFrom(delivery_a.yaml-subtask_001:w_002; task:delivery_a.yaml-subtask_001, pose:c018-w001
-R0.00_P0.00_Y-0.64, -, -, -, [prov:role= 1)
endBundle

Listing 4: PROV models for a navigation task

Allocation In this case study, we have considered pre-defined assignments in the scenario specification.
Note, however, that the allocation does not appear in the mission PROV shown above. To account for the cases
where an algorithm allocates tasks at runtime, we collect the allocation as part of the runtime information.
For this use case, this is done by obtaining the allocation from the scenario parameters before sending the
tasks to the robots. We foresee that using an online allocator will require changes to capture the allocations
depending on their implementation and how they are made available, perhaps as part of the model-to-model
transformation discussed in Section 3.2.

As an example, Listing 5 shows the PROV models for the allocated tasks of tiago1. Each task is modelled as
an activity assigned to a robot using the wasassociatedwith relationship, with each task modelled in the mission
added as the plan. Each Action is also an activity that uses the wasstartedBy to model the starting pose of the
robot, and wasEndedBy its goal. The sequence of tasks is modelled via the wasinformedsy relationship, because,
in this case study, activities are dependent on the successful completion of their previous activity.
bundle run:run_12345_bundle

activity(run_12345:tiagol-task_01, -, -, [prov:type= , exsce:run=]

used (run_12345:tiagol-task_01, robot:tiagol, -)
wasAssociatedWith (run_12345:tiagol-task_01, tiagol:agent, mission_c:tiagol-task_01)

activity(run_12345:tiagol-task_Ol-subtask_001-w_001, -, -, [prov:type= , exsce:run=
1)
wasEndedBy (run_12345:tiagol-task_0l-subtask_001-w_001, pose:c022-w001-R0.00_P0.00_Y2.27, -, -, [
prov:role= , exsce:runs= 1)

wasStartedBy (run_12345:tiagol-task_0Ol-subtask_001-w_001l, pose:c025-w001-R0O.00_P0.00_Y0.00, -, -)
wasAssociatedWith (run_12345:tiagol-task_0l-subtask_001-w_001, tiagol:agent, -)

activity(run_12345:tiagol-task_Ol-subtask_001-w_002, -, -, [prov:type= , exsce:run=
1)
wasInformedBy (run_12345:tiagol-task_Ol-subtask_001-w_002, run_12345:tiagol-task_Ol-subtask_001-

w_001)
wasEndedBy (run_12345:tiagol-task_0l-subtask_001-w_002, pose:c018-w001-R0O.00_P0.00_Y-0.64, -, -, [
prov:role= , exsce:runs= 1)

wasStartedBy (run_12345:tiagol-task_0Ol-subtask_001-w_002, pose:c022-w001-R0O.00_P0.00_Y2.27, -, -)
wasAssociatedWith (run_12345:tiagol-task_0l-subtask_001-w_002, tiagol:agent, -)

wasInformedBy (run_12345:tiagol-task_01, run_12345:tiagol-task_0l-subtask_001-w_001)
wasInformedBy (run_12345:tiagol-task_01, run_12345:tiagol-task_0Ol-subtask_001-w_002)

30 June 2023 Version 1.0 Page 9
Confidentiality: Public Distribution

D3.3 Executable Scenario Management %?ESAME

activity(run_12345:tiagol-task_02, -, -, [prov:type= , exsce:run= 1)
used (run_12345:tiagol-task_02, robot:tiagol, -)
wasAssociatedWith (run_12345:tiagol-task_02, tiagol:agent, mission_c:tiagol-task_02)

activity (run_12345:tiagol-task_02-subtask_001-w_001, -, -, [prov:type= , exsce:run=
1)
wasInformedBy (run_12345:tiagol-task_02-subtask_001-w_001, run_12345:tiagol-task_0l-subtask_001-

w_002)
wasEndedBy (run_12345:tiagol-task_02-subtask_001-w_001, pose:c025-w001-R0.00_P0.00_Y0.93, -, -, [
prov:role= , exsce:runs= 1)

wasStartedBy (run_12345:tiagol-task_02-subtask_001-w_001, pose:c018-w001-RO.00_P0.00_Y-0.64, -, -)
wasAssociatedWith (run_12345:tiagol-task_02-subtask_001-w_001, tiagol:agent, -)
wasInformedBy (run_12345:tiagol-task_02, run_12345:tiagol-task_02-subtask_001-w_001)

endBundle

Listing 5: PROV models for the (run-time) task allocation for tiagol.

3.1.2 Robots

Because we treat the robots as a black box, we have kept their specification very minimal, as shown in Listing 6.
Each robot needs a unique ID, its type and, optionally for ROS, the namespace of its topics.

robots:

- id: tiagol
robot_namespace: tiagol
robot_type: tiago

- id: tiago2
robot_namespace: tiago2
robot_type: tiago

Listing 6: Fleet specification in YAML

A robot bundle considers the software agent that represents the robot, its hardware and software configuration,
and the simulation model used, if any. Listing 7 shows the PROV-N version for tiago1.

bundle robot:tiagol_bundle
entity (robot:tiagol, [prov:type= 1)

agent (tiagol:agent, [prov:type= 1)
entity(tiagol:software-config, [prov:type=

entity (tiagol:hardware-config, [prov:type=
entity(tiagol:gazebo_model, [prov:type='ros:GazeboModel’])

hadMember (robot:tiagol, tiagol:gazebo_model)

hadMember (robot:tiagol, tiagol:software-config)

hadMember (robot:tiagol, tiagol:hardware-config)
endBundle

Listing 7: PROV models to represent a robot.

3.1.3 Environment
The environment specification in Listing 8 consists of three main parts:

e The models that describe the environment, in this case the occupancy grid and the gazebo world for
simulation,

o the models describing objects/obstacles not included in the gazebo world (useful to vary their locations)
and their starting positions (in the example below no additional obstacles were added)

e the starting position of robots.

Page 10 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%%ESAME D3.3 Executable Scenario Management

environment:
id: brsu_building_c_with_doors
models:
map:
map_name: brsu_building_c_with_doors
pkg: floorplan-DSL-environments
relative_path: maps/
gazebo_world:
model_name: brsu_building_c_with_doors
pkg: floorplan-DSL-environments
relative_path: worlds/
robots:
tiagol:
start_pose:
id: c025-w001
x: 44.80387496948242
y: 37.15502166748047
z: 0.0
roll: 0.0
pitch: 0.0
yaw: 0.0
tiago2:
start_pose:
id: c025-w002
x: 43.432926177978516
y: 38.493873596191406
z: 0.0
roll: 0.0
pitch: 0.0
yaw: 0.0

Listing 8: Environment specification in YAML

The environment PROV (cf. Listing 9) is a collection of records for the simulation models and the environ-
ment’s occupancy grid. For this case study, we use the environments generated by the Floorplan DSL!°.

bundle env:brsu_building_c_with_doors_bundle
entity (env:brsu_building_c_with_doors, [prov:type="exsce:environ "]

entity (brsu_building_c_with_doors:brsu_building_c_with_doors_map, [prov:type="exsce:map", ros:pkg=
"floorplan-DSL-environments", ros:relative_path="maps/"])

entity (brsu_building_c_with_doors:occupancy_grid, [prov:type="ros:OccupancyGrid"]

hadMember (env:brsu_building_c_with_doors, brsu_building_c_with_doors:
brsu_building_c_with_doors_map)

entity (brsu_building_c_with_doors:metadata, [prov:type=’ros:Parameter_Server’])

hadMember (brsu_building_c_with_doors:brsu_building _c_with_doors_map, brsu_building_c_with_doors:
metadata)

hadMember (brsu_building_c_with_doors:brsu_building_c_with_doors_map, brsu_building_c_with_doors:
occupancy_grid)

entity (brsu_building_c_with_doors:gazebo_world, [prov:type='ros:GazeboModel’, ros:pkg="floorplan-—
s", ros:relative_path="worlds/"])

hadMember (env:brsu_building_c_with_doors, brsu_building_c_with_doors:gazebo_world)
endBundle

DSL-environmen

Listing 9: PROV models to represent an environment

For simulation in particular, the starting positions of the robots are modeled as derivations as shown in List-
ing 10.

bundle exsce:scenario_c_bundle
wasDerivedFrom(scenario_c:tiagol-start-pose; tiagol:gazebo_model, pose:c025-w001-R0O.00_P0.00_YO

.00, -, -, -, [prov:role="start pose", exsce:scenario="scenario c"])
wasDerivedFrom(scenario_c:tiago2-start-pose; tiago2:gazebo_model, pose:c025-w002-R0.00_P0.00_YO
.00, -, =, =, I[prov:role="start pose", exsce:scenario="scenario_c"])
endBundle

Listing 10: The PROV models for the starting positions of the robots in a scenario.

Ohttps://github.com/sesame-project/FloorPlan-DSL

30 June 2023 Version 1.0 Page 11
Confidentiality: Public Distribution

https://github.com/sesame-project/FloorPlan-DSL
https://github.com/sesame-project/FloorPlan-DSL

D3.3 Executable Scenario Management %.‘Z':ESAME

Finally, Listing 11 shows how poses in each environment are grouped in bundles that correspond to the room
they are in.
bundle env:c022_bundle

entity (pose:c022-w001-R0.00_P0.00_Y2.27, [prov:type= 1)
entity (pose:c022-w002-R0.00_P0.00_Y2.27, [prov:type= 1)

o

entity (point:c022-w001, [coord:x=
%% xsd:float, prov:type=

xsd:float, coord:y= % xsd:float, coord:z=

L o0 L oo

~— o0 — o°

entity (point:c022-w002, [coord:x= xsd:float, coord:y= %% xsd:float, coord:z=
%% xsd:float, prov:type=
entity (orientation:R0.00_P0.00_Y2.27, [angle:roll= %% xsd:float, angle:pitch= %% xsd:float,
angle:yaw= %% xsd:float, prov:type= , geom:axes= 1)

hadMember (pose:c022-w001-R0.00_P0.00_Y2.27, point:c022-w001)
hadMember (pose:c022-w002-R0.00_P0.00_Y2.27, point:c022-w002)

hadMember (pose:c022-w001-R0.00_P0.00_Y2.27, orientation:R0.00_P0.00_Y2.27)
hadMember (pose:c022-w002-R0.00_P0.00_Y2.27, orientation:R0.00_P0.00_Y2.27)
endBundle

Listing 11: PROV models to represent poses of an area in an environment.

3.2 Execution

mission_dispatcher

allocation params publish

Scenario

/scenario/prov
config p

All params subscribe

exsce_run_recorder

Oracle Transform bag file

config to PROV

Run
parameters

Bag Scenario
file PROV

Y

Y

_——
PROV DB

Figure 7: Scenario execution for ROS-based systems.

Figure 7 shows an overview of how scenario execution is integrated into a ROS-based system. For our imple-
mentation, the scenario specification is loaded to the ROS parameter server. A helper script that dispatches
tasks to the robots also generates the run-time PROV for the task activities and their allocation as well as each
action in the robots’ tasks. This is published to a topic so it can be recorded in the rosbag file for the run.
The exsce_run_recorder is used to generate the bag file and save the parameters from the server. These two
activities are added to the run-time generated PROV, and stored in a JSON file.

Page 12 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%?ESAME D3.3 Executable Scenario Management

The execution or test run is an activity that uses parameters from the ROS parameter server'! and which
generates a bag file as an artefact, as shown in Listing 12. The run activity is informed by the execution of the
tasks described in Section 3.1.1.

bundle run:run_e30df0b6-09f0-1lee-bad5-13d500£34135_bundle

activity (run:run_e30df0b6-09f0-1lee-bad5-13d500£34135, 2023-06— 13T15 48:13.720444, 2023-06-13T15
:56:32.315739, [prov:type="exsce:run", exsce:run="e30df0b6-09f0-1leec-badb-13d500£34135"7])

entity (run_e30dfOb6:parameter-server, [prov:type=’ros:Parameter_Server’, exsce:file_path="/home
argen/projects/tiago/tiago_ws/src/metamorphic_testing/runs/2023-06-13T15-48-07_scenario_c_run-
e30df0b6.rosparams"])

used (run:run_e30df0b6-09f0-11ee-bad5-13d500£34135, run_e30df0b6:parameter-server, -)
used (run:run_e30df0b6-09f0-11lee-bad5-13d500£34135, exsce:scenario_c, -)

wasGeneratedBy (run_e30df0b6:2023-06-13T15-48-07_scenario_c_run-e30df0b6.bag, run:run_e30df0b6-09£f0
-1lee-bad5-13d500£34135, -)

wasInformedBy (run:run_e30df0b6-09f0-11lee-bad5-13d500£34135, run_e30df0b6:tiagol-task_01)
wasInformedBy (run:run_e30df0b6-09f0-11lee-bad45-13d500£34135, run_e30df0b6:tiago2-task_01)
wasInformedBy (run:run_e30df0b6-09f0-11lee-bad45-13d500£34135, run_e30df0bé6:tiagol-task_02)
wasInformedBy (run:run_e30df0b6-09f0-11lee-bad5-13d500£34135, run_e30df0b6:tiago2-task_02)

endBundle

Listing 12: PROV models to represent a test run in ROS and other run-time information

A bundle is created for each bag file, and the topics it contains are modelled as entities that are part of its
collection, as shown in Listing 13:

bundle exsce:2023-06-13T15-48-07_scenario_c_run-e30df0b6.bag_bundle
entity (run_e30df0b6:2023-06-13T15-48-07_scenario_c_run-e30df0b6.bag, [prov:type=’'ros:Bags’, exsce:
flle_path—" home/argen/prc cts *wrgc tiago_w
enario_c_run 30df0b6.bag"])
entlty(toplc /tlagol/dlstance travelled [prov:type='ros:Topics’])
hadMember (run_e30df0b6:2023-06-13T15-48-07_scenario_c_run-e30df0b6.bag, topic:/tiagol/
distance_travelled)
entity (topic:/tiagol/nav_vel, [prov:type='ros:Topics’])
hadMember (run_e30df0b6:2023-06-13T15-48-07_scenario_c_run-e30df0b6.bag, topic:/tiagol/nav_vel)
endBundle

met rphic_testing/runs/2023-06-13T15

Listing 13: PROV models to represent a bag file and the topics it contains

Uhttp://wiki.ros.org/Parameter_Server

30 June 2023 Version 1.0 Page 13
Confidentiality: Public Distribution

http://wiki.ros.org/Parameter_Server
http://wiki.ros.org/Parameter_Server

D3.3 Executable Scenario Management %EESAME

3.2.1 Metrics and Monitors

Oracle

+ robot_monitors: dict(str: RobotMonitor)

+ mission_monitor: MissionMoni @

+ __init__ (baseline): void

+ validate(): void

RobotMonitor

MissionMonitor .
+ robot_id: str

+ add_subscribers(config): void

+add_subscribers(config): void

Extends Extends
Extends Extends
MissionMetrics OracleBase RobotMetrics
+ mission_duration: float + output_relations: dict + path_segments: dict

+ distance_between_robots: float + distance_to_obstacles: float

+add_output_relation(metric, relation): relation

+ max_velocity: float

+ get_mission_duration(msg): float + validate_relation(result, metric, baseline): boolean

. + distance_travelled: float
+ get_distance_between_robots(msg): float -

+ waypoints_visited: int

+ task_duration: float

+ get_path_segments(): void

+ get_distance_to_obstacles(msg): float
+ get_max_velocity(msg): float

+ get_distance_travelled(msg): float

+ get_waypoints_visited(msg): float

+ get_task_duration(msg): float

Figure 8: Oracles for a ROS-based multi-robot system are based on simple monitors that subscribe to the topics used as the data source.

Although we obtain the observed outputs off-line through bag files, the implementation to obtain the desired
metrics follows the same logic and can be used as a run-time monitor that uses the publisher-subscriber pattern
in ROS. These monitors can also be composed into the run-time oracle if desired, as shown in Figure 8. The
relevant parts of the configuration for the bag transformation is shown in Listing 14 (tiago2 is not included).

id: scenario_c
baseline:
base_scenario: scenario_c
mission:
mission_duration:
topics:
- /tiagol/waypoint_dispatcher/feedback
- /tiago2/waypoint_dispatcher/feedback
distance_between_robots:
topics:
- /tiagol/robot_pose
- /tiago2/robot_pose
robots:
tiagol:
task_duration:
topics:
- /tiagol/waypoint_dispatcher/feedback
waypoints_visited:
topics:
- /tiagol/waypoint_dispatcher/result
distance_travelled:
topics:

Page 14 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%%ESAME D3.3 Executable Scenario Management

- /tiagol/distance_travelled
distance_to_obstacles:

topics:

- /tiagol/scan
max_velocity:

topics:

- /tiagol/nav_vel

tiago2:

task_duration:

topics:

- /tiago2/waypoint_dispatcher/feedback
waypoints_visited:

topics:

- /tiago2/waypoint_dispatcher/result
distance_travelled:

topics:

- /tiago2/distance_travelled
distance_to_obstacles:

topics:

- /tiago2/scan
max_velocity:

topics:

- /tiago2/nav_vel

Listing 14: Configuration for the transformation of ROS1 bag files to ExSce PROV modelss

Metrics are computed from the topics published by the robots. A collection of topics models the data source
that was used to compute the metric, and the relationship wasGeneratedsy links the output metric to the ac-
tivity of the run that generated this result. Mission metrics take into account the entire run. To enable the
output relation composition, when the bag file is being transformed, in addition to the overall mission met-
rics, these monitors compute the safety and robot performance metrics for each path segment, so that they can
be individually queried and aggregated for other possible paths. In Listing 15 you see the PROV models for
the distance_travelled metric of tiago1: One entity for the value of the entire run, but also the corresponding
value for this metric on each path segment.

bundle run_e30df0b6:distance_travelled_bundle

entity (run_e30dfOb6:tiagol-distance_travelled-topics, [prov:type= 1)
hadMember (run_e30df0b6:tiagol-distance_travelled-topics, topic:/tiagol/distance_travelled)

entity (tiagol:distance_travelled, [prov:type='exsce:output_metric’, run:metricType=

, exsce:run= , prov:value= %%
xsd:float, exsce:robot= 1)
wasDerivedFrom(tiagol:distance_travelled, run_e30dfObé6:tiagol-distance_travelled-topics, -, -, -,

[prov:type= 1)
wasGeneratedBy (tiagol:distance_travelled, run:run_e30df0b6-09f0-1lee-bad45-13d500£34135, -)

entity(tiagol-task_0l-subtask_001-w_00l:distance_travelled, [prov:type=’exsce:output_metric’, run:
metricType= , exsce:run= , prov:value=
%% xsd:float, exsce:robot= 1)
wasDerivedFrom(tiagol-task_0Ol-subtask_001-w_00l:distance_travelled, run_e30dfOb6:tiagol-
distance_travelled-topics, -, -, -, [prov:type=]
wasGeneratedBy (tiagol-task_0Ol-subtask_001-w_00l:distance_travelled, run_e30df0Ob6:tiagol-task_01-
subtask_001-w_001, -)

entity(tiagol-task_0l-subtask_001-w_002:distance_travelled, [prov:type=’exsce:output_metric’, run:
metricType= , exsce:run= , prov:value=
$% xsd:float, exsce:robot= 1)
wasDerivedFrom(tiagol-task_0l-subtask_001-w_002:distance_travelled, run_e30df0b6:tiagol-
distance_travelled-topics, -, -, -, [prov:type=]
wasGeneratedBy (tiagol-task_0Ol-subtask_00l-w_002:distance_travelled, run_e30df0b6:tiagol-task_01-
subtask_001-w_002, -)

entity(tiagol-task_02-subtask_001-w_00l:distance_travelled, [prov:type=’exsce:output_metric’, run:
metricType= , exsce:run= , prov:value=
%% xsd:float, exsce:robot= 1)
wasDerivedFrom(tiagol-task_02-subtask_001-w_00l:distance_travelled, run_e30dfOb6:tiagol-
distance_travelled-topics, -, -, -, [prov:type=]
wasGeneratedBy (tiagol-task_02-subtask_001-w_00l:distance_travelled, run_e30dfOb6:tiagol-task_02-
subtask_001-w_001, -)

30 June 2023 Version 1.0 Page 15
Confidentiality: Public Distribution

D3.3 Executable Scenario Management %?ESAME

endBundle

Listing 15: PROV models for the distance_travelled metric of tiago1

3.3 Test Oracles

Oracles in PROV are modelled as activities that validate run results based on data from ROS topics. In List-
ing 16, the mission oracle and the oracle for one of the robots in one of our sample scenarios.

activity(scenario_c:mission_duration, -, -, [prov:type= , oracle:metric=
, oracle:robot= 1)
used (scenario_c:mission_duration, topic:/tiagol/waypoint_dispatcher/feedback, -, [prov:role=
1)
used (scenario_c:mission_duration, topic:/tiago2/waypoint_dispatcher/feedback, -, [prov:role=
1)
activity (scenario_c:distance_between_robots, -, -, [prov:type= , oracle:metric=
, oracle:robot= 1)
used (scenario_c:distance_between_robots, topic:/tiagol/robot_pose, -, [prov:role= 1)
used (scenario_c:distance_pbetween_robots, topic:/tiago2/robot_pose, -, [prov:role= 1)
activity(scenario_c:tiagol-waypoints_visited, -, -, [prov:type= , oracle:metric=
, oracle:robot= 1)
used (scenario_c:tiagol-waypoints_visited, topic:/tiagol/waypoint_dispatcher/result, -, [prov:role=
1)
activity (scenario_c:tiagol-distance_travelled, -, -, [prov:type= , oracle:metric=
, oracle:robot= 1)
used (scenario_c:tiagol-distance_travelled, topic:/tiagol/distance_travelled, -, [prov:role= 1)

Listing 16: PROV models for the mission and tiago1 test oracles

3.3.1 Relationships

The oracles above validate that new runs conform to the relationships between two tests. As such, they are
modelled by usage relationships, where the activity uses the results of the base scenario for comparison. As
arguments of the relationship we can add the type of output relation, its value, limit or delta, and its tolerance.
In Listing 17 you see an example of a baseline oracle which compares new runs of scenario_c against its past
runs.

bundle exsce:scenario_c_bundle

entity (exsce:scenario_c, [prov:type= 1)

used (scenario_c:mission_duration, exsce:scenario_c, -, [oracle:relationship= , oracle:
package= , oracle:type= , oracle:value= %%
xsd:float, oracle:tolerance= %% xsd:float])

used (scenario_c:distance_between_robots, exsce:scenario_c, -, [oracle:relationship= ,
oracle:package= , oracle:type= , oracle:limit=
%% xsd:float])

used (scenario_c:tiagol-task_duration, exsce:scenario_c, -, [oracle:relationship= ,
oracle:package= , oracle:type= , oracle:value=
$% xsd:float, oracle:tolerance= %% xsd:float])

used (scenario_c:tiagol-waypoints_visited, exsce:scenario_c, -, [oracle:relationship= ,
oracle:package= , oracle:type= , oracle:value=3])

used (scenario_c:tiagol-distance_travelled, exsce:scenario_c, -, [oracle:relationship= ,

oracle:package= , oracle:type= , oracle:value=
%% xsd:float, oracle:tolerance= $% xsd:float])
Page 16 Version 1.0 30 June 2023

Confidentiality: Public Distribution

%?EESAME D3.3 Executable Scenario Management

used (scenario_c:tiagol-distance_to_obstacles, exsce:scenario_c, -, [oracle:relationship=
, oracle:package= , oracle:type= , oracle:limit=
$% xsd:float])

used (scenario_c:tiagol-max_velocity, exsce:scenario_c, -, [oracle:relationship= , oracle
:package= , oracle:type= , oracle:limit= %% xsd:
float])
used (scenario_c:tiago2-task_duration, exsce:scenario_c, -, [oracle:relationship= ,
oracle:package= , oracle:type= , oracle:value=
%% xsd:float, oracle:tolerance= %% xsd:float])
used (scenario_c:tiago2-waypoints_visited, exsce:scenario_c, -, [oracle:relationship= ,
oracle:package= , oracle:type= , oracle:value=3])
used (scenario_c:tiago2-distance_travelled, exsce:scenario_c, -, [oracle:relationship= ,
oracle:package= , oracle:type= , oracle:value=
%% xsd:float, oracle:tolerance= %% xsd:float])
used (scenario_c:tiago2-distance_to_obstacles, exsce:scenario_c, -, [oracle:relationship=
, oracle:package= , oracle:type= , oracle:limit=

%% xsd:float])

used (scenario_c:tiago2-max_velocity, exsce:scenario_c, -, [oracle:relationship= , oracle
:package= , oracle:type= , oracle:limit= $% xsd
float])
endBundle

Listing 17: Example of a baseline oracle for scenario_c.

Basic relationships We consider the following basic output relations:

e increasing(result, value, delta, tolerance=None)
e decreasing(result, value, delta, tolerance=None)
e invariant(result, value, tolerance=None)

These are useful for metrics which are straight forward to observe or those that are invariant around a constant.
Two special types of invariant relationships are:

e below_max(result, limit)
e above_min(result, limit)
Complex relationships Complex relationships use or combine one or more of

o the basic output relationships,

o relationships composing input transformations, and

o relationships that derive or aggregate metrics based on inputs according to domain or application-
specific logic

3.3.2 Oracles

Baseline oracles Safety-related oracles are usually invariant around a constant, i.e. regardless of the input
transformation, the robot should behave the same:

30 June 2023 Version 1.0 Page 17
Confidentiality: Public Distribution

D3.3 Executable Scenario Management %%ESAME

Table 2: Output relations for safety metrics

Metric Output relation Limit
Max. velocity below_max 1.0
Dist. to obstacles above_min 0.1
Dist. between robots above_min 0.1

Performance-related oracles where we compare runs of the same scenario are invariant around the average of
the metric. We use the standard deviation for the tolerance.

Metamorphic oracles The output relations for the performance metrics require complex relationships that
depend on specific scenarios being used. Consider the following example:

Table 3: Example of a complex metamorphic relation

Metric Input transformation Output relation

Dist. travelled Add new waypoint Increasing
Dist. travelled Remove one waypoint Decreasing
Dist. travelled Invert waypoint order Invariant

The value used as a baseline depends on the specific base scenario, and the delta depends on the specific
path of the new task. Furthermore, output relationships are not straight forward to define when multiple input
transformations are applied; however, using the provenance from existing runs we can also compose outputs
to determine what is the output relation, e.g., query the results of previous runs to obtain the distance travelled
between each pair of waypoints of the new path. Querying will be described in more detail in Section 5.

Page 18 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%EESAME D3.3 Executable Scenario Management

4 Metamorphic Relations

4.1 Input transformations

New scenarios are generated by applying input transformations to existing scenarios. The scenario genration
is an activity that is informed by the individual transformations to the inputs (each modelled as an activity as
well). The sequence of transformations are modelled with wasinformedBy, and the first and transformation are
the activities associated with the start and end.

bundle scenario_780741116:scenario_generation
activity(scenario_780741116:generation, -, -)
wasGeneratedBy (exsce:scenario_780741116, scenario_780741116:generation, -)
used(scenario_780741116:generation, exsce:scenario_c, -)

activity(scenario_780741116:remove_robot-tiago2, -, -, [prov:type= , exsce:
transform= , exsce:robot= 1)

wasStartedBy (scenario_780741116:generation, -, scenario_780741116:remove_robot-tiago2, -)

activity (scenario_780741116:remove_start_pose-tiago2, -, -, [prov:type= , exsce:
transform= 1)

wasInformedBy (scenario_780741116:remove_start_pose-tiago2, scenario_780741116:
substitute_allocation-allocation_0l-task_03)
wasEndedBy (scenario_780741116:generation, -, scenario_780741116:remove_start_pose-tiago2, -)

endBundle

Listing 18: Excerpt of the PROV models for a scenario transformation.

Below we describe the PROV models for some of the transformations we considered for this case study. Note
that transformations can be composed of other transformations (e.g. removing a robot).

4.1.1 Mission

Add allocated task To add a new allocated task, one needs to specify the task, the robot the task is allocated
to, and the position in which to insert the new task. Listing 19 shows how this is modelled in PROV.

bundle new_scenario:scenario_generation

activity (new_scenario:add_task-config/tasks/delivery_a.yaml, -, -, [prov:type= ,
exsce:transform= , exsce:pkg= , exsce:allocation_order=1, exsce:
robot= 1)

endBundle

Listing 19: PROV models for a scenario transformation where a new task is added and allocated

Remove task Listing 20 and Listing 21 show the PROV models for removing tasks that match a task ID
and a robot ID, respectively.:

bundle new_scenario:scenario_generation
activity (new_scenario:remove_task-config/tasks/navigate_home_1l.yaml, -, -, [prov:type=
, exsce:transform= 1)
endBundle

Listing 20: Scenario transformation by removing a task that matches a task ID

bundle new_scenario:scenario_generation
activity (new_scenario:remove_task-tiago2, -, -, [prov:type= , exsce:transform=
1)
endBundle

Listing 21: Scenario transformation by removing a task that matches a robot ID

30 June 2023 Version 1.0 Page 19
Confidentiality: Public Distribution

D3.3 Executable Scenario Management %?ESAME

Substitute task Substituting tasks in the mission adds one activity per task to be substituted. Listing 22
shows the PROV-N representation of this transformation.

bundle new_scenario:scenario_generation
activity (new_scenario:substitute_tasks-config/tasks/delivery_b.yaml, -, - [prov type="ex

rTr
transform", exsce:transform="substitute tasks", prov:value="config/tasks/delive
endBundle

Listing 22: Scenario transformation: Substituting tasks

Substitute allocation The transformation in Listing 23 requires the specification of a new allocation as
described in Section 3.1.1.

bundle new_scenario:scenario_generation

activity (new_scenario:substitute_allocation-allocation_0Ol-task_01, -, -, [prov:type="exsce:
transform”, exsce:transform="substitute_allocation", exsce:pkg="metamorphic testing", exsce:
file_path="config/tasks/delivery a.yaml", exsce:allocation_order=1, exsce:robot="tiagol"])

activity (new_scenario:substitute_allocation-allocation_0l-task_02, -, -, [prov:type="exsce:
transform", exsce:transform="substitute allocation", exsce:pkg="metamorphic testing", exsce:
file_path="config/tasks/navigate _home_ 2.yaml", exsce:allocation_order=2, exsce:robot="tiagol"

1)
wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_02, new_scenario:
substitute_allocation-allocation_0l-task_01)

activity (new_scenario:substitute_allocation-allocation_0l-task_03, -, -, [prov:type="exsce:
transform", exsce:transform="substitute = ocation", exsce:pkg="metamorphic testing", exsce:
file_path="config/tasks/delivery b.yaml", exsce:allocation_order=3, exsce:robot="tiago2"])

wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_03, new_scenario:
substitute_allocation—-allocation_0l-task_02)

activity(new scenario:substitute_allocation-allocation_0l-task_04, -, -, [prov:type="exsce:
ransform", exsce:transform="substitt _allocation", exsce:pkg="metamorphic_testing", exsce:
flle path—”;g\t g/tasks/1 igate _home_1.yaml", exsce:allocation_order=4, exsce:robot="tiago2"

1)
wasInformedBy (new_scenario:substitute_allocation-allocation_0Ol-task_04, new_scenario:
substitute_allocation—-allocation_0l-task_03)
endBundle

Listing 23: Scenario transformation to substitute a scenario’s task allocation

Swap assignments The transformation in Listing 24 takes the existing allocation and changes the assign-
ment according to a set of key-value pairs, where the value is the robot ID that should substitute the robot ID
in the key. The new assignments are then applied by using substitute allocation.

bundle new_scenario:scenario_generation

activity (new_scenario:swap_assignment-tiagol, -, -, [prov:type="exsce:transform", exsce:transform=
"swap_assignment", prov:value="tiago2", exsce:robot="tiagol"])
activity (new_scenario:swap_ assignment—tiago2 -, —, [prov:type="exsce:transform", exsce:transform=

"swap_assignment", prov:value="tiagol", exsce:robot="tiago2"])

wasInformedBy (new_scenario:swap_ a351gnment tiago2, new_scenario:swap_assignment-tiagol)

activity (new_scenario:substitute_allocation-allocation_0l-task_01, -, -, [prov:type='"¢ :
transform"”, exsce:transform="substitute = ocation", exsce:pkg="m:« ’r’CTU?i'i’“H’JWJ", exsce:
file_path="config/tasks/del ery_a.yaml", exsce:allocation_order=1, exsce:robot="tiago2"])

wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_01, new_scenario:
swap_assignment-tiago2)

activity(new scenario:substitute_allocation-allocation_0Ol-task_02, -, -, [prov type sce:

ransform", exsce:transform="substitute allocation", exsce:pkg="metamorphic S exsce
flle_path—”"\t g/tasks/delivery b.yaml", exsce:allocation_order=2, exsce: robot—”‘iﬂ»“,'ﬂ)
wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_02, new_scenario:
substitute_allocation-allocation_0l-task_01)
Page 20 Version 1.0 30 June 2023

Confidentiality: Public Distribution

%%ESAME D3.3 Executable Scenario Management

activity (new_scenario:substitute_allocation-allocation_0Ol-task_03, -, -, [prov:type="exsce:
transform", exsce:transform="substitute_allocation", exsce:pkg="metamorphic testing", exsce:
file_path=" fig/tasks/navigate_home .yaml", exsce.allocatlon_order:3, exsce:robot="tiago2"

1)
wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_03, new_scenario:
substitute_allocation-allocation_0l-task_02)

activity (new_scenario:substitute_allocation-allocation_Ol-task_04, -, -, [prov:type="exsce:
transform", exsce:transform="substitute_allocation", exsce:pkg="metamorphic testing", exsce:
file_path=" fig/tasks/navigate _home 2.yaml", exsce:allocation_order=4, exsce:robot="tiagol"
1)
wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_04, new_scenario:
substitute_allocation-allocation_Ol-task_03)
endBundle

Listing 24: Scenario transformation: swap task assignments between robots in the scenario

Reverse task order This transformation uses substitute allocation to invert the order in which the tasks
should the completed. Listing 25 shows this transformation’s provenance.
bundle new_scenario:scenario_generation

activity (new_scenario:reverse_task_order-mission, -, -, [prov:type="
transform="reverse_ task_ order"])

"

ansform", exsce:

activity (new_scenario:substitute_allocation-allocation_0Ol-task_01, -, -, [prov: type—” <sce:
transform", exsce:transform="substitute allocation", exsce:pkg="metamorphi esting”, exsce:
file_path="config/task ivery_b.ya ", exsce:allocation_order=1, exsce: robot*”f ago2"])

wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_01l, new_scenario:
reverse_task_order-mission)

activity (new_scenario:substitute_allocation-allocation_Ol-task_02, -, -, [prov type*” :
transform", exsce: transform—”’VMgfifwtf allocation", exsce:pkg="metamorphic_testing", exsce:
file_path="config 15k S livery_a aml", exsce:allocation_order=2, exsce:robot="tiagol"])

wasInformedBy (new_scenario: substltute allocatlon allocation_0Ol-task_02, new_scenario:
substitute_allocation-allocation_0l-task_01)

activity (new_scenario:substitute_allocation-allocation_0Ol-task_03, -, -, [prov:type="exsce:
transform", exsce:transform="substitute allocation", exsce:pkg="metamorphic testing", exsce:
file_path=" fig/tasks/navigate_home .yaml", exsce:allocation_order=3, exsce:robot="tiago2"

1)
wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_03, new_scenario:
substitute_allocation-allocation_0l-task_02)

activity (new_scenario:substitute_allocation-allocation_Ol-task_04, -, -, [prov:type="exsce:
transform", exsce:transform="substitute_ allocation", exsce:pkg="metamorphic testing", exsce:
file_path=" fig/tasks/navigate_home .yaml", exsce:allocation_order=4, exsce:robot="tiagol"
1)
wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_04, new_scenario:
substitute_allocation-allocation_Ol-task_03)
endBundle

Listing 25: PROV models for a scenario transformation that reverses the task ordering

4.1.2 Task

A transformation to reverse the order in which waypoints of a task are visited generates a new task specification.
Then it uses substitute task to replace the original task with the new specification that contains the inverted
waypoints. This transformation is domain-specific, as the nature of the application determines whether the
order of waypoints can be inverted or if it requires some preconditions or application logic.

bundle new_scenario:scenario_generation
activity (new_scenario:reverse_waypoint_order-config/tasks/delivery_a.yaml, -, -, [prov:type="exsce
ctransform", exsce:transform="r¢ rse_wa int_order"]
used (new_scenario:reverse_waypoint_ order conflg/tasks/dellvery a.yaml, task:delivery_a.yaml, -)

30 June 2023 Version 1.0 Page 21
Confidentiality: Public Distribution

D3.3 Executable Scenario Management %?ESAME

wasGeneratedBy (task:delivery_a_reversed.yaml, new_scenario:reverse_waypoint_order-config/tasks/
delivery_a.yaml, -)

activity (new_scenario:substitute_tasks-config/tasks/delivery_a.yaml, -, -, [prov:type=
, exsce:transform= , prov:value=
1)
wasInformedBy (new_scenario:substitute_tasks-config/tasks/delivery_a.yaml, new_scenario:
reverse_waypoint_order-config/tasks/delivery_a.yaml)
endBundle

Listing 26: PROV models for the scenario transformation to reverse the waypoint sequence in a task

4.1.3 Environment

Swap start poses Similar to swap assignment, we can change robots’ starting positions using key-value
pairs the robot IDs involved in the swap, as shown in Listing 27.

bundle new_scenario:scenario_generation
act1v1ty(new scenario:swap_start_poses-tiagol, -, -, [prov:type= , exsce:transform
- , prov:value= 1)

act1v1ty(new scenario:swap_start_poses-tiago2, -, -, [prov:type= , exsce:transform
, prov:value= 1)
wasInformedBy(new scenario:swap_start_poses-tiago2, new_scenario:swap_start_poses-tiagol)
endBundle

Listing 27: PROV models to represent a scenaroi transformation by swapping robots’ starting positions

4.1.4 Robots

Add robot Adding a new robot requires that we know its specification (as described in Section 3.1.2) and
its starting position. The transformation uses then other transformations for the tasks related to this new robot,
e.g., with add task (Listing 28) new tasks can be added to the mission. In addition, one can modify the
allocation by using (1) substitute allocation (Listing 29) or by (2) using swap assignments to reassign tasks
from one robot to the new one (as in Listing 30).

bundle new_scenario:scenario_generation

activity (new_scenario:add_task-config/tasks/delivery_c.yaml, -, -, [prov:type= ,
exsce:transform= , exsce:pkg= , exsce:allocation_order=4, exsce:
robot= 1)

act1v1ty(new scenario:add_start_pose-new-pose, -, —, [prov:type= , exsce:transform

= , exsce:robot= 1)
wasInformedBy (new_scenario:add_start_pose-new-pose, new_scenario:add_task-config/tasks/delivery_c.
yaml)
activity (new_scenario:add_robot-tiago3, -, -, [prov:type= , exsce:transform=
1)
wasInformedBy (new_scenario:add_robot-tiago3, new_scenario:add_start_pose-new-pose)
endBundle

Listing 28: PROV models for adding a new robot with new tasks in a scenario transform

bundle new_scenario:scenario_generation

activity (new_scenario:substitute_allocation-allocation_0Ol-task_01, -, -, [prov:type=
, exsce:transform= , exsce:pkg= , exsce:
file_path= , exsce:allocation_order=1, exsce:robot=]
activity (new_scenario:substitute_allocation-allocation_0l-task_02, -, -, [prov:type=
, exsce:transform= , exsce:pkg= , exsce:
file_path= , exsce:allocation_order=2, exsce:robot=

1)
wasInformedBy (new_scenario:substitute_allocation-allocation_Ol-task_02, new_scenario:
substitute_allocation-allocation_0l-task_01)

Page 22 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%E‘ESAME

D3.3 Executable Scenario Management

act1v1ty(new scenario:substitute_ allocatlon allocation_0l-task_03, -,
rm", exsce: transform*”@ bstitute_allocation", exsce:pkg="n
flle_path—"*g‘” - as € .yaml", exsce:allocation_order=3,
wasInformedBy (new_scenario: substltute _allocation-allocation_0l-task_03,
substitute_allocation-allocation_0l-task_02)

rery_

activity (new_scenario:substitute_. allocation—allocation_ol—task_O4, -
trans m", exsce:transform="substitute allo
file_path="config/tasks/nav l.yaml",

1)

tion",

_home__

wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_04,

substitute_allocation-allocation_0l-task_03)

activity(new_scenario:substitute_allocation—allocation 0l-task_05, -,
tran m", exsce:transform="substitute_ allo "
file_path="cor sks/ livery_ a.yaml", exsce: allocatlon order=5,

wasInformedBy(new scenario: substltute allocatlon allocation_0l-task_05,
substitute_allocation-allocation_0l-task_04)

activity (new_scenario:add_start_pose-new-pose, -, -,
="add_start_; ", exsce:robot="tiago3"])

wasInformedBy (new_scenario:add_start_pose-new-pose,
allocation_0l-task_05)

[prov:type="exsc

pose

-, [prov-type=”ﬁx

-, [prov:type="e
exsce:pkg="metamorphic_t i
exsce:allocation_order=4,

exsce:pkg="metamorphic_tes

_testing", exsce:
exsce: robot="fTA‘u7”])
new_scenario:

—e

tALj”,
exsce:robot=

exsce:
"tiago2

"

new_scenario:

, [prov:type='"e

, exsce:
exsce: rObOt:"flﬂ 3"1)

new_scenario:

sform", exsce:transform

new_scenario:substitute_allocation-

exsce:transform="

activity (new_scenario:add_robot-tiago3, -, -, [prov:type="exsce:transform'
add_robot"])
wasInformedBy (new_scenario:add_robot-tiago3, new_scenario:add_start_pose-new-pose)

endBundle

Listing 29: PROV models for adding a new robot with a new allocation in a scenario transform

bundle new_scenario:scenario_generation
activity (new_scenario:swap_assignment-tiago3, -, -,
"swap S prov:value="t1 >1",

nment

activity (new_scenario:substitute_allocation-allocation_0Ol-task_01, -,
m'", exsce: transform—” 1bs 5 ion", exsce:pkg="r
file_path="c ks/ v_a.yaml", exsce:allocation_order=1,
wasInformedBy (new_scenario: substltute _allocation-allocation_0Ol-task_01,
swap_assignment-tiago3)

onfig/t

act1v1ty(new scenario:substitute_allocation-allocation_0Ol-task_02, -,
transfo , exsce:transform="substitute alloca exsce:pkg="me
file_path="config/ta elivery_. ", exsce: allocatlon order=2,

wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_02,
substitute_allocation-allocation_0l-task_01)

tion"

sks; b.yaml

activity (new_scenario:substitute_allocation-allocation_0Ol-task_03, -,
transform", exsce:transform="substitute allocat
file path="config l.yaml",

1)

ion",

asks/nav

_home__

wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_03,

substitute_allocation-allocation_0l-task_02)

act1v1ty(new scenario:substitute_allocation-allocation_0Ol-task_04, -,
tran m", exsce: transform substitute_allocation”, exsce:pkg="metamorphic_testir
file_path="config _home_2.yaml", exsce:allocation_order=4,

1)

wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_04,

substitute_allocation—-allocation_0l-task_03)

activity (new_scenario:add_task-config/tasks/delivery_c.yaml, -, -,
exsce:transform="add_task", exsce:pkg="metamorphic__
robot="tiagol"])

wasInformedBy (new_scenario:add_task-config/tasks/delivery_c.yaml,
substitute_allocation-allocation_0l-task_04)

testing",

transform",

tam

-, [prov:type="ex

[prov:type="exsce:trancs
exsce:

exsce:transform=

, [prov:type=”rA
orphic_t
exsce: robot—"
new_scenario:

la

"ex

, [prov:type=
orphic_te
exsce:robot="t1
new_scenario:

ting", exsce:

2"7)

-, [prov:type="exsce:
exsce:pkg="metamorphic t
exsce:allocation_order=3,

ting", exsce:
exsce:robot="tiagol"

new_scenario:

exsce:robot="t1a

new_scenario:

S Form"
sform",
allocation_order=4, exsce:

new_scenario:

activity (new_scenario:add_start_pose-new-pose, -, -, [prov:type="e ansform", exsce:transform
="add start_pose", exsce:robot="tic 1)
wasInformedBy (new_scenario:add_start_pose-new-pose, new_scenario:add_task-config/tasks/delivery_c
yaml)
30 June 2023 Version 1.0 Page 23

Confidentiality: Public Distribution

D3.3 Executable Scenario Management %?ESAME

activity (new_scenario:add_robot-tiago3, -, -, [prov:type="exsce:transform", exsce:transform="
add_robot"])
wasInformedBy (new_scenario:add_robot-tiago3, new_scenario:add_start_pose—-new-pose)
endBundle

Listing 30: PROV models for adding a new robot and reassigning existing tasks to it in a scenario transform

Remove robot Similarly, removing a robot uses additional transformations to handle the tasks of the robot
being removed. The simplest case is to remove the tasks of the robot in question (Listing 31). Alternatively,
one can specify a new allocation that updates the assignment (Listing 32) or one can reassign the tasks of the
removed robot to another robot (Listing 33).

bundle new_scenario:scenario_generation

activity (new_scenario:remove_robot-tiago2, -, -, [prov:type="exsce:transform", exsce:transform="
remove_robot", exsce:robot="tiago2"])
ctransform”, exsce:transform="

act1v1ty(new scenario:remove_task-tiago2, -, -, [prov:type="e
emove_task"])
wasInformedBy(new_scenario:remove_taskftiagOZ, new_scenario:remove_robot-tiago2)

activity (new_scenario:remove_start_pose-tiago2, -, -, [prov:type="exsce:transform", exsce:
transform="remove start pose'])
wasInformedBy (new_scenario:remove_start_pose-tiago2, new_scenario:remove_task-tiago2)
endBundle

Listing 31: Scenario transformation: Remove a robot and its tasks

bundle new_scenario:scenario_generation
activity (new_scenario:remove_robot-tiago2, -, -, [prov:type="exsce:transform", exsce:transform="
remove_robot", exsce:robot="tiago2"])

activity(new scenario:substitutefallocation—allocationfol—taskiol, -, —, [prov:type="exs
ansform", exsce:transform="substitute

"

exsce:

ation", exsce:pkg="metamorphic_testing
file path*”“dJL,] tasks/delivery c.yaml", exsce:allocation_order=1, exsce:robot="tiagol"]
wasInformedBy (new_scenario:substitute_allocation-allocation_Ol-task_01, new_scenario:remove_robot-
tiago2)
activity (new_scenario:substitute_allocation-allocation_0Ol-task_02, -, -, [prov:type="exsce:
transform", exsce:transform="substi \;‘7€,,ufﬂ\L“r", exsce:pkg="metamorphic_testing", exsce:
file_path="config/tasks/delivery aml", exsce:allocation_order=2, exsce:robot="tiagol"])
wasInformedBy (new_scenario:substitute_ allocatlon allocation_0Ol-task_02, new_scenario:
substitute_allocation-allocation_0l-task_01)
activity (new_scenario:substitute_allocation-allocation_0Ol-task_03, -, -, [prov:type="exsce:
transform", exsce:transform="substitute allocation", exsce:pkg="metamorphic ing", exsce:
file_path="config/tasks/navigate_home_ 1.yaml", exsce:allocation_order=3, exsce:robot="tiagol"

1)
wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_03, new_scenario:
substitute_allocation-allocation_0l-task_02)

activity (new_scenario:remove_start_pose-tiago2, -, -, [prov:type="exsce:transform", exsce:
transform="remove start p ="1)
wasInformedBy (new_scenario:remove_start_pose-tiago2, new_scenario:substitute_allocation-—
allocation_0l-task_03)
endBundle

Listing 32: Scenario transformation: Remove a robot and add a replace the task allocation

bundle new_scenario:scenario_generation

activity (new_scenario:remove_robot-tiago2, -, -, [prov:type="ex ransform

", exsce:transform="

remove robot", exsce:robot="tiago2"])
activity (new_scenario:swap_assignment-tiago2, -, -, [prov:type="exsce:transform", exsce:transform=
"swap_assignment", prov:value="tiagol", exsce:robot="tiago2"])

wasInformedBy (new_scenario:swap_assignment-tiago2, new_scenario:remove_robot-tiago2)

activity (new_scenario:substitute_allocation-allocation_0l-task_01, -, -, [prov:type='¢

transform", exsce:transform="substitute allocation", exsce:pkg="metamorphic testing", exsce:

file_path="config/tasks/delivery a.yaml", exsce:allocation_order=1, exsce:robot="tiagol"])

Page 24 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%%ESAME D3.3 Executable Scenario Management

wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_01l, new_scenario:
swap_assignment-tiago2)

activity (new_scenario:substitute_allocation-allocation_Ol-task_02, -, -, [prov~type=”fk°““'

transform exsce:transform="substitute allc ion", exsce:pkg="metamorphic_testing
file_path="config/ta: exsce:allocation_order=2, exsce: robot="t¢
wasInformedBy (new_scenario: substltute allocatlon allocation_0Ol-task_02, new_scenario:

substitute_allocation-allocation_0l-task_01)

"
’

ks/deliv

activity (new_scenario:substitute_allocation-allocation_0l-task_03, -, -, [prov:type="e
transform", exsce:transform="substitute_ allocation"”, exsce:pkg="metamorphic_testin
file_path="config/tas
1)

wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_03, new_scenario:
substitute_allocation-allocation_Ol-task_02)

r
ome .yvaml", exsce:allocation_order=3, exsce:robot="tiagol"

activity (new_scenario:remove_start_pose-tiago2, -, —, [prov:type="exsce:transform", exsce:

transform="remove start _pose’])
wasInformedBy(new_scenario:remove_start_poseftiagOZ, new_scenario:substitute_allocation—
allocation_0Ol-task_03)
endBundle

Listing 33: Scenario transformation: Removing a robot and reassigning its tasks

exsce:

Replace robot Replacing a robot is the combination of add robot and remove robot, and swapping the
assignments and start position of the new robot with the old one. Listing 34 shows the provenance of this

transformation.

bundle new_scenario:scenario_generation

activity (new_scenario:replace_robot-tiagol, -, -, [prov:type="e: »rm", exsce:transform="
bolace_robot"]

activity (new_scenario:add_start_pose-c025-w001, -, -, [prov:type="exsce:transform", exsce:

transform="add ~_pose', exsce:robot="tiago3"])
wasInformedBy (new_scenario:add_start_pose-c025-w001, new_scenario:replace_robot-tiagol)

activity (new_scenario:add_robot-tiago3, -, -, [prov:type="exsce:tran
add_robot"])

wasInformedBy (new_scenario:add_robot-tiago3, new_scenario:add_start_pose-c025-w001)

act1v1ty(new scenario:remove_robot-tiagol, -, -, [prov:type="exsce:trans
exsce:robot="tiagol"])
wasInformedBy(new_scenarlo.remove_robot tiagol, new_scenario:add_robot-tiago3)

remove_robot"

‘m", exsce:transform="

»rm", exsce:transform="

activity (new_scenario:swap_assignment-tiagol, -, -, [prov: type*" ce:transform”, exsce:transform=

p_assignment", prov:value="tiago3", exsce:robot="ti \'W)

wasInformedBy (new_scenario:swap_assignment-tiagol, new_scenario:remove_robot—tiagol)

activity (new_scenario:substitute_allocation-allocation_0Ol-task_01, -, -, [prov:type="ex
transform", exsce:transform="substitute_allocation", exsce:pkg="metamorphic_testing",
file_path="config/ vaml"™, exsce:allocation_order=1, exsce:robot="t1ac

wasInformedBy (new_scenario: substltute _allocation-allocation_0l-task_01l, new_scenario:
swap_assignment-tiagol)

activity(new scenario:substitute_allocation-allocation_0l-task_02, -, -, [prov:type="
>rm'", exsce: transform*”étbﬁ’thtfiﬂii“ ation", exsce:pkg="metamorphic_test
file path—":g fig s/delivery b.yaml", exsce:allocation_order=2, exsce:robot="t1
wasInformedBy (new_scenario: substltute _allocation-allocation_0l-task_02, new_scenario:
substitute_allocation-allocation_0l-task_01)

trans

in

’

exsce:

2)

exsce:

o)

activity (new_scenario:substitute_allocation-allocation_0Ol-task_03, -, -, [prov:type="exsce:
trans 1", exsce:transform=" ion", exsce:pkg="meta rphic_testing", exsce:
file path="c ig/ vaml", exsce:allocation_order=3, exsce:robot="tiago3"

1)
wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_03, new_scenario:
substitute_allocation-allocation_0l-task_02)

activity (new_scenario:substitute_allocation-allocation_0Ol-task_04, -, -, [prov:type="ex :
transform", exsce:transform="substitute allocation", exsce:pkg="metamorphic testi \;”, exsce:
30 June 2023 Version 1.0 Page 25

Confidentiality: Public Distribution

D3.3 Executable Scenario Management %EESAME

file_path= , exsce:allocation_order=4, exsce:robot=
1)

wasInformedBy (new_scenario:substitute_allocation-allocation_0l-task_04, new_scenario:
substitute_allocation-allocation_0Ol-task_03)

activity (new_scenario:remove_start_pose-tiagol, -, -, [prov:type= , exsce:
transform=]
wasInformedBy (new_scenario:remove_start_pose-tiagol, new_scenario:substitute_allocation-
allocation_0l-task_04)
endBundle

Listing 34: PROV models for a transformation to replace a robot with a new one

4.2 Output relations

The output relations take advantage of the information stored in the property graph. First, we query the baseline
relationships of base scenario. To get the oracle config for the new scenario, we copy the safety relations from
the base scenario; we assume these are invariant relations, which don’t change. Next we get the new expected
outputs by computing basic output relations (e.g., counting the number of waypoints in free space of the tasks
in the new scenario) or querying existing path segments for complex relations. For example, we query the
average time it takes a robot to travel between each pair of waypoints in the path that results from the new task,
and aggregate them. If no data has been recorded for the metric in question for that particular path segment,
we use an estimate. Finally, we compare the new expected outcomes against the base scenario and identify
which basic relation applies.

Listing 35 shows an example of the generated oracle configuration, containing the baseline and metamorphic
oracles for a transformation where we removed tiago2. Note that the baseline is with respect to itself, but the
metamorphic config uses the results of the scenario (scenario_c) it was derived from. This has the advantage
of being able to validate its results once enough data has been collected from runs of this new scenario, but
also being able to use any new data collected in scenario_c for its validation.

id: new_scenario

baseline:
base_scenario: new_scenario
mission:
mission_duration:
baseline:

tolerance: 0.0
value: 141.19514473468308
relationship:
name: invariant
package: exsce.metamorphic.relationships
topics:
- /tiagol/waypoint_dispatcher/feedback
robots:
tiagol:
distance_travelled:
baseline:
tolerance: 0.0
value: 98.24204030780109
relationship:
name: invariant
package: exsce.metamorphic.relationships
topics:
- /tiagol/distance_travelled
task_duration:
baseline:
tolerance: 0.0
value: 141.19514473468308
relationship:
name: invariant
package: exsce.metamorphic.relationships
topics:
- /tiagol/waypoint_dispatcher/feedback

Page 26 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%%ESAME D3.3 Executable Scenario Management

waypoints_visited:
baseline:
tolerance: null
value: 5
relationship:
name: invariant
package: exsce.metamorphic.relationships

topics:
- /tiagol/waypoint_dispatcher/result
metamorphic:
base_scenario: scenario_c
mission:
mission_duration:
baseline:

delta: 43.58914473468309
tolerance: 0.0
value: 141.19514473468308
relationship:
name: increasing
package: exsce.metamorphic.relationships
topics:
- /tiagol/waypoint_dispatcher/feedback
robots:
tiagol:
distance_travelled:
baseline:
delta: 47.539097638514015
tolerance: 0.0
value: 50.702942669287076
relationship:
name: increasing
package: exsce.metamorphic.relationships
topics:
- /tiagol/distance_travelled
task_duration:
baseline:
delta: 43.58914473468309
tolerance: 0.0
value: 97.606
relationship:
name: increasing
package: exsce.metamorphic.relationships
topics:
- /tiagol/waypoint_dispatcher/feedback
waypoints_visited:
baseline:
delta: 2
tolerance: null
value: 3
relationship:
name: increasing
package: exsce.metamorphic.relationships
topics:
- /tiagol/waypoint_dispatcher/result

Listing 35: Adding output relations to oracle configuration file

As shown in Listing 36, the oracle’s PROV is the same activity using the same topics as data sources, but with
different usage relationships for the “baseline” and “metamorphic” oracles, each corresponding to the scenario
that provides the runs to use as source data for the metric in question.

bundle exsce:scenario_780741116_bundle
entity (exsce:scenario_780741116, [prov:type=]

activity (scenario_780741116:mission_duration, -, -, [prov:type= , oracle:metric=
, oracle:robot= 1)
used (scenario_780741116:mission_duration, exsce:scenario_780741116, -, [oracle:relationship=

, oracle:package= , oracle:type= , oracle:
value= %% xsd:float, oracle:tolerance= %% xsd:float])
used (scenario_780741116:mission_duration, exsce:scenario_c, -, [oracle:relationship= ,
oracle:package= , oracle:type= , oracle:value=
30 June 2023 Version 1.0 Page 27

Confidentiality: Public Distribution

D3.3 Executable Scenario Management %?‘:ESAME

%% xsd:float, oracle:tolerance= %% xsd:float, oracle:delta= %% xsd:float
1)
used (scenario_780741116:mission_duration, topic:/tiagol/waypoint_dispatcher/feedback, -, [prov:
role= 1)
used (scenario_780741116:mission_duration, topic:/tiagol/waypoint_dispatcher/feedback, -, [prov:
role= 1)
endBundle

Listing 36: PROV models for a baseline oracle

4.2.1 Estimating metrics

As an example, we present a simplistic approach to estimate the task_duration and distance_travelled met-
rics. The exact way of estimating missing data should consider the context-specific requirements that take into
account robot, application, and domain specific knowledge.

Figure 9: Points of reference used to estimate the task_duration and distance_travelled metrics when no available data exists

Consider the path segment between two waypoints p; and po (cf. Figure 9) which does not have data available
for the metric m1_,o that we are interested in, neither in the direction of travel of the task p; — po nor in the
opposite direction p; <— po, i.e., ma_,1. To estimate the metric, we first query the PROV database for all the
poses in the same room as p; and po, and sort them by the shortest distance, respectively. Let us say that ps
and py4 are the closest poses to p; and ps, respectively. We query the metrics for the path segments between
(p3,p2), (p1,p4) and between (ps, p4) (in either direction, but preferring the same traveling direction as the
task):

Mao = query_metric(metric, ps, p2)
M4 = query_metric(metric, p1,py)

M3sa = query_metric(metric, ps, ps)

Page 28 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%%ESAME D3.3 Executable Scenario Management

We then compute the average of the proportional estimates based on euclidean distance, where n is the number
of path segments m;.; with available data:

1 — dist(ps, pj)
mis2 = — Mg
n ; 7 dist(py, p2)
Note that query_metric returns data from recorded metrics from existing runs, and the euclidean distance
propotion is used to scale existing metrics taking into account the difference between two points in the same

room, e.g. the path segments (p1, p2) and (ps3, p2).

30 June 2023 Version 1.0 Page 29
Confidentiality: Public Distribution

D3.3 Executable Scenario Management %.‘Z':ESAME

5 Queriable Scenario Execution

By storing the provenance data in a property graph, we can easily query scenarios and their execution. In
this section, we describe the relevant queries for the observed outputs, getting and generating oracles, and
clustering. Other auxiliary queries are not included here. The queries are written in Cypher'?, the query
language used by Neo4j. Note that the serialization of the PROV data into Neo4;j is determined by prov-db-
connector'3, the library we use in our implementation. Therefore the syntax shown in the queries in this section
reflects some of the design choices of the library (e.g. the property meta:identifier_original). In future work,
we plan to write our own Neo4;j adapter to simplify the syntax for our intended use case.

5.1 Observed outputs

The first step is to get the execution data (sruns) of a particular scenario. Listing 37 shows the Cypher query
used to do this.

MATCH (s)

WHERE s. ‘prov:type' = AND s. ‘meta:identifier_original‘= $scenario_id
MATCH (a:Activity)

WHERE a. ‘prov:type' =

MATCH (s)<-[:used]-(a)

RETURN a. ‘meta:identifier_original' AS run_id

Listing 37: Given a $scenario_id, return all the runs associated with this scenario.

Remember that we store execution data for the overall run and for each path segment. Listing ?? gets the result
for a particular robot for the overall run, while Listing 39 does so for a particular path segment. The former
queries a single srun_id, while the latter can also query metrics from a list of runs(for aggregation).

MATCH (n)

WHERE n. ‘prov:type' = AND n. ‘run:metricType' = S$metric_type
WHERE S$run_id CONTAINS n. ‘exsce:run' AND n. ‘meta:identifier_original‘ CONTAINS S$robot
MATCH (n)-[g:wasGeneratedBy]->(a:Activity)-[:used]->(s)

WHERE s. ‘prov:type' =
RETURN n. ‘prov:value' AS value

Listing 38: Get the output metrics of type $metric_type for a $run_id and a particular $robot.

To get the observed output of a path segment (Listing 39), and given a list of sruns, get all the output metrics
of type smetric_type. For each of the runs, find the start and end pose for the exsce:action that generated the
output metric. Return the average and standard deviation of all the output metrics for each pair of poses.

UNWIND $runs AS run_id

MATCH (n WHERE n. ‘prov:type' = AND n. ‘run:metricType' = $metric_type)
WHERE run_id CONTAINS n. ‘exsce:run’

MATCH (n)-[g:wasGeneratedBy]->(a:Activity)

WHERE a. ‘prov:type' =

MATCH (a) -[s:wasStartedBy]-> (pl)

WHERE pl. ‘prov:type' = AND pl. ‘meta:identifier_original‘ = S$pose_id_a
MATCH (a) -[e:wasEndedBy]-> (p2)

WHERE p2. ‘prov:type' = AND p2. '‘meta:identifier_original' = $pose_id_ b

WITH n. ‘prov:value' AS value
RETURN avg(value) AS average, stDevP (value) AS std_dev

Listing 39: Query a $metric_type for a path segment in a list of $runs

A special case for aggregation is the waypoints_visited metric, where we want to be able to query a list of
runs, but which is not stored in individual path segments. Following a similar pattern as the queries above, this
query (Listing 40) checks for the waypoints_visited output metric that matches a specific $scenario_id. The

2https://neodj.com/docs/getting-started/cypher—-intro/
Bhttps://prov-db-connector.readthedocs.io/

Page 30 Version 1.0 30 June 2023
Confidentiality: Public Distribution

https://neo4j.com/docs/getting-started/cypher-intro/
https://prov-db-connector.readthedocs.io/
https://prov-db-connector.readthedocs.io/
https://neo4j.com/docs/getting-started/cypher-intro/
https://prov-db-connector.readthedocs.io/

%?ESAME D3.3 Executable Scenario Management

smetric_id variable matches the robot ID, e.g. tiagol:waypoints_visited. The query returns the average of
waypoints visited by a single robot.

UNWIND S$runs AS run_id
MATCH (n:Entity)

WHERE n. ‘prov:type' = "exsce:output_metric" AND n. ‘run:metricType' = "waypoints_visited"
WHERE run_id CONTAINS n. ‘exsce:run’

MATCH (n)-[:wasGeneratedByx]->(a:Activity)-[:used]->(s)

WHERE s. ‘prov:type' = "exsce:ConcreteScenario"

MATCH (s WHERE s. ‘meta:identifier_original‘ = $scenario_id)

MATCH (n WHERE n. ‘meta:identifier_original‘= Smetric_id)
WITH n. ‘prov:value' AS value
RETURN avg(value) AS average

Listing 40: Query waypoints_visited by a $robotfor a list of $runs

Finally, Listing 41 shows how to query the mission_duration metric. Given a list of run IDs sruns, get all the
output metrics of type mission_duration that match each run ID, and return the average value and standard
deviation of all the matching output metrics.

UNWIND S$runs AS run_id

MATCH (n WHERE n. ‘prov:type' = "exsce:output_metric" AND n. ‘run:metricType' = "mission_ duration")
WHERE run_id CONTAINS n. ‘exsce:run’

MATCH (n)-[g:wasGeneratedBy]->(a:Activity)-[:used]->(s)

WHERE s. ‘prov:type' = "exsce:ConcreteScenario” AND s. ‘meta:identifier_original‘' CONTAINS

$scenario_id
WITH n. ‘prov:value' AS value
RETURN avg(value) AS average, stDevP (value) AS std_dev

Listing 41: Query mission_duration for a list of $runs

5.2 Oracles

5.2.1 Get oracle config

Listing 42 shows how to get the oracles for a $scenario_id which is a usage relationship containing the baseline,
type of output relation, the metric that it’s for, as well as the ros:Topics used as data sources.

MATCH (n WHERE n. ‘prov:type' = "exsce:ConcreteScenario")
MATCH (n)<-[u:used]-(0)
WHERE o. ‘prov:type‘="ex oracle” AND o. ‘meta:identifier_original' CONTAINS S$scenario_id

MATCH (o)-[v:used]->(t)

WHERE t. ‘prov:type‘="ros:Topics"

WITH o. ‘oracle:robot' AS robot, u.‘oracle:limit‘ AS oracle_limit, u.‘oracle:value‘' AS value, u.
oracle:package' AS package, u.‘oracle:relationship' AS rel_name, u.‘oracle:tolerance‘' AS
tolerance, o.'meta:identifier_original‘ AS oracle_id,t. ‘meta:identifier_original‘ AS topic, o.
oracle:metric' AS metric, n.'‘meta:identifier_original' AS scenario, u.‘oracle:delta‘ AS delta

RETURN scenario, oracle_id, oracle_limit, value, package, rel_name, tolerance, topic, robot, metric
, delta

\

\

Listing 42: Cypher query to get the baseline oracle

5.2.2 Update baseline

For a baseline oracle of $scenario_id for a specific smetric and srobot, set the baseline to svailue and
Stolerance.

MATCH (n WHERE n. ‘prov:type' = "exsce:ConcreteScenario™)

MATCH (n)<-[u:used]-(0)

WHERE o. ‘prov:type‘="exsce:oracle" AND o. ‘meta:identifier_original CONTAINS $scenario_id

WHERE u. ‘oracle:type' = "baseline” AND o.‘oracle:metric' = S$metric AND o. ‘oracle:robot' = $robot
SET u += S$baseline

Listing 43: Cypher query to update the base values of the baseline oracle

30 June 2023 Version 1.0 Page 31
Confidentiality: Public Distribution

D3.3 Executable Scenario Management %%ESAME

5.3 Clustering

The queries described here enable us to create datasets to apply clustering algorithms, e.g., using Scipy’s
hierarchical clustering'* or the sklearn'” libraries.

In addition to the observed outputs, we consider the following structural properties of the scenarios to compute
the distances between scenarios required for linkage. The metrics discussed here are not an exhaustive list, but
rather exemplify how to use existing data in the PROV database. The evaluation of these similarity metrics for
the scenario distance in the clusters will be studied as part of WP8.

5.3.1 Robot similarity

To measure how similar the robots in two scenarios are, we look at the properties of the robots in the scenario.
The similarity metric takes into account the difference in the number of robots, and, for this particular case
study, two differences in hardware relevant for the navigation tasks, namely the base type and wether a robot
has a torso or if it just has is a mobile base. We normalize these metrics by the maximum number of robots in
all the scenarios stored in the PROV database.

Let us assume r; and 9 are the sets of robots for the two scenarios we want to compare, s; and so.

First, we compute the difference between the number of robots of the two scenarios as the absolute value of
the difference of their cardinality:

di = |#(r1) — #(r2)|

Next, we compute the sum of the difference of the number of robots with the same mobile base. Using set
notation, this is the cardinality of the symmetric difference for each subset of robots with each base type b:

b
d2 = Z #(leATQb)
b=0
where

ri, = {r|r is a robot with base type b in scenario s; }

Finally, we compute the sum of the difference of the number of robots with and without a torso ¢. Similar
to the equation above, this is the sum of the cardinalities of the symmetric difference of the subsets with and
without torso:

J
d3 = Z #(Tlt:j AT?t:J‘)

=0
where r;,_, C r; for scenario s; and 7;,_, indicates that r € r;—¢ where r;—¢ is the subset of robots without a
torso, and r;—1 is the subset of robots with one.

Listing 44 shows how to query the robots of a scenario, together with the necessary information about its
hardware to compute the similarity based on the base type and the presence of a torso in the PAL robots.

Ynttps://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
Bhttps://scikit-learn.org/stable/modules/clustering.html

Page 32 Version 1.0 30 June 2023
Confidentiality: Public Distribution

https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
https://scikit-learn.org/stable/modules/clustering.html
https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
https://scikit-learn.org/stable/modules/clustering.html

%.‘Z':ESAME D3.3 Executable Scenario Management

MATCH (n WHERE n. ‘prov:type' = AND n. ‘meta:identifier_original ‘=
$scenario_id)

MATCH (n) -[:hadMember]-> (r:Entity)-[:hadMember]->(hw:Entity)

WHERE r. ‘prov:type' = AND hw. ‘prov:type' =

RETURN r. ‘meta:identifier_original‘ AS robot_id, r.‘robot:type' AS robot_type, hw. ‘pal:base_type' as
base_type

Listing 44: Query the PAL robots used in a $scenario_id, the types of mobile base they use and whether they have a torso

5.3.2 Path segments

Next, we determine how similar are the navigation tasks in a scenario by looking at the path segments. We
group the path segments in three groups: those that are present in both scenarios, those that begin and end in
the same area, and the rest. We normalize this metric by dividing the result by two times the largest number of
segments in a scenario, which represents the worst case scenario where no path segments are common to both
scenarios.

d4:Zf(37)

where

0, if path segment x is present in s; and so
f(z) = ¢ 0.5 if path segment x starts and ends in the same area of a path segment in the other scenario

1, otherwise

For each scenario, we use Listing 45 to get the path segments.

MATCH (n WHERE n. ‘prov:type' = AND n. ‘meta:identifier original‘=
Sscenario_id)

MATCH (n)<-[:used]-(r:Activity)

WHERE r. ‘prov:type' =

MATCH (a) —[s:wasStartedBy]-> (pl where pl. ‘prov:type' =)
MATCH (a) -[e:wasEndedBy]-> (p2 where p2.‘prov:type' =)
WHERE a. ‘exsce:run' = r. ‘exsce:run’

RETURN pl. ‘meta:identifier original' AS pose_2, p2. '‘meta:identifier_original' AS pose_2

Listing 45: Querying the pair of points for each path segment in a scenario

5.3.3 Metrics

For the metric similarity distances, we can use the queries in Section 5.1 to obtain the results for each run.
Exscept for the waypoints_visited metric, we normalize each metric by dividing it by its largest measurement
on all runs in the PROV database. The number of visited waypoints is expressed as a percentage for each robot,
and averaged for each run.

For the safety metric violations we consider two additional metrics: the duration of the safety violations
(e.g. how much time the robot exceeded the max_velocity limit) and the number of “hotspots” or places where
these violations occurr in the environment.

Listing 46 shows the query required to obtain the total time a metric smetric_id was violated in a srun_id.

UNWIND $runs AS run_id

MATCH (n where n. ‘prov:type' = AND n. ‘run:metricType’ =
AND n. ‘exsce:metric' = S$metric_id)

WHERE run_id CONTAINS n. ‘exsce:run’

MATCH (n)-[g:wasGeneratedBy]->(a:Activity)-[:used]->(s where s.'‘prov:type' =

AND s. ‘meta:identifier_original' CONTAINS S$scenario_id)

30 June 2023 Version 1.0 Page 33
Confidentiality: Public Distribution

D3.3 Executable Scenario Management %.‘Z':ESAME

WITH n. ‘prov:value' as value
RETURN avg(value) AS average, stDevP (value) AS std_dev

Listing 46: Querying the total amount of time a safety metric was violated

The similarity metric is the difference of the total duration of the safety violation for metric m, where ¢,,, and
tm, are the durations for s; and sg, respectively:

ds = ’tml - tm2|

We can also use spatial clustering for the violations to identify “hotspots” where violations occurr in the envi-
ronment. As a similarity metric, we use the difference of the number of violation hotspots between scenarios,
assuming h; and ho are the sets of hotspots for s; and sa, respectively:

de = |#(h1) — #(h2)|

The query to obtain the number of clusters is shown in Listing 47, where shotspot_type matches the metric we
are interested in, €.g., max_velocity.

UNWIND Sruns AS run_id

MATCH (n:Entity where n. ‘prov:type' = AND n. ‘hotspot:type' = S$Shotspot_type)
WHERE run_id CONTAINS n. ‘exsce:run’
MATCH (n)-[:wasGeneratedByx*]->(a:Activity)-[:used]->(s where s.'‘prov:type' =
)
WHERE s. ‘meta:identifier_ original' = $scenario_id

RETURN run_id, count (n) AS hotspot_gty

Listing 47: Querying the number of hotspots where metrics are violated

Page 34 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%.‘Z':ESAME D3.3 Executable Scenario Management

6 ExSce Management Tutorials

Specify scenario

Define output .
. utp P Base o Record baseline
relationships and | |« . >
. scenario runs

queries
L 1
'
! v Oracle config H
|

Metamorphic <€ Tran_sf(.)rm
oracle config scenario inputs

Baseline
oracle config

Y
Y

New Scenario Record new run

Y

: ; N

Transform bag file
to PROV

Validate new run

Query baseline

Bagfile |«

A
A

A

_—

PROV DB

Clustering

Figure 10: The Executable Scenario Management process. In blue, activities and artefacts for user-defined scenarios. In white, the activities and
artefacts that are part of the metamorphic testing.

6.1 Modelling and executing a scenario to record provenance data

6.1.1 Defining a base scenario

The process, shown in Figure 10, starts by having specified a scenario to use as a base, here we use the YAML
specification of scenario_c'® for our example:

id: scenario_c
mission:
id: mission_c
type: parallel
allocation:
- robot: tiagol
pkg: metamorphic_testing
file_path: config/tasks/delivery_a.yaml
- robot: tiago2
pkg: metamorphic_testing
file_path: config/tasks/delivery_b.yaml
- robot: tiagol

®nttps://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_c.yaml

30 June 2023 Version 1.0 Page 35
Confidentiality: Public Distribution

https://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_c.yaml
https://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_c.yaml

D3.3 Executable Scenario Management %.‘Z':ESAME

pkg: metamorphic_testing
file_path: config/tasks/navigate_home_1.yaml
- robot: tiago2
pkg: metamorphic_testing
file_path: config/tasks/navigate_home_2.yaml
environment:
id: brsu_building_c_with_doors
models:
map:
map_name: brsu_building_c_with_doors
pkg: floorplan-DSL-environments
relative_path: maps/
gazebo_world:
model_name: brsu_building_c_with_doors
pkg: floorplan-DSL-environments
relative_path: worlds/
robots:
tiagol:
start_pose:
id: classroom_c025-w001
x: 44.80387496948242
y: 37.15502166748047
z: 0.0
roll: 0.0
pitch: 0.0
yaw: 0.0
tiago2:
start_pose:
id: classroom_c025-w002
x: 43.432926177978516
y: 38.493873596191406
z: 0.0
roll: 0.0
pitch: 0.0
yaw: 0.0
robots:
- robot_id: tiagol
robot_namespace: tiagol
robot_type: tiago
- robot_id: tiago2
robot_namespace: tiago2
robot_type: tiago

Listing 48: Scenario speficication for scenario_c

6.1.2 Execute a scenario and collect baseline data

Next, we execute the scenario and record n number of runs where the SUT performs their behaviour correctly.
This requires three terminals.

1. First launching the scenario:

roslaunch metamorphic_testing scenario_c.launch

2. Start the record_exsce_run script:

rosrun metamorphic_testing record_exsce_run

3. Start the mission dispatcher:

rosrun metamorphic_testing mission_dispatcher

The robots will proceed with the scenario execution. When the run ends, the record_exsce_run script will save
three files, following the format <1so pate>_<scenario ID>_<run ID>.<ext>, for example:

Page 36 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%%ESAME D3.3 Executable Scenario Management

2023-06-13T15-48-07_scenario_c_run-e30df0b6.bag
2023-06-13T15-48-07_scenario_c_run-e30df0b6.prov. json
2023-06-13T15-48-07_scenario_c_run-e30df0b6.rosparams

6.1.3 Transformation to PROV

The results of these runs and their provenance are obtained from the run artefacts and added to the Neo4j'’
database. We define the first part of the oracle config to obtain the run results and store their PROV in the
database in Listing 51.

id: scenario_c # The ID of the scenario

The baseline are the metrics are collected among runs of the same scenario
baseline:
base_scenario: scenario_c # This should always be the same as the scenario ID

Metrics that apply to the overall mission
mission:
mission_duration: # Metric ID
topics: # Data sources from which we derive the metrics
- /tiagol/waypoint_dispatcher/feedback
- /tiago2/waypoint_dispatcher/feedback
distance_between_robots:
topics:
- /tiagol/robot_pose
- /tiago2/robot_pose

Metrics that apply to individual robots
robots:
tiagol: # Robot ID from the scenario specification

task_duration: # Metric name

topics: # Data sources from which we derive the metric

- /tiagol/waypoint_dispatcher/feedback
waypoints_visited:

topics:

- /tiagol/waypoint_dispatcher/result
distance_travelled:

topics:

- /tiagol/distance_travelled
distance_to_obstacles:

topics:

- /tiagol/scan
max_velocity:

topics:

- /tiagol/nav_vel

tiago2:

task_duration:

topics:

- /tiago2/waypoint_dispatcher/feedback
waypoints_visited:

topics:

- /tiago2/waypoint_dispatcher/result
distance_travelled:

topics:

- /tiago2/distance_travelled
distance_to_obstacles:

topics:

- /tiago2/scan
max_velocity:

topics:

- /tiago2/nav_vel

Listing 49: Configuration for the bag-to-PROV transformation of scenario_c

"https://neod.com/

30 June 2023 Version 1.0 Page 37
Confidentiality: Public Distribution

https://neo4j.com/
https://neo4j.com/

D3.3 Executable Scenario Management %EESAME

Then we write the monitors that can process the data from the bag file and return the metric. An excerpt for
the max_velocity metric is shown in Listing 50.

class RobotMetrics:
def _ _init_ (self, robot_id) -> None:
self.robot_id = robot_id

self.max_velocity = 0.0 # This must match the metric name in the oracle config

self.goals = dict ()
self.path = []
self.path_segments = dict ()

This must match the pattern ‘get_<metric name>‘
def get_max_velocity(self, msqg):
vel = math.sqgrt (
math.pow (msg.linear.x, 2)
+ math.pow(msg.linear.y, 2)
+ math.pow(msg.linear.z, 2)
)
if vel > self.max_velocity:
self.max_velocity = vel

Listing 50: Excerpt of the robot monitors that computes the max_velocity metric

Note that the class attribute matches the metric name used in the oracle config, and the method used to compute
the metric is a getter for said attribute, as the oracle and rosbag transform implementation leverages Python’s
dynamic imports and instantiation.

To transform the runs and store them in the PROV database, make sure you have the Neo4j database running,
and use the following command:

cd scripts
./transform_rosbag ../runs/2023-06-13T15-48-07_scenario_c_run-e30df0b6.bag —-config ../config/oracle
/scenario_c.yaml

6.2 Defining a baseline oracle and validating new executions

After we have added a sufficient number of baseline runs to our PROV database, we now update the baseline
oracle config file by adding the invariant relations for the safety metrics (which are constant, as described in
Section 3.3), as shown in Listing 51.

id: scenario_c
baseline:
base_scenario: scenario_c
mission:
mission_duration:
topics:
- /tiagol/waypoint_dispatcher/feedback
- /tiago2/waypoint_dispatcher/feedback
relationship:
package: exsce.metamorphic.relationships
name: invariant
distance_between_robots:
topics:
- /tiagol/robot_pose
- /tiago2/robot_pose
baseline:
limit: 0.1
relationship:
package: exsce.metamorphic.relationships
name: above_min

robots:
tiagol:
task_duration:
topics:
- /tiagol/waypoint_dispatcher/feedback
Page 38 Version 1.0 30 June 2023

Confidentiality: Public Distribution

%%ESAME D3.3 Executable Scenario Management

relationship:
package: exsce.metamorphic.relationships
name: invariant
waypoints_visited:
topics:
- /tiagol/waypoint_dispatcher/result
relationship:
package: exsce.metamorphic.relationships
name: invariant
distance_travelled:
topics:
- /tiagol/distance_travelled
relationship:
package: exsce.metamorphic.relationships
name: invariant
distance_to_obstacles:
topics:
- /tiagol/scan
baseline:
limit: 0.1
relationship:
package: exsce.metamorphic.relationships
name: above_min
max_velocity:
topics:
- /tiagol/nav_vel
baseline:
limit: 1.0
relationship:
package: exsce.metamorphic.relationships
name: below_max
tiago2:
task_duration:
topics:
- /tiago2/waypoint_dispatcher/feedback
relationship:
package: exsce.metamorphic.relationships
name: invariant
waypoints_visited:
topics:
- /tiago2/waypoint_dispatcher/result
relationship:
package: exsce.metamorphic.relationships
name: invariant
distance_travelled:
topics:
- /tiago2/distance_travelled
relationship:
package: exsce.metamorphic.relationships
name: invariant
distance_to_obstacles:
topics:
- /tiago2/scan
baseline:
limit: 0.1
relationship:
package: exsce.metamorphic.relationships
name: above_min
max_velocity:
topics:
- /tiago2/nav_vel
baseline:
limit: 1.0
relationship:
package: exsce.metamorphic.relationships
name: below_max

Listing 51: Baseline oracle configuration for scenario_c

Finally, we can use the baseline test oracle to automatically validate new baseline runs based on their output
relation:

30 June 2023 Version 1.0 Page 39
Confidentiality: Public Distribution

D3.3 Executable Scenario Management %EESAME

cd scripts
./transform_rosbag ../runs/2023-06-13T15-48-07_scenario_c_run-e30df0b6.bag --config ../config/oracle
/scenario_c.yaml --validate

This classifies the results based on whether the baseline relationship holds or not.

6.3 Generating new scenarios

6.3.1 Manually defining a new scenario

Let us manually define one new scenario based on scenario_c.yaml. In this minimal example, we’ll be remov-
ing tiago2 and reassigning its tasks to tiago1.

First we update the mission, as shown in Listing 52, by changing the allocation of delivery b.yaml tO tiagol
and removing the navigate_home_2.yaml task for tiago2.

mission:
id: mission_c
type: parallel
allocation:
- robot: tiagol
pkg: metamorphic_testing
file_path: config/tasks/delivery_a.yaml
- robot: tiagol
pkg: metamorphic_testing
file_path: config/tasks/delivery_b.yaml
- robot: tiagol
pkg: metamorphic_testing
file_path: config/tasks/navigate_home_1.yaml

Listing 52: A new mission specification after removing tiago2 manually

We also remove tiago2 from the list of robots, and its starting position from the environment . robots (as shown
in Listing 53):

environment:
robots:
tiagol:
start_pose:
id: classroom_c025-w001
x: 44.80387496948242
y: 37.15502166748047
z: 0.0
roll: 0.0
pitch: 0.0
yaw: 0.0
robots:
- robot_id: tiagol
robot_namespace: tiagol
robot_type: tiago

Listing 53: Environment specification after removing tiago2 in a scenario speciication

Finally, the oracle config is updated similarly to the above, by removing topics and metrics related to tiago2.

6.3.2 Generating new scenarios by applying input transformations

As mentioned in Section 4, we have pre-defined some transformations. We can write a script to use these
functions and recreate the example from the previous section, for example:

scenario_config is the scenario specification.

limits is a list of metrics that we consider constant,

and which should not change between the original and derived scenario
scenario = ScenarioTransformations (scenario_config, prov_api, limits)

Page 40 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%.‘Z':ESAME D3.3 Executable Scenario Management

Input transformation
scenario.remove_robot (, assignment={ : })

Calling ‘generate() creates and updates the PROV documents,
and generates a new oracle config file for the new scenario
scenario.generate ()

Listing 54: Example of a scenario transformation script that removes tiago2 and reassigns its tasks to tiago1l

The script above will create the new scenario, its oracle configuration, and save both of them in the PROV
database.

30 June 2023 Version 1.0 Page 41
Confidentiality: Public Distribution

D3.3 Executable Scenario Management %?‘:ESAME

7 Generalization of the ExSce Management

7.1 ExSce Workbench

The scenario specification and acceptance criteria using the Behaviour Driven Development (BDD) tools in the
workbench are compatible with the ExSce Management approach and tools. As mentioned in Section 3, the
only thing that is required is a transformation from the specification format to PROV, which in the case of the
BDD tools, are the transformation of the instantiated scenarios into the scenario PROV and the oracle config-
uration. Figure 11 shows how this process for the BDD specification. The BDD fluents and constraints should
be reflected in the implementation of the monitors, that is, the output metrics should be collected conforming
to the BDD scenario description by (over)writing the metric methods in rRobotMetrics and MissionMetrics as
described in Section 6.

Execution
BDD > Scenario »{ |Scenario Execution —)@
conﬁg conﬁg AL
Oracle
config save
_______________________ A 2
A 4 : !
T ! ;
_— i . . '
Transform scenario : Scenario '
. S— '
PROV DB to PROV : PROV :

Figure 11: Transformations of the BDD tools in the ExSce Worbench (in blue) for the ExSce Management approach

The ExSce Management has been fully integrated with the Floorplan DSL. Scenarios in this deliverable use
the occupancy grids and gazebo models generated from the DSL. Furthermore, the examples for scenario_a
18 and scenario_b'? employ tasks generated by the Floorplan DSL. This integration opens the door to creating
new scenarios based on environmental variations, such as the open/closed status of doors and the location of
obstacles in the environment. Similarly, if available, the ExSce Management can exploit semantic information
for the metamorphic relations, e.g. the estimates we make in the absence of baseline data look for poses in the
same room or area.

7.2 Simulation-based testing

Fuzzing approaches presented in D6.2%° are input transformations which could be composed into a metamor-

phic relation, e.g., so that we validate whether or not safety violations occurr in a simulation-based test. Fuzzed

Bnttps://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_a.yaml
Yhttps://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_b.yaml
Mnttps://www.sesame-project.org/results

Page 42 Version 1.0 30 June 2023
Confidentiality: Public Distribution

https://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_a.yaml
https://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_a.yaml
https://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_b.yaml
https://www.sesame-project.org/results
https://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_a.yaml
https://github.com/hbrs-sesame/models/blob/main/scenarios/scenario_b.yaml
https://www.sesame-project.org/results

%?EESAME D3.3 Executable Scenario Management

tests could, in general, use the safety invariant relationships to ensure that corner cases do not result in unde-
sired or unexpected behavior. For performance metrics, a careful consideration of the effects of the fuzzing
operation would be required and, most likely, both monitors and estimates would need to be adapted.

7.3 Generalizing to other use cases

As mentioned in Section 3 , abstracting the task specification allows us to reuse some of the scenario trans-
formations to other domains or applications. For the Autonomous Pest Management use case, this means that
how their tasks are specified (e.g., using formats of commercial software or custom specifications, such as the
Plan from QGroundControl?! or the routes that can be exported/imported into the Ground Station Software
from UgCS??, the optimization parameters for the sensor fusion drone, etc.). For example, this means that we
could easily specify a multi-UAV data collection as shown below:

id: viti_data_collection_a
mission:

id: viti_data_collection_mission_a

type: parallel

allocation:

- robot: uavl
pkg: viticulture_tasks
file_path: tasks/data_collection_dkox. json
- robot: uav2
pkg: viticulture_tasks
file_path: tasks/follow_data_uav_params.json
environment:

id: dkox-vineyard-001

robots:
uavl:

start_pose:
id: home_pose-w001
x: 11.7211
y: 53.5011
z: 0.0
roll: 0.0
pitch: 0.0
yaw: 0.0

uavl:

start_pose:
id: home_pose-w002
x: 12.6870
y: 55.1296
z: 0.0
roll: 0.0
pitch: 0.0
yaw: 0.0

robots:

- robot_id: uavl
robot_namespace: uavl
robot_type: matrice_600

— robot_id: uav2
robot_namespace: uav2
robot_type: matrice_210

Listing 55: An example of a data collection scenario with a sensor fusion drone for the Autonomous Pest Management use case

A spraying task could be specified similarly, as shown in Listing 56.

id: viti_spraying_a
mission:
id: viti_spraying_mission_a
type: parallel
allocation:
— robot: uav3

Zhttps://dev.ggroundcontrol.com/master/en/file_formats/plan.html
Zhttps://www.ugcs.com/

30 June 2023 Version 1.0 Page 43
Confidentiality: Public Distribution

https://dev.qgroundcontrol.com/master/en/file_formats/plan.html
https://www.ugcs.com/
https://www.ugcs.com/
https://dev.qgroundcontrol.com/master/en/file_formats/plan.html
https://www.ugcs.com/

D3.3 Executable Scenario Management %EESAME

pkg: viticulture_tasks
file_path: tasks/spraying_route_a. json
- robot: uav2
pkg: viticulture_tasks
file_path: tasks/follow_spraying_uav_params.json
environment:

id: dkox-vineyard-001

robots:
uav3:

start_pose:
id: home_pose-w001
x: 11.7211
y: 53.5011
z: 0.0
roll: 0.0
pitch: 0.0
yaw: 0.0

uavl:

start_pose:
id: home_pose-w002
x: 12.6870
y: 55.1296
z: 0.0
roll: 0.0
pitch: 0.0
yaw: 0.0

robots:

- robot_id: uav3
robot_namespace: uav3
robot_type: agv2

— robot_id: uav2
robot_namespace: uav2
robot_type: matrice_210

Listing 56: An example of a spraying scenario with a sensor fusion drone for the Autonomous Pest Management use case

Note that these two scenarios are ROS-independent, and transformations, such as replace_robot to test different
drone models would still apply. However, this still requires modifications to both adapt the methodology to
non-ROS systems and to incorporate the domain specific knowledge of the task specifications, e.g. to properly
invert the waypoints in a task, one must understand the semantics of the Ardupilot commands, and the specific
syntax used by the software of these new SUTs.

Page 44 Version 1.0 30 June 2023
Confidentiality: Public Distribution

%%ESAME D3.3 Executable Scenario Management

References

[1]
(2]

(3]

[4]

“PROV Model Primer.” https://www.w3.org/TR/prov-primer/.

A. Afzal, C. L. Goues, M. Hilton, and C. S. Timperley, “A Study on Challenges of Testing Robotic
Systems,” in 2020 IEEE 13th International Conference on Software Testing, Validation and Verification
(ICST), Oct. 2020, pp. 96-107. doi: 10.1109/ICST46399.2020.00020%3.

E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The Oracle Problem in Software Testing:
A Survey,” IEEE Transactions on Software Engineering, vol. 41, no. 5, pp. 507-525, May 2015, doi:
10.1109/TSE.2014.2372785%.
S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes, “A Survey on Metamorphic Testing,”
IEEE Transactions on Software Engineering, vol. 42, no. 9, pp. 805-824, Sep. 2016, doi:
10.1109/TSE.2016.2532875%>.

30 June 2023 Version 1.0 Page 45

Confidentiality: Public Distribution

https://doi.org/10.1109/ICST46399.2020.00020
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2016.2532875

	Introduction
	Provenance
	Metamorphic testing

	Case Study: Navigation tasks for a multi-robot system
	System Under Test
	Environment
	Tasks
	Metrics

	Executable Scenarios
	Specification
	Mission
	Robots
	Environment

	Execution
	Metrics and Monitors

	Test Oracles
	Relationships
	Oracles

	Metamorphic Relations
	Input transformations
	Mission
	Task
	Environment
	Robots

	Output relations
	Estimating metrics

	Queriable Scenario Execution
	Observed outputs
	Oracles
	Get oracle config
	Update baseline

	Clustering
	Robot similarity
	Path segments
	Metrics

	ExSce Management Tutorials
	Modelling and executing a scenario to record provenance data
	Defining a base scenario
	Execute a scenario and collect baseline data
	Transformation to PROV

	Defining a baseline oracle and validating new executions
	Generating new scenarios
	Manually defining a new scenario
	Generating new scenarios by applying input transformations

	Generalization of the ExSce Management
	ExSce Workbench
	Simulation-based testing
	Generalizing to other use cases

	References

