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Executive Summary

This deliverable reports the Perception-Aware Trajectory Planning and Tracking for Multi-Robot Systems
(MRS) in Task 2.4 of Secure and Safe Multi-Robot Systems (SESAME) project. In this report, we develop
an online trajectory generation approach that minimises the uncertainty of a group of robots while maximising
their efficiency in performing specific MRS tasks. Efficiency can be seen as safe navigation to the target point
or fulfilling the task. Also, this task will develop a control approach to track the generated trajectory. We
consider the close environment information gathered by nearby robots using the collaborative sensor fusion
approach, provided in Task 2.3 and the mission goals.

Tackling trajectory planning, an online trajectory optimization approach is developed to compute the fastest
trajectory. We use Ipopt for solving the optimization problem. We implement some improvements in the
modelling of the optimization problem to speed up the solver. The obstacle avoidance issue is considered
as a safety region. Furthermore, the position and field of view are retained in the given area, satisfying the
maximization of capturing the perceptive information. The tracking control design is tackled in the presence
of external disturbance using adaptive super-twisting control. The proposed controller provides the finite time
convergence and attenuation of the disturbance. The algorithms and instructions to execute the proposed
approaches are given. The efficiency of the proposed approaches is investigated by high-fidelity simulations in
Gazebo as well as experimental studies.

23 December 2022 Version 1.0
Confidentiality: Public Distribution

Page ix



D2.4 Multi-Robot Monitoring Online Trajectory Generation

1 Introduction

In this section, the preliminary remarks on the project and the main research objectives of this deliverable are
elaborated. Accordingly, the main research directions are identified as a set of detailed questions, which are
mathematically formulated, and corresponding solutions are presented in the proceeding sections. Moreover,
the relationship between the overall project aims and the proposed solution is established. Accordingly, the
contributions and novelties are summarized.

Trajectory planning is one of the most important capabilities of European Union (EU) SESAME project. For
instance, aerial robots for autonomous pest management in viticulture, or ground robots for disinfecting hos-
pital environments, trajectory planning determines the trajectory to be followed by the robots. This is to find
an optimal path to the destination for MRS [1]. Consequently, optimal decisions need to be taken for various
mission-critical operations [2]. Accordingly, the trajectory can be defined as “a time parameterized motion ref-
erence, i.e., geometric values of position, heading, derivatives associated with time law, passing through the
waypoints, considering geometrical feasibility, collision avoidance, kinematics and dynamics ” [1]. One of the
main objectives is to integrate perception awareness into MRS trajectory planning, i.e., the construction of the
trajectory on which the perception metric is incorporated. The perception can be defined as “gathered infor-
mation on the MRS dynamics, or the environment, i.e., localization, geometric mapping, semantic mapping,
obstacle detection, texture, etc” [3, 4]. Therefore, given the use case and corresponding demands, we require
to present an accurate definition of perception awareness. After a thorough literature review, this can be de-
fined as “planning the motion commands to achieve a goal (e.g., reach a point) taking into consideration some
restrictions/limitations/features of the perception”. A “mathematical relation between perception, sensing, and
corresponding actions that MRS take” is required. Indeed, it can be stated as collaborative and perception-
aware trajectory planning, which minimizes environmental uncertainty by using data provided by other robots
in a team combined with data collected by the perception components of the robot. Also, novel collaborative
perception and sensor fusion algorithms allow robots to have an accurate representation of their environment
by using the data of their peers. It is worth noting that perception awareness is not to be confused with active
perception, i.e., planning the motion commands to maximize the performance of the perception, which is not
our task. It should be noted that even though a generic scheme is of interest, “perception awareness is to be
addressed for some particular use-cases, with a demonstration of the applicability for others”.

One of the main features of the trajectory planner is collision avoidance with other obstacles, humans, and other
robots. These, generally, can be titled as static and dynamic obstacles [4]. So, the information on the obstacles
is to be implemented into the proposed solution. Furthermore, safety and security are to be considered in the
planning. In some works, collision avoidance is considered as the geometrical feasibility of the planning. So,
we need to implement the updated information on the obstacles into the proposed planner. One trivial question
is how to measure/estimate the information of obstacles. Also, is there priori knowledge about the obstacles
to be considered? Also, a formation performance might be requested from the MRS. Moreover, perception
awareness (localization uncertainty, mapping uncertainty, semantic information) and safety/security (in a very
broad sense) are to be considered in the planning.

Another distinct feature to be implemented is the concept of situational awareness. This may include local-
ization, geometric mapping, semantic mapping, obstacle detection and tracking, etc [5–7]. So, we take into
account the mathematical relation between perception, sensing, and corresponding actions that MRS take.
Indeed, it can be stated as collaborative and perception-aware trajectory planning, which minimizes environ-
mental uncertainty by using data provided by other robots in a team combined with data collected by the
perception components of the robot.

In MRS there might be different robot types involved, e.g., manipulators, ground mobile robots or UAVs. The
generic model enables us to describe high-level robotic capabilities (e.g., fly, grasp, see), skills (e.g., what
the robot is good at), roles (e.g., tracker, mapper) and behaviours (e.g., mapping, planning, orbiting) based
on the type of the robot and its onboard sensing devices. Since we are dealing with different use cases with
different demands, the robot type is to be foreseen in the scheme. However, it might narrow the application
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of the proposed solution. So, we should make a tradeoff between the flexibility of the proposed solution
(generalizability of the scheme on versatile generic models) and the applicability of a given use case. One way
to resolve this is to present a potentially versatile solution for one use case with potential application/extension
on the others with some modifications, to some extent. This is to be pointed out to the other partners. Indeed,
use-case partners need to adapt the proposed versatile scheme to their use cases.

Most planning approaches are constructed as an on/offline optimization problem, in which the trajectory with
the optimized feature is obtained. More importantly, the aspect we address is the structural design of planning
and tracking parts, if we address and design them separately or simultaneously, considering the priority. This
implies another preliminary step to be taken, as “the general planning and tracking structural scheme, for the
given MRS and use-cases, addressing the parts to be (de)centralized and on/offline”. Mostly, the time that
the robot takes to track the trajectory between two given points is minimized. So, we need to come up with
an answer to “what is the optimization index in the planning; time, energy, snap, perception . . . ?” Also, for
optimization, an initial trajectory is required, e.g., computed analytically. In terms of technical development
of the project, as mentioned in recent publications, to construct the above-mentioned optimization problem,
the RMS is to be mathematically modelled with the coupled dynamics. More importantly, considering the
computational burden, the model is to be as simple as possible, e.g., a linear model. However, regardless
of the inexpensive computational burden of simple models, this imposes model uncertainty and mismatch
in practice. Accordingly, our preliminary need is “kinematics of the MRS given the robot types as well as
the simplified dynamics of the robot, i.e., first-order model approximation, with identification of the potential
model uncertainty and exogenous disturbance”. Regarding the project objective, we use a generic simple model
that can be potentially extended to a more complex one, to focus on the higher-level task and corresponding
requirements.

In addition to the trajectory planning, one significant capability is the trajectory tracking control, i.e., the de-
sign of the control commands to make the MRS stable as well as to track the trajectory as close as possible.
This can be defined as “the desired commands to make the dynamics follow the trajectory” [4]. The tracking
task satisfies the desired position, velocity and orientation while fulfilling the given task. This can be defined
as controlling the MRS to track the planned trajectory as close as possible. Also, the issue of stability is to be
addressed. The latter is significant considering the model uncertainty [8,9]. In terms of feasibility and reliabil-
ity, taking into account the prior research activities and experience available in the Interdisciplinary Centre for
Security Reliability and Trust (SnT), Model Predictive Control (MPC) is the feasible and reliable solution. On
the other hand, for sake of the novel research activities, the use of state-of-the-art modern nonlinear controls is
sought. Consequently, our next research objective is to “Tracking control type, i.e., incorporation of MPC in
tracking part and considering other advanced controls in parallel, tackling stability and model uncertainty”.

Finally, within the framework of autonomous robotic systems, the features of safety and security are vital.
However, considering the available literature, the devised approaches mainly stem from the corresponding def-
initions of safety and security, i.e., the definition implies the corresponding solution. So, “the definition of
safety and security factors, conceptually and mathematically, within planning or tracking” implies the corre-
sponding solution. Security can be the resilience of the solution to unauthorized access to communication
channels. Security might be foreseen as the resilience of the solution to unauthorized access to communication
channels to be foreseen in planning tasks. On the other hand, in terms of safety, can be interpreted as toler-
ance against a family of faults, avoidance from a given area, restriction of MRS states, and safely bound on the
tracking drift, which can be foreseen in the tracking task. Cumulatively, we can present the solution as reliable
autonomous robotic systems with quality assurance, risk assessment and trust level. Therefore, “the definition,
mathematically and conceptually, of quality assurance, risk assessment and trust criteria” are needed. [10, 11].

The main goal of this deliverable is to present the proposed solution, addressing the above-mentioned aspects
of the versatility of MRS tasks.
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1.1 Document Purpose

This document is prepared in the context of the SESAME project. More precisely, it refers to Task 2.4:
“Perception-Aware Trajectory Planning and Tracking for MRS” of Work Package (WP) 2: Sensor Fusion and
Collaborative Intelligence. This task will develop an online trajectory generation approach that minimises the
uncertainty of a group of robots while maximising their efficiency in performing specific MRS tasks. Also,
this task will develop a control approach to track the generated trajectory based on the model predictive control
approach, developed in Task 2.2. We will focus on the provision of sensor feedback information among the
members of a collaborative robotic team at the same time that robots perform individually or collaboratively
specific tasks. Online perception-aware trajectory generation will consider the close environment information
gathered by nearby robots using the collaborative sensor fusion approach developed in Task 2.3 and the mission
goals. Every robot will be “monitored” by one or more robots, but not all of them. Also, when a cyber-attack
or sensor malfunction affects one or more members of the team, non-attacked robots will generate a rescue
trajectory providing further sensor feedback to the compromised robots and helping them to maintain their
operational and safe state.

This is the fourth deliverable of the WP2, “D2.4: Multi-Robot Monitoring Online Trajectory Generation”. This
deliverable will report on work performed in Task 2.4, including the novel approach to online collaborative tra-
jectory planning which reduces the uncertainty of situational awareness. Also, the deliverable will provide the
analysis and validation of the experiments developed in simulated environments and in-the-lab settings. It pro-
vides in-depth details of the algorithms behind the Multi-Robot Monitoring Online Trajectory Generation. And
finally, it provides some early results regarding the performance of the different algorithms. The component
development process follows an engineering systems design approach.

In this report, the requirements for this task are initially introduced and a systematic scheme is provided to
identify the parts to be accomplished and corresponding inputs from the other partners. Also, the evaluation
plan to assess the requirements, as well as the project objectives, are presented, accordingly. It should be noted
that the sequence by which the requirements are introduced does not necessarily imply the procedure, i.e., some
requirements can be done earlier or simultaneously, considering the priority. Moreover, we address which part
is on/offline and (de)centralized. More importantly, how to integrate online new information. Therefore, we
need to tackle this as a “Sequential diagram of the overall procedure, high/low-level parts of the solution to
fulfil the following requirements”. In summary, the overall objectives are as follows.

• Online trajectory generation approach that minimizes the uncertainty of MRS, to fulfil the overall com-
mon mission goals in offline/online, (de)centralized ways.

• incorporating the environment information using Task 2.3.
• MPC and novel nonlinear control approach for tracking the generated trajectory.
• Cyber-attack or sensor malfunction affecting non-attacked robots will generate a rescue trajectory pro-

viding further sensor feedback to maintain an operational and safe state.

Moreover, the proposed solutions are evaluated as

• Numerical and in-lab experimental evaluation of the planner, satisfying the metrics, the computational
time/burden, and situational/perception awareness.

• Numerical and in-lab experimental evaluation of the tracking control, satisfying the metrics, investigat-
ing the closed-loop system, in terms of stability and tracking error.

• Safety, security and quality assurance for a tentative trajectory.
• We provide the components in the form of algorithms with demonstrations of drones as an example.

Finally, it should be noted that the practical implementation and integration on use cases are sought in WP8.
In this deliverable, we provide high-fidelity simulations and experiments to validate the proposed approaches
as the proof of concept. Furthermore, the potential applicability of the proposed approaches on the use cases
is briefly motivated in Section 6.
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1.2 Relationship to other Deliverables

Considering the above-mentioned points, Table 1 presents the inputs which are provided to us by other partners.
It should be noted that to avoid any interruption, we could take these inputs for granted, if possible, to continue
our research. Also, Table 1 elaborates the outputs, expected from us. This is illustrated in Figure 1. In
summary, the inputs to our component are:

• Robots model, parameters, dynamic and kinematic restrictions (by Executable Scenario (ExSce)),
• Information of the sensors of the robots (by ExSce),
• The estimated state of robots (i.e., pose, velocity, etc.), non-robotic agents (e.g., humans), and metric-

semantic model of the environment with stochastic information (e.g., the covariance of the estimation),
(by Collaborative perception).

• Task plans information, including start and endpoints, the intermediate regions of interest, dependencies
between the different robots, and temporal dependencies between the subtasks or dependencies between
the states of the robot,

• Safety, security and quality assurance metrics, to be mathematically well-defined, (by ExSce, Collabo-
rative intelligence and Executable Digital Dependability Identities (EDDI)).

Moreover, the expected outputs are

• Planned trajectories for each individual robot, including time-parameterized motion references for each
robot, safety, security and quality assurance metrics were achieved for each planned trajectory,

• Robot commands in the form of actuator/driver command to the robotics platforms e.g. desired velocity
commands,

• Algorithms of Higher level centralized planner, Lower level decentralized planner and Lower level
decentralized control,

• Non-attacked robots will generate a rescue trajectory providing further sensor feedback to the compro-
mised ones,

• Numerical simulations and experimental studies on in-lab drones as an example.

Accordingly, the interfaces to exchange information with other components are identified as

• The dynamics and kinematics of the robots with the ExSce,
• The sensors of the robots with the ExSce,
• Task plans with the ExSce and/or Collaborative Intelligence, including, requirements, tasks, temporal

constraints, start and endpoints,
• The MRS system structure and the possibility to exchange information among the robots or with a

control station
• Complete situational awareness with Collaborative Perception,
• Safety, security and quality assurance metrics for a tentative trajectory with the EDDI,
• Robot-agnostic interface for the planned trajectories,
• Robot-agnostic interface for the actuator/driver commands to the robotics platforms.

1.3 Contribution and Novelties

Our main focus is on MRS, where the trajectories of several robots need to be planned in a coordinated way, in
general, to fulfil the overall common mission goals. The robots have to fulfil local tasks, such as the movement
from a given start- to an endpoint, while for instance visiting different regions of interest in between and
performing actions herein under temporal constraints. Furthermore, there might be dependencies between the
robots and their dynamic states such as keeping a formation or avoiding collisions among each other. Therefore,
task and trajectory planning are closely related and sometimes even done simultaneously. There are many
approaches to performing MRS trajectory planning, mainly categorized as offline vs online, and centralized
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Table 1: Inputs and outputs of the component

Input/output From/to Data

Input (LU6) ExSce, BRUS-9
Dynamics/kinematics of the robots:
Information of the robot dynamics and kinematic,
dynamic and kinematics limitations

Input (LU7) Use Case

Task plans (before launching):
Robot and team capabilities,
high-level robotic capabilities (e.g., fly, grasp, see),
skills (e.g., what the robot is good at),
roles (e.g., tracker, mapper) and
behaviours (e.g., mapping, planning),
Trajectory start/endpoints,
the intermediate regions of interest, and
dependencies between robots,
required formations or collision avoidance,
or state constraints of the robots.

Input (LU8) Multi-Agent System Task plans (at run time): New waypoints
Input (LU9) ExSce Task decomposition and allocation

Input (LU10) Collaborative Perception

Sensing and perception,
gathered environmental model: estimated states
of each robot, non-robotic, and metric-semantic
model of the environment with stochastic
information

Input (LU11) Runtime EDDI
Metric requests: Desired metrics on safety,
security, and quality assurance for each task plan

Output (LU12) MRS (simulation)

Planned trajectories: Feasible (collision-free)
considering the kinematic/dynamic of robotic,
with real-time re-planning
with perception-awareness and risk-awareness.

Output (LU13) MRS (simulation) Actuator/driver commands to the robotics platforms.

Output (LU14) Runtime EDDI
Metrics achieved: The planned trajectories achieve
the given metrics on safety,
security, and quality assurance metrics
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vs distributed/decentralized planning. The optimal approach to planning the trajectory depends mainly on the
overall mission requirements, the MRS system structure and the possibility to exchange information among
the robots or with a control station.

The trajectory planning is also ruled by the environment of the MRS and the model of the environment available
for the planning, either in a centralized form or as partial models in single robots. The environment consists
of static structures, static or dynamic objects and the free space in between. The modelling of the environ-
ment/situational awareness can be based on many different levels of abstraction and include different levels of
uncertainty. The environmental model is continuously updated using mainly the sensing and perception of the
different robots, equipped with different types of onboard sensors. Therefore, trajectory planning and tracking
are closely linked to environmental modelling as well as the MRS sensing and perception capabilities.

However, the robotic motion does not only depend on the sensing and perception but the perceptual processing
itself is influenced by intended actions (active perception). Recent research has extended active perception
with support for partial or full mission “planification” by generating perception-aware path and trajectory
plans. Advances in the area focus on minimising localisation uncertainty by simultaneously updating the path
planning using the richness of texture information in the environment, and on minimising state estimation
uncertainty by computing the feasibility of trajectory-planning and trajectory-tracking based on the kinematic
and dynamic models of the robot. In MRS, performing perception-aware trajectory planning in a collaborative
but distributed way is a further challenge, strongly related to the coordination and communication schemes
during the planning.

Finally, additional challenges for the MRS trajectory planning and tracking arise from the requirements of
safety and security. On the other hand, unauthorized access to the communication system of the MRS could
be used to compromise the information that is exchanged between the robots during the trajectory planning,
leading to a decrease in performance or even a failure or damage to the MRS or the environment. In our
presented component, we provide a capability for MRS trajectory planning and tracking that takes the afore-
mentioned challenges into account. We will develop a cascaded solution, providing online trajectory planning
with continuous re-planning, and online trajectory tracking.

In our proposed approach, the trajectory planning part will include a high-level centralized planner, where
the global MRS trajectory planning problem is formulated as one overall optimization problem computing the
rough trajectories that each robot agent is to track. In a cascade and in a distributed way, each robotic agent
will rely on a planner to compute its detailed trajectory to be tracked, based on the given rough one. The tra-
jectory tracking will guarantee that the previously planned detailed trajectories are tracked with no deviations,
providing the actuator/driver commands to the robotics platforms, e.g., desired velocity commands. We will
apply model predictive control (MPC) in a decentralized way, e.g., each robot independently tracks its own tra-
jectory. The following aspects will be considered at different levels on each component, i.e. planner/tracker:
(1) collision avoidance with the structures, static or dynamic objects and the other robots, also including dy-
namic and stochastic models of the potential obstacles (2) kinematic and dynamic limitations of the robots,
as well as their model uncertainties and the possibility for online parameter estimation/update, (3) capabilities
and constraints of the different robotic sensors and the limits of the situational awareness algorithms to provide
perception-aware planning, (4) safety, security, and quality assurance aspects, e.g. by including risk and trust
in the planning, generated by the EDDI components at runtime. Herein, safety-related risk could be related to
the environmental situation, the uncertainty of observations or the consequences of robotic actions.

The main contributions are as follows.

• The trajectory planning problem will be conveniently split into an MRS high-level centralized part and
a low-level distributed part, achieving a real-time operation and robust performance.

• The distributed trajectory planning and tracking components will be heterogeneous, i.e., different for
each robotics platform, while the centralized trajectory planner will be generic and versatile to include
all the targeted robotics platforms, e.g., different kinematic and dynamic models and restrictions. Also,
the overall problem formulation is given on a generic dynamic, considering the different use cases with
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different robot types and the component is designed in a modular way to let each part usable with the
least modification required.

• The information provided by the perception, sensing, and situational awareness components will be
exploited at the previously mentioned three different levels, i.e., centralized planner, distributed planner,
and distributed trackers.

• Safety and security aspects will be considered at the previously mentioned three different levels, i.e.,
centralized planner, distributed planner, and distributed trackers.

1.4 Document Structure

The rest of this deliverable is organized as follows. In Section 2, we review the state-of-the-art approaches to
highlight the contributions of the proposed solution. In Section 3, the trajectory planning and tracking problem
is formulated for generic dynamics and the corresponding approach to tackle this problem is presented. Both
numerical simulation and experimental results are studied in Section 4. Then, the extension of the proposed
solution is considered in Section 5. The potential applicability of the proposed approaches for use cases is
described in Section 6. The concluding remarks are given in Section 7. In Appendix A, implementation
remarks of the designed codes for drone deployment are given.
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2 Related Work

This section discusses the related works and critically reviews similar approaches for trajectory planning and
tracking. This is to highlight the contributions of the proposed solution.

Recent research on perception-aware trajectory planning has extended active perception with support for partial
or full mission ‘planification’ by generating perception-aware path and trajectory plans. Advances in the area
focus on minimizing localization uncertainty by simultaneously updating the path planning using the richness
of texture information in the environment [12], and on minimizing state estimation uncertainty by computing
the feasibility of trajectory-planning and trajectory-tracking based on the kinematic and dynamic models of
the robot [3]. The generation of risk-aware trajectories using the uncertainty corresponding to the quality of
observations is also explored [13]. Trajectory planning has been widely investigated for drones. However, with
some minor modifications, the existing approaches can be extended for the different robotic systems.

2.1 Hard-constrained methods

Hard-constrained methods are pioneered by minimum-snap trajectory [14], in which piecewise polynomial
trajectories are generated through quadratic programming (QP). Richter et al. [15] presented a closed-form so-
lution to minimum snap trajectories. [16] generates trajectories in a two-step pipeline. Free space represented
by a sequence of cubes [16], spheres [17] or polyhedrons [18] is firstly extracted, which is followed by convex
optimization, which generates a smooth trajectory within the feasible space. Safe regions around initial paths
are extracted as convex flight corridors, within which QP is solved to generate smooth and safe trajectories.
Among these methods, poorly chosen time allocation of piecewise polynomials usually leads to unsatisfying
results. To this end, fast marching [19] and kinodynamic search [20] are utilized to search for initial paths with
more reasonable time allocation. Gao et al. [19] also proposed to represent trajectories as piecewise Bézier
curves so that safety and dynamical feasibility are guaranteed. They proposed a method to search for a path
with well-allocated time and guarantee the safety and kinodynamic feasibility of trajectory through optimiza-
tion. Hard-constrained methods ensure global optimality by the convex formulation. However, distance to
obstacles in the free space is ignored, which often results in trajectories being close to obstacles. Besides, the
kinodynamic constraints are conservative, making the trajectory’s speed deficient for fast flight. Tordesillas et
al. [21] adopted a mixed-integer QP (MIQP) formulation to find a more reasonable time allocation of the tra-
jectory. [22] proposed a B-spline-based kinodynamic search to find an initial trajectory which is then refined
by an elastic band optimization approach. The use of a uniform B-spline ensures dynamic feasibility but could
generate conservative motion. One common drawback of these methods is that the time allocation of the tra-
jectory is given by naive heuristics. However, a poorly chosen time allocation significantly reduces the quality
of the trajectory. Besides, a feasible solution can only be obtained by iteratively adding more constraints and
solving the quadratic programming problem, which is undesirable for real-time applications.

2.2 Soft-constrained methods

Soft-constrained methods are also methods formulating trajectory generation as a non-linear optimization prob-
lem that takes smoothness and safety into account. [23] generates discrete-time trajectories by minimizing its
smoothness and collision costs using gradient descent methods. [24] has a similar problem formulation, but
the optimization is solved by a gradient-free sampling method. [25] extended them to continuous-time poly-
nomial trajectories. Since the time parameterization is continuous, it avoids numeric differentiation errors and
is more accurate to represent the motions of quadrotors. However, it suffers from a low success rate. To solve
this problem, [26] finds a collision-free initial path firstly using an informed sampling-based path searching
method. This path serves as a higher-quality initial guess of non-linear optimization and thus improves the
success rate. In [27], the trajectory is parameterized as a uniform B-spline. Since a B-spline is continuous by
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nature, there is no need to enforce continuity explicitly, which reduces the number of constraints. It is also par-
ticularly useful for local replanning thanks to its property of locality. Soft-constrained methods utilize gradient
information to push trajectories far from obstacles but suffer from local minima and have no strong guarantee
of success rate and kinodynamic feasibility. Our optimization method also utilizes gradient information to im-
prove the safety of the trajectory. However, unlike previous methods in which computational expensive line
integrals along the trajectory are calculated, the formulation is redesigned to be simpler based on the convex
hull property of B-spline. It greatly improves the computation efficiency as well as the convergent rate.

2.3 Gradient-based trajectory optimization

Gradient-based trajectory optimization [28] is one of the major trajectory generation approaches, which for-
mulates the problem as a non-linear optimization that minimizes an objective function. Gradient-based motion
planning is the mainstream for quadrotor local planning. Based on the pioneering works [24,29] that formulate
the local planning problem as unconstrained nonlinear optimizations, a series of works (see [30] and reference
therein) are proposed. They consider the smoothness, feasibility, and safety of the trajectory using various
parameterization methods, including polynomial and B-spline. Recently, it is proposed a single-quadrotor
navigation system named EGOPlanner [31], further reduces computation time using a more compact environ-
ment representation. Recent works [28] revealed that they are particularly effective for local replanning, which
is a key component for high-speed flight in unknown environments. GTO methods are preferable for replan-
ning due to their high efficiency. However, their local minima issue may lead to undesired solutions. Interest in
this method was revived recently by [23], which generates discrete-time trajectories by minimizing its smooth-
ness and collision costs using covariant gradient descent. [24] has a similar formulation but solves the problem
by sampling neighbouring candidates iteratively. The stochastic sampling strategy partially overcomes the lo-
cal minima issue but is computationally intensive. [25] extended the method to continuous-time polynomial
trajectories to avoid differential errors. It also does random trajectory perturbation and optimization restart for
a higher success rate to slightly relieve the typical local minima issue of such methods. However, the improve-
ment is insignificant. [26] improved the success rate by providing a high-quality initial path, which is found by
an informed sampling-based path searching. However, due to insufficient success rate and efficiency, it only
applies to low-speed flights. In [27], the trajectory is parameterized as a uniform B-spline. It showed that the
continuity and locality properties of the B-spline are particularly useful for trajectory replanning. to fly at a
moderate speed. [32] further exploited the convex hull property of B-spline and improve the optimization ef-
ficiency and robustness by a large margin. However, given a poor initial trajectory in complex environments,
this method still suffers. As a result, [33] adopts an iterative post-process to improve the practical success rate
of [32]. By far, local minima still remain a challenge, since no method copes with it essentially. In this pa-
per [28], we propose path-guided optimization PGO, which incorporates a geometric path in the optimization.
As the path effectually guides the optimization to escape from infeasible local minima, the planning success
rate is guaranteed. Moreover, multiple distinct paths produced by the topological path searching are integrated
with the PGO to seek plentiful locally optimal solutions, which ensures higher trajectory quality.

2.4 Topological path planning

Topological path planning has been works utilizing the idea of topologically distinct paths for planning, in
which paths belonging to different homotopy (homology) [34] or visibility deformation [35] classes are sought.
Topological planning is used to escape local minima. Based on the homology equivalence relation in 2-D
surfaces originated from complex analysis [36]. Rosmann et al. [37] present a trajectory planning method
in distinctive topologies using Voronoi and sampling-based front-ends and TEB (Timed-Elastic-Bands) local
planner [38] as back-ends. However, homology equivalence relation in 3-D is far more trivial. To capture
distinctive useful paths, Jaillet et al. [35] construct visibility deformation roadmaps that encode richer and
more relevant information than representative paths of the homotopy classes. Based on [35], Zhou et al. [28]
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enable real-time topological planning by proposing an efficient topology equivalence checking. We extend
EGO-Planner to accelerate the front end for topological planning further. [34] constructs a variant of the prob-
abilistic roadmap (PRM) to capture homotopy classes, in which path searching and redundant path filtering are
conducted simultaneously. In contrast, [37,39] firstly creates a PRM or Voronoi diagram, after which a homol-
ogy equivalence relation based on complex analysis is adopted to filter out redundant paths. These methods
only apply to 2-D scenarios. To seek 3-D homology classes, [36] exploited the theory of electromagnetism
and propose a 3-D homology equivalence relation. Capturing only homotopy classes in 3-D space is insuf-
ficient to encode the set of useful paths, as indicated in [35], since 3-D homotopic paths may be too hard to
deform into each other. To this end, [35] leverages a visibility deformation roadmap to search for a richer set
of useful paths. [40, 41] convert maps built from SLAM systems into sparse graphs representing the topologi-
cal structure of the environments. [35, 40, 41] focus on global offline planning and are too time-consuming for
online usage. Topological path searching in [28,42] is conceptually closest to [35], but with a reinvented algo-
rithm for real-time performance. They extend the concept of visibility deformation to make it computationally
cheaper and introduce a path-shortening and pruning technique to maintain compact sets of useful paths.

2.5 Collision avoidance

Several approaches exist for collision avoidance in dynamic environments, which include velocity obsta-
cles [43], decentralized NMPC [44] and sequential NMPC [45]. However, these approaches were deterministic
and did not account for uncertainties in perception and motion. The concept of velocity obstacles was extended
to handle motion uncertainties by using conservative bounding volumes [46]. Yet, the robot dynamics were
not fully modelled and the motion was limited by planning a constant velocity motion. These issues can be
overcome by using NMPC for planning. [47] introduced a decentralized NMPC where robot motion uncer-
tainties were taken into account by enlarging the robots with their 3-sigma confidence ellipsoids. However,
bounding volumes can be conservative and lead to infeasible solutions in cluttered environments. In [48] we
explicitly consider the collision probability and formulate a chance-constrained NMPC problem. A chance-
constrained MPC problem was formulated by [49] for systems with linear dynamics and planar motion, where
rectangular regions were computed and overlap avoided in a centralized mixed integer program formulation.
The approach in [48] is not centralized and can be applied to robots with nonlinear dynamics navigating in
three-dimensional spaces. If one assumes set-bounded motion uncertainty models, then robust MPC can be
employed to plan safe trajectories [50], or a guaranteed trajectory tracking error bound [51] can be used. How-
ever, uncertainties described by Gaussian probability distributions, such as those resulting from Kalman filters,
are unbounded. If we consider Gaussian distributions, then objects can be approximated by larger bounding
volumes that correspond to sigma hulls [52] which are based on confidence levels. With this method, colli-
sion checking can be performed very fast. However, the enlarged bounding volumes generally overestimate
the collision probability [53]. Hence, when navigating in cluttered environments, the approach tends to lead
to sub-optimal or infeasible solutions [54]. By assuming a constant probability density of the robot’s posi-
tion within the obstacle, the collision probability can be approximated by the density multiplied by the volume
occupied by the obstacle. [55] uses the probability density of the centre of the obstacle, while [53] uses the
maximum density on the surface of the obstacle to provide an upper bound of collision probability. Both meth-
ods are fast, but they only work well when the sizes of objects are relatively very small compared with their
position uncertainties. The collision probability can be computed directly via sampling [56]. However, this
is computationally intensive and thus not eligible for real-time collision avoidance. Another alternative is to
consider convex polygonal obstacles [57]. Under the assumption that object positions follow Gaussian distri-
butions, the resulting linear chance constraints can be transformed directly into deterministic constraints of the
mean and covariance of the positions. However polygonal obstacles are ill-posed for online constrained opti-
mization, where smooth shapes are preferred to avoid local minima. In this letter, we consider spherical robots
and ellipsoidal dynamic obstacles. We locally linearize the nonlinear collision avoidance constraints and the
corresponding chance constraints are reformulated into deterministic constraints on the robot’s state mean and
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covariance. Such a linearization technique was used for deterministic multi-agent collision avoidance [58]. We
mathematically formalize its use in the context of probability-based stochastic collision avoidance.

2.6 Onboard sensory system for planning in unknown environment

To deal with unknown environments in navigation, different strategies have been used. Many methods adopt
the optimistic assumption [17], which treats the unknown space as collision-free. This strategy improves
the chance of reaching goals but may not guarantee safety. On the contrary, some other methods regard
unknown space as unsafe and only allow motions within the known-free space [59] or sensor FOV [60]. In
[60], the sensor FOV constraint is partially relaxed by choosing safe motion primitives generated in the past.
Although these restrictions ensure safety, they lead to conservative motion. Recently, Tordesillas et al [61]
proposed a strategy that plans in both the known-free and unknown space. Instead of being over-optimistic
about the unknown space, it always maintains backup trajectories to ensure safety. The limitation of the
above-mentioned strategies is the lack of environment perception awareness, which is of significant necessity
in fast flight. Although much attention has been paid to planning with the awareness of localization [62]
and target tracking [63], less emphasis is put on environment perception. Richter and Roy [64] proposed a
learned heuristic function to guide the path searching into areas with greater visibility to unknown space, but
it may not generalize well to complex 3D environments. Heiden et al. [65] showed an integrated mapping
and planning framework for active perception. The planner iteratively simulates future measurements after
executing specific motions, predicts the uncertainty of the map, and minimizes the replanning risk. Its main
drawback is the prohibited runtime for online usage. In [66], a local planner is coupled with local exploration to
safely navigate a cluttered environment. However, it conservatively selects intermediate goals within known-
free space, which restricts the flight speed. In this article, we present a perception-aware strategy to ensure that
unknown dangers can be discovered and avoided early. It guarantees safety and does not lead to conservative
behaviours.

The shift from offboard to onboard sensing based on cameras resulted in an increased number of works trying
to connect perception and action [63]. In [67], the authors proposed a method to compute minimum-time
trajectories that take into account the limited field of view of a camera to guarantee the visibility of points
of interest. Such a method requires the trajectory to be parametrized as a B-spline polynomial, constraining
the kind of motion the robot can perform. Also, perception is included in the planning problem as a hard
constraint, posing an upper bound to the agility of the robot since such constraints must be satisfied at all
times. Furthermore, the velocity of the projection of the points of interest in the image is not taken into
account. Finally, the algorithm was not suited for real-time control of a quadrotor and was only tested in
simulations. In [68], the authors focused on combining visual serving with active Structure from Motion and
proposed a solution to modify the trajectory of a camera in order to increase the quality of the reconstruction.
In such a work, a trajectory for the tracked features in the image plane was required, and the null space of
the visual servoing task was exploited in order to render it possible for the such a feature to track the desired
trajectory. Furthermore, the authors did not consider the underactuation of the robot, which can significantly
lower the performance of the overall task due to potentially conflicting dynamics and perception objectives.
In [69, 70], information gain was used to bridge the gap between perception and action. In the first work, the
authors tackled the problem of selecting trajectories that minimize the pose of uncertainty by driving the robot
toward regions rich of texture. In the second work, a technique to minimize the uncertainty of a dense 3D
reconstruction based on the scene appearance was proposed. In both works, however, near-hover quadrotor
flight was considered, and the underactation of the platform was not taken into account. In [71] a hybrid visual
servoing technique for differentially flat systems was presented. A polynomial parameterization of the flat
outputs of the system was required, and due to the computational load required by the designed optimization
framework, an optimal trajectory was computed in advance and never replanned. This did not allow for coping
with external disturbances and unmodelled dynamics, which during the execution of the trajectory can lead to
behaviours different from the expected one. In [45], a real-time motion planning method for aerial videography
was presented. In these works, the main goal was to optimize the viewpoint of a pan-tilt camera carried by
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an aerial robot in order to improve the quality of the video recordings. Both works were mainly targeted to
cinematography, therefore they considered objectives such as the size of a target of interest and its visibility.
Conversely, we target robotic sensing and consider objectives aimed at facilitating vision-based perception. In
[72], the authors proposed a two-step approach for target-aware visual navigation. First, position-based visual
servoing was exploited to find a trajectory minimizing the reprojection error of a landmark of interest. Then,
a model predictive control pipeline was used to track such a trajectory. Conversely, [63] solves the trajectory
optimization and tracking within a single framework. Additionally, that work only aimed at rendering the
target visible but did not take into account that, due to the motion of the camera, it might not be detectable
because of motion blur. We cope with this problem by considering in the optimization problem the velocity of
the projection of the point of interest in the image plane.
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3 Perception-Aware Trajectory Planning and Tracking: Algo-
rithm

In this section, trajectory planner and tracker problems are formulated. Then, the corresponding solutions
are presented. We tackle this as generic as possible. Accordingly, the use cases should opt for and specify
components for the respective practice.

3.1 Overall architecture

Trajectory planning is one of the most important problems to be addressed to find an optimal path to the
destination. Although in literature, a lot of research proposals exist on the path planning problems, still issues
of target location, safe (collision-free) shortest possible path and identification persist keeping in view of the
high mobility of MRS. Accordingly, optimal decisions need to be taken for various mission-critical operations.
These decisions require a map or graph of the mission environment so that MRS is aware of its locations with
respect to the map or graph. However, in the case the map is not fully available, the collected information about
the environment is to be taken into account. This stems from the fact that the trajectory determines the amount
of data that can be perceived. The perceptive information may include the point of view of the onboard camera,
the obstacles (situational awareness), or the texture richness of the environment. In addition to the trajectory
planning, one significant task is the trajectory tracking control, i.e., the design of the control commands to
make the MRS stable as well as to track the trajectory as close as possible. The tracking task satisfies the
desired position, velocity and orientation while fulfilling the given task. Figure 1 provides an overview of the
architecture of the proposed solution.

Generally, the component includes the following parts, which are summarized in Figure 2. In this figure, the
features of the components are included. In fact, Figure 2 provides a summary of how the points mentioned in
Section 1 are addressed in the proposed architecture, presented in Figure 1 which includes the following parts

• Higher level centralized planner: it receives the overall task plan and objectives and decomposes it into
different subtasks for MRS members, as sets of waypoints, assigned to each member.

• Lower-level decentralized planner: it receives the waypoints and plans a trajectory for the corresponding
member, taking into account, model parameters, states, situational information, security, safety and
quality assurance metrics.

• Lower level decentralized control: it receives the planned trajectory and sends the corresponding com-
mands to MRS to follow that trajectory.

• An algorithm such that non-attacked robots will generate a rescue trajectory providing further sensor
feedback to the compromised. It should be noted that this component is going to be embedded into the
lower-level decentralized planner and lower level decentralized control. This will be tackled as part of
D2.5: Multi-Robot Collaborative Rescue Mission (M30).

The trajectory planning and tracking to tackle the navigation task, can be generally seen as Algorithm 1, where
xd(t) is the planned trajectory, J(t) is an optimization function, and ud(t) is the designed control.

The Algorithm 1, is to be implemented and solved at the lower-level decentralized planner. In this algorithm,
we design the desired trajectory xd(t), as a solution to minimization of J(t). Then, at the lower-level decen-
tralized tracker the control command u(t) is designed to steer the robot states x(t) towards xd(t). Moreover,
the stability of the closed-loop system is guaranteed.

3.2 Higher level centralized planner

Higher level centralized planner receives the overall task plan and objectives and decomposes it into different
subtasks for MRS members, as sets of waypoints, assigned to each member. This planner is to be offline for
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Figure 1: Overall structure of trajectory planning and tracking component

Algorithm 1 Perception aware MRS trajectory planning and tracking

1: Design xd(t), by optimizing J(t), subject to

• Passing through the waypoints (defined based on the decomposed task),
• Identified dynamics of the robot and estimated states,
• Actuator limit,
• Keeping distance by the estimated obstacle position,
• Retaining in /avoiding from some areas or points (perceptive information),
• Satisfying the safety and security metrics.

2: Design u(t), by taking into account the current estimated states of the robot and designed xd(t),
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Figure 2: Trajectory planning and tracking component features. HLCP: Higher level centralized planner, LLDP: Lower-level decentralized, planner,
LLDC: Lower-level decentralized control

the sake of the security of the overall task plan. It also coincides with the ExSce as well as the task plan.
Given the different natures of the use cases and different operational scenarios, this can be foreseen either in
the Specification of MRS Capabilities or the ExSce. For instance, for vineyard spraying operations, in the task
plan, it has already implied the plants to be sprayed, either offline or by another drone that is covering the
whole vineyard to detect the plants. Therefore, the higher level centralized planner indeed can be determined
depending on the nature of the operation. however, we have placed this planner in the architecture Figure 1, to
be compatible with the different use cases in a generic manner. In fact, this planner will provide the waypoints
to the lower-level decentralized planner. Therefore, given this architecture, different operational scenarios for
different use cases can be tackled. Therefore, without loss of generality, we assume that this higher-level
planner has been already foreseen in the task plan or ExSce, providing the waypoints.

3.3 Lower-level decentralized planner

From the higher level planner, the waypoints Wi of each robotic agent, for i ∈ {1, ...,K}, are determined and
sent to the lower level decentralized planner, where the trajectory planning for each robot is obtained as the
solution to an optimization problem. It is guaranteed that the robotic agent passes through the corresponding
waypoints. The trajectory planning is mathematically formulated as

xd(t) = argmin
x(t)

J (x(t)), (1)
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subject to

J (x(t)) = tf (xf , x(t))− t0,

x(t0) = x0,

x(tf ) = xf ,

x(ti) =Wi,

ẋ(t) = f(x(t), u(t)),

y(t) = x(t) + ϵx(t),

p(t) = P (x(t), P ∗)

xL ≤ x(t) ≤ xU ,

uL ≤ u(t) ≤ uU ,

pL ≤ p(t) ≤ pU ,

Rk ≤ ∥x(t)− xobs,k(t)∥ ,

(2)

where, x(t) is the dynamics state vector, tf and t0 are final and initial operation times, respectively, xf and
x0 are final and initial states, respectively, u(t) is the control command, t0 ≤ ti ≤ tf , for i ∈ {1, ...,K},
are increasing time sequence, Wi is the state of the ith waypoint, f(x(t), u(t)) is the dynamics equations
governing the motion of the robot, y(t) is the measurements vector with a noise vector ϵx(t), and p(t) is the
perceptive index governed by the equation P (x(t), P ∗) with respect to the point/area of interest P ∗. XL and
XU denote the element-wise lower and upper bound vectors on the variable vector X(t). Finally, xobs,k(t)
and Rk represent the position and safety radius of kth obstacle. In fact, Rk ≤ ∥x(t)− xobs,k(t)∥ imposes the
constraint to keep the state of the robot outside of the safety sphere around the obstacle.

To solve the optimization (1), there are many approaches, as reviewed in Section 2. However, as we analyzed
the existing works, the main issue with the real-time implementation and fast optimization is the implementa-
tion of the constraints (2). Specifically, the inequality constraints might cause issues in the convergence of the
solver. Accordingly, it is really crucial how we implement the inequality constraints. As discussed later, we
are going to use the Legendre pseudospectral method to transcribe the continuous optimization problem into
an equivalent discrete one. The trajectory is represented by a number of Legendre functions passing through
a number of collocation points. Then, the position of these collocation points is as the optimization variables.
Therefore, the constraints are to be applied on these collocation points.

To apply the obstacle avoidance constraint Rk ≤ ∥x(t)− xobs,k(t)∥ to the collocation points, the common
condition to be checked is the distance of the points from the obstacle to be greater than the safety radius.
However, this still can lead to the safety violation as illustrated in Figure 3, for two collocation points Cj,1 and
Cj,2.

As it is shown in Figure 3, the collocation points Cj,1 and Cj,2 are outside of the safety sphere, i.e., ri,j,1 >
Ri and ri,j,2 > Ri. However, the line segment Cj,1Cj,2 is still passing through the safety sphere. One
obvious solution is to increase the number of collocation points and apply the distance constraint. However,
this increases the computational burden of the problem. More importantly, it is still not guaranteed that the
connecting lines are moved outside, as illustrated in Figure 4, where Cj,2Cj,3 passes through the safety sphere.

The resolution to this is to consider the perpendicular distance for each line segment from the obstacle, i.e.,
di,j,k, for k = 0, . . . , N , whereN represents the number of collocation points, Cj,0 = wj and Cj,N+1 = wj+1,
as illustrated in Figure 5.

It should be noted that in Figure 5, di,j,k, for k = 0, . . . , 4, are all same for all the segments, as they are on the
same straight line. Considering only perpendicular distance as the constraint di,j,k > Ri, will lead to a very
conservative approach, as it will move the points Cj,1 and Cj,4 to some place to satisfy the constraint, as shown
in Figure 6.

This takes a lot of workspaces and might lead to an infeasible problem after applying the other constraints.
Therefore, we only need the constraint to be applied to Cj,2 and Cj,3 in Figure 5, as they lie within the safety
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Figure 3: Violation of safety region for the case the waypoints and collocation points are still outside.

Figure 4: Violation of safety region with an increased number of collocation points.
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Figure 5: Perpendicular distance check.

Figure 6: Applying the perpendicular distance check to all the points. The points with (′) represent the new position of the points in grey.
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sphere. The solution we propose is to first check if the projection of ith obstacle position on the line segment
Cj,kCj,k+1 lies on the segment or its extension. To do so, we compute

ti,j,k =
(Oi − Cj,k) . (Cj,k+1 − Cj,k)

(Cj,k+1 − Cj,k) . (Cj,k+1 − Cj,k)
, (3)

where, Oi is the position of ith obstacle and · represents the inner product. Then, if 0 < ti,j,k < 1, then
the projection point is on the line segment Cj,kCj,k+1. Otherwise, it is on its extension. This is illustrated in
Figure 7, where, ti,j,k < 0, 0 < ti,j,k+1 < 1 and 1 < ti,j,k+2. Then if 0 < ti,j,k < 1 and di,j,k < Ri, then
the line segment Cj,kCj,k+1 is passing through the safety sphere. In this case, we apply the constraint in the
optimization to move the Cj,kCj,k+1 outside of the safety sphere. An example is illustrated in Figure 8.

Figure 7: Projection point check.

Figure 8: Applying the projection point check.

In summary, this condition is as follows.
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if 0 < ti,j,k < 1 & di,j,k < Ri then
move the Cj,k , for k = 1, . . . , N , such that Cj,lCj,l+1, for l = 0, . . . , N is outside of the safety sphere.

end if

This approach theoretically solves the mentioned problem, however, it imposes an issue on the implementation
of the optimization problem. This stems from the presence of the if condition in the construction of constraints
which is a common approach for obstacle avoidance constraints [30]. Using if condition changes the structure
and size of the constraints at every iteration of the solver. This is due to the fact that by moving the collocation
points, the constraint might be satisfied and it will be removed from the constraints matrix. More importantly,
if condition is not a smooth condition which might make a problem with the convergence of the solver. To
resolve this problem, we define the following smooth constraint avoiding the use of if condition.

fi,j,k :=
1

2
Γi,j,k (Ri − di,j,k) ≤ 0, (4)

where Γi,j,k = tanh
(
ti,j,k
δ

)
− tanh

(
ti,j,k−1

δ

)
and δ > 0 is a small scalar. It is readily shown that for

0 < ti,j,k < 1, Γi,j,k ≈ 1. Therefore, fi,j,k = Ri − di,j . Then the constraint fi,j,k ≤ 0 is equivalent to
Ri − di,j,k ≤ 0. On the other hand, for ti,j,k ≤ 0 or 1 ≤ ti,j,k, the term Γi,j,k = 0 and, hence, fi,j,k = 0.
Moreover, the condition 0 ≤ 0 is already satisfied and it does not apply the distance constraint on the points
Cj,k and Cj,k+1. So, this constraint encapsulates both conditions for the line segment on which the projection
point lies, without using if condition. More importantly, this constraint is smooth at points ti,j,k = 0 and
ti,j,k = 1. fi,j,k is illustrated in the following figure for δ = 0.05 and Ri = 1.5.

Figure 9: Smooth obstacle avoidance constraint.

Another improvement to make the optimization problem feasible in real-time settings with fast convergence of
the solver is considering the initial guess. For the cases, the initial guess goes through the safety bond. This
might make the optimization problem infeasible. So, we have to avoid this. For this case, we first radially
move the collocation points out of the sphere. To do so, for each point, we check if it is inside of the sphere. if
so, we move the point in the direction of the carrying radius, i.e., connecting the centre to the point. Therefore,
it is guaranteed that the collocation points are placed outside. However, this does not necessarily guarantee that
the connecting line does not pass through the sphere. for this aim, we can consider the perpendicular distance
of the centre to each line. However, just moving all the points according to the perpendicular distance might
make lead to a conservative initial guess which is away from the optimal solution. So, we only move the lines,
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on which the projection point lies, not on their extension. If the projection point lies on the line and if the
perpendicular distance is smaller than the radius, then we move the line in the perpendicular direction to make
sure the line lies outside of the sphere. This improvement might make the initial guess non-smooth and longer
than the direct connecting line. So, finally, we shorten the guess, i.e., we check if the direct line between the
collocation points pas through the sphere. if not, the direct line is replaced. In Figure 10, these improvements
are illustrated.

Figure 10: Initial guess improvement.

Now, to solve the continuous-time optimization problem (2), it is transcribed into a nonlinear programming
(NLP) problem using Legendre pseudospectral method [73]. To go through the transcription process, let us
consider a trajectory segment between waypoints Wk and Wk+1. The state and control histories between these
waypoints are approximated by Lagrange polynomials in time, illustrated in Figure 11, as

xk(τ) ≈
n∑
i=1

xki ϕi(τ), (5a)

uk(τ) ≈
n∑
i=1

uki ϕi(τ), (5b)

where τ is time, xi and ui are state and control approximation vectors at nodes, k denotes segment number and
i denotes node number, ϕi is the basis function given by

ϕi(τ) =

n∏
j=1,j ̸=i

τ − τj
τi − τj

, (6)
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Figure 11: Illustration of discretization in Legendre pseudospectral method.

for which

ϕi(τj) =

{
0, if i = j,

1, otherwise.
(7)

Times τi are defined as

τi =
1 + τ̃i
2

, (8)

where τ̃ are −1, 1 and the roots of Legendre polynomial of order n− 2

1

2n−2(n− 2)!

dn−2

dpn−2

(
p2 − 1

)n−2
= 0. (9)

Let tk and tk+1 be the times at which dynamics is at waypoints Wk and Wk+1, respectively. Let ∆kt be the
time-interval of this segment. The actual and non-dimensionalized times are related as

τ =
t− tk
∆kt

, (10)

dτ =
dt

∆kt
. (11)

The Lagrange polynomials are collocated at the roots of Legendre polynomials to result in a set of algebraic
equations

n∑
i=1

xki ϕ̇i(τ) = ẋk(τ). (12)

This can be rewritten as
n∑
i=1

xki ϕ̇i(τ) = ∆ktf(xki , u
k
i ). (13)

To ensure that trajectories are smooth, connectivity and continuity constraints are imposed at the terminal and
initial ends of consecutive segments

xkn = xk+1
0 , (14)

ukn = uk+1
0 , (15)

n∑
i=1

xki ϕ̇i(1)/∆
kt =

n∑
i=1

xk+1
i ϕ̇i(0)/∆

k+1t, (16)

n∑
i=1

uki ϕ̇i(1)/∆
kt =

n∑
i=1

uk+1
i ϕ̇i(0)/∆

k+1t. (17)
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The cost function J , defined in (1), is then reduced to the sum of time intervals of each segment, i.e.,

J =
N∑
k=1

∆kt. (18)

The cost function in (18), constraints in (2) and (4), constitute the NLP problem. After the transcription,
the problem is solved using interior point algorithm [74] implemented in IPOPT solver [75] interfaced with
Matlab. Moreover, CasADi is used for parametric auto differentiation of cost function and the constraints, for
speeding up the optimization solution. The over architecture is shown in Figure 12.

Figure 12: Architecture of the optimization problem for trajectory planning.

In Figure 13, an initial comparison of optimization time for trajectory planning of drone dynamics is given. It
is obvious that by the implementation of the proposed approach the optimization time is considerably reduced.

3.4 Lower level decentralized control

After solving the optimization (1) with constraints (2), in the tracking control part, we design u(t) such that

lim
t→tc

∥x(t)− xd(t)∥ ≤ ϵc, (19)

for any x0, with convergence time tc and convergence radius ϵc. Ideally, ϵc is going to be zero.

In this section, we design a controller for accurate trajectory tracking with disturbances and unknown uncer-
tainties in the dynamics. We use an Adaptive Super-Twisting Controller (ASTC) which is robust and gain
adaptation minimizes chattering with no information required on disturbance bounds.

23 December 2022 Version 1.0
Confidentiality: Public Distribution

Page 23



D2.4 Multi-Robot Monitoring Online Trajectory Generation

Figure 13: Comparison of computation time using different approaches.

It should be noted that the ASTC is designed for dynamics of quadrotor UAV in this section. However, the
proposed approach can be simply applied for different robot types. The kinematics of the quadrotor UAV can
be presented as

ẋ (t) = v (t) , (20a)

v̇(t) =
1

M

(
R(t)F (t)−MF g + f

d
(v,Φ, t)

)
, (20b)

Φ̇(t) = R−1
q (t)ω(t), (20c)

ω̇(t) = J−1 (τ(t)− ω(t)× Jω(t) + τd(ω, t)) , (20d)

where, x(t) = [x(t), y(t), z(t)]T ∈ R3 and v(t) = [vx(t), vy(t), vz(t)]
T ∈ R3 are position and velocity vectors

of the centre of gravity, respectively, in the inertial frame. ω(t) ∈ R3 is the angular velocity in the body frame.
M is the known mass and J ∈ R3×3 is the unknown mass moment inertia. Φ(t) = [θ(t), ϕ(t), ψ(t)]T ∈ R3

is the Euler angle vector and F (t) = [0, 0, f(t)]T ∈ R3, both in the the body frame. f(t) ∈ R+ is the thrust.
F g = [0, 0, g]T ∈ R3 is the vector of gravity force in the inertial frame. τ(t) ∈ R3 is the torques vector in
the body frame. Also, f

d
(·) ∈ R3 and τd(·) ∈ R3 are unknown disturbances of translational and rotational

dynamics, respectively. The rotation matrices R(t) ∈ SO(3) and Rq(t) ∈ SO(3) are defined as [76]

R(t) =

CψCθ CψSθSϕ − SψCϕ CψSθCϕ + SψSϕ
SψCθ SψSθSϕ + CψCϕ SψSθCϕ − CψSϕ
−Sθ CθSϕ CθCϕ

 , (21a)

Rq(t) =

1 0 −Sθ
0 Cϕ CθSϕ
0 −Sϕ CθCϕ

 , (21b)

where, Cα and Sα denote cosine and sine of α, respectively. For the sake of notation simplicity, we present the
translational dynamics, i.e., (20b), as

v̇(t) = au(t)− F g + f
1
(v,Φ, t), (22)
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where, u(t) = R(t)F (t) = [ux(t), uy(t), uz(t)]
T ∈ R3, a = 1/M , and f

1
(·) = [f1,x(·), f1,y(·), f1,z(·)]T ∈

R3 = af
d
(·) is lumped disturbance vector. It is obvious that the dynamics (22) can represent a variety of

robotic dynamics. Therefore, we design the ASTC considering the dynamics (22).

Considering (22), we aim to design the desired thrust f(t), desired Euler angle Φd(t) =
[θd(t), ϕd(t), ψd(t)]

T ∈ R3 and desired angular velocity ωd(t), such that to steer the UAV position x(t) to-
wards the known desired position xd(t) = [xd(t), yd(t), zd(t)]

T ∈ R3, for any initial conditions x(0). For this,
we design u(t) in (22), and accordingly, the desired thrust f(t) and orientation Φd(t) are obtained. It is worth
noting that xd(t) has been designed in the previous section.

Remark 1. It should noted that the proposed controller can be readily extended for the attitude dynamics.
However, the designed offboard controller can only run at maximum frequency of 50-100 Hz. On the other
hand, the desired torque τ(t) and the corresponding motor Pulse Width Modulation (PWM) signals need to be
computed at a high rate, e.g., 1000 Hz. Due to this computational limitation, these control inputs are left to
be computed by the available onboard controller.

Assumption 1. It is assumed that the UAV’s states x, v, and Φ are available for control design [77]. Fur-
thermore, it is assumed that the time derivative of f1,i is bounded as |ḟ1,i(·)| ≤ a1,i and |f̈1,i(·)| ≤ a2,i for
i ∈ {x, y, z}, where a1,i and a2,i are positive constants.

Remark 2. In Assumption 1, the UAV’s states are assumed to be known, by on-board sensors, inertial mea-
surement unit, extended Kalman filter or a motion capture system [78]. However, the measurement errors can
be encapsulated in the lumped disturbance in (20). This further motivates the use of ASTC for compensating
for the effects of these errors. Also, given the nature of external disturbance, it is reasonable to assume its
time derivatives are bounded [79]. This is a relaxed condition, in comparison to the assumption of bounded
disturbance norm, used in some works [80–82].

The following lemmas are used in the design procedure.

Lemma 1. Consider the dynamics

ẋ1(t) = −λ|x1(t)|0.5sign (x1(t)) + x2(t) + d(t), (23a)

ẋ2(t) = −k(t)sign (x1(t)) . (23b)

Under the assumption that |ḋ| ≤ d1 and |d̈| ≤ d2, where d1 and d2 are positive constants. For any given
x1(0), there exists a sufficiently large λ ≥ 0, such that, provided k(t) ≥ d1, both x1 and ẋ1 converge to zero
in finite time, i.e., it induces a second order sliding mode, and weq(t) = ḋ(t), where weq(t) is the low-pass
filtered version of w(t) = k(t)sign (x1(t)) [83]. Furthermore, the solution of (23) needs to be understood in
a Filippov sense.

Lemma 2. Considering the system ẋ(t) = f(x, u) with the state vector x(t) and the control input u(t), and
assume V (x(t)) as a smooth positive definite function, satisfying V̇ (·) ≤ −α

√
V (·), along the trajectories

of x(t). Then, for any initial condition x(0), the trajectory x(t) is stable and converges to zero in finite time
smaller than T (x(0)) = 2

√
V (x(0))/α [84].

Lemma 3. For all x, y ∈ R+, the inequality x+ y ≥
(
x2 + y2

)0.5 holds.

To construct the control, we define the sliding surfaces as

σx(t) = (vx(t)− vd,x(t)) + λx(x(t)− xd(t)), (24a)

σy(t) = (vy(t)− vd,y(t)) + λy(y(t)− yd(t)), (24b)

σz(t) = (vz(t)− vd,z(t)) + λz(z(t)− zd(t)), (24c)
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where vd(t) = [vd,x(t), vd,y(t), vd,z(t)]
T = ẋd(t) ∈ R3 is desired linear velocity vector. λx, λy and λz ∈ R+

are design parameters. Now, we design the control u(t) in (22) for i ∈ {x, y, z} as

ui =
−k1,i|σi(t)|0.5sign(σi(t)) + ŵi(t) + fi(t)

a
, (25a)

˙̂wi(t) = −k2,i(t)sign(σi(t)), (25b)

where k1,i ∈ R+ is the design parameters, and

fx(t) = ad,x(t)− λx (vx(t)− vd,x(t)) , (26a)

fy(t) = ad,y(t)− λy (vy(t)− vd,y(t)) , (26b)

fz(t) = ad,z(t)− λz (vz(t)− vd,z(t)) + g, (26c)

where ad(t) = [ad,x(t), ad,y(t), ad,z(t)]
T = ẍd(t) ∈ R3 is desired linear acceleration vector, with the adaptive

laws

˙̂wi,eq(t) =
1

τi
ŵi(t)−

1

τi
ŵi,eq(t), (27a)

ṙi(t) = γi|δi(t)|+ r0,i
√
γisign(ei(t)), (27b)

k̇2,i(t) = −(r0,i + ri(t))sign(δi(t)), (27c)

where 0 < τi < 1 is constant, and r0,i, γi ∈ R+ are design parameters. δi(t) and ei(t) in (27b) and (27c) are
defined as

δi(t) = k2,i(t)−
1

αi
|ŵi,eq(t)| − ϵi, (28a)

ei(t) =
qi
αi
a2,i − ri(t), (28b)

respectively, where 0 < αi < 1 is selected sufficiently small and ϵi ∈ R+ is selected sufficiently large design
parameters, and qi > 1 to ensure |dŵi,eq(t)/dt| ≤ qia2,i.

Remark 3. Considering (27a), for ŵi,eq(0) = 0, it is easy to obtain ŵi,eq(s) = 1
τis+1 ŵi(s), in frequency

domain. The transfer function 1
τis+1 represents a low-pass filter for small τi. Therefore, ŵi,eq(t) is the low-

pass filtered version of ŵi(t). Moreover, as studied in [85], these exist constants 0 < η1 < 0 and 0 < η2
satisfying |ŵi(t)− ŵi,eq(t)| ≤ η1|ŵi(t)|+ η2. Also, there exists qi satisfying |dŵi,eq(t)/dt| ≤ qia2,i [86].

Remark 4. Regarding design parameters, the following points are worth noting. In (24), λi induces the
exponential convergence rate. Therefore, λi is to be selected carefully, to avoid jerky motion of UAV. In (25a),
k1,i is selected sufficiently large to comply with the condition in Lemma 1. Moreover, τi is the low pass filter
time constant, which is to be selected small enough to render the behaviour of the input signal. In (27b), r0,i
imposes the convergence time. Therefore, it can be selected large to have fast convergence. αi is sufficiently
small and ϵi is sufficiently large such that |ḟ1,i(·)|/αi + ϵi ≥ a1,i. Finally, qi > 1 is the user-defined safety
margin [84, 86].

To analyze the stability and convergence, first the behaviour of equivalent control ŵi,eq(t) in (27a) is studied
in Lemma 4.

Lemma 4. Consider the UAV translational dynamics (20a) and (20b), represented as (22), under the lumped
disturbance vector f

1
(·) satisfying Assumption 1. Then the control law (25), for sufficiently large k1,i, with

low-pass filter (27a), guarantees ŵi,eq(t) = −ḟ1,i(·), provided k2,i(t) ≥ a1,i, for i ∈ {x, y, z}.
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Proof. By using the control law (25a) in the dynamics (22), it is easy to show that

σ̇i(t) = −k1,i|σi(t)|0.5sign(σi(t)) + ŵi(t) + f1,i(·), (29)

for i ∈ {x, y, z}. Considering this with (25b) and taking into account Lemma 1, for |ḟ1,i(·)| ≤ a1,i and
|f̈1,i(·)| ≤ a2,i, provided k2,i(t) ≥ a1,i, for sufficiently large k1,i, both σi(t) and ŵi(t), converge to zero in
finite time, i.e., it induces a second order sliding mode. On the other hand, (27a), for a small τi, is the low-pass
filtered version of ŵi(t), as explained in Remark 3. Therefore, considering Lemma 1, ŵi,eq(t) = −ḟ1,i(·).

As shown in Lemma 4, the equivalent control approaches to the time derivative of the disturbance, after the
sliding surface is reached. Therefore, the time derivative of the equivalent control renders the second time
derivative of disturbance. This justifies the inclusion of a2,i in (28b). Considering Lemma 4, for finite time
convergence σi(t) and ŵi(t) to zero, it is required that k2,i(t) ≥ a1,i. This is guaranteed by adaptive laws
(27b) and (27c), proven in Lemma 5.

Lemma 5. For i ∈ {x, y, z}, the adaptive laws (27b) and (27c), under condition |dŵi,eq(t)/dt| ≤ qia2,i, force
δi(t) and ei(t), defined in (28), to zero in finite time, which can be made arbitrarily small by the proper selection
of the design parameter. Furthermore the gain k2,i(t) remains bounded. This further yields k2,i(t) ≥ a1,i, for
sufficiently small 0 < αi < 1 and sufficiently large ϵi ∈ R+.

Proof. Using (27b), (27c) and (28), one can obtain that

δ̇i(t) = −r0,isign(δi(t)) + (ei(t)−
qi
αi
a2,i)sign(δi(t))−

1

αi
υi(t), (30)

where υi(t) = |dŵi,eq(t)
dt |. Now, we define the a positive definite Lyapunov function as

Vi(t) =
1

2
δi(t)

2 +
1

2γi
ei(t)

2. (31)

Therefore, using Lemma 3, it is readily shown that

V̇i(t) ≤ (ei(t)− r0,i)|δi(t)| −
1

γi
ei(t)ṙi(t)

= −
√
2r0,i

(
1√
2
|δi(t)|+

1√
2γi

|ei(t)|
)

≤ −
√
2r0,iVi(t).

(32)

Then, considering Lemma 2, for any initial condition V (0), δi(t) and ei(t) converge to zero in finite time
smaller than T (V (0)) =

√
2V (0)/r0,i. Furthermore, since r0,i is the design parameter, the convergence time

can be made arbitrarily. Also note that since ei(t) is bounded, from (28b), ri(t) is bounded. This implies
the boundedness of k2,i(t), considering (27c). Finite time convergence to zero implies δi(t) = 0 for t ≥
T . Therefore, considering (28a) and the result of Lemma 5, there exist sufficiently small 0 < αi < 1 and
sufficiently large ϵi ∈ R+ such that k2,i(t) = 1

αi
|ŵi,eq(t)|+ ϵi =

1
αi
|ḟ1,i(·)|+ ϵi ≥ a1,i.

Now, the main properties of the proposed controller (25) is summarized in Theorem 1.

Theorem 1. Consider the UAV translational dynamics (20a) and (20b), represented as (22), under the lumped
disturbance vector f

1
(·) satisfying Assumption 1. Design the control law (25), for large k1,i, i ∈ {x, y, z},

with the adaptive laws (27), for large constant qi > 1, small 0 < αi < 1 and large ϵi ∈ R+. Then, for any
initial condition x(0), the sliding surfaces (24) converges to zero in finite time, which can be adjusted by the
user, and the UAV’s position x(t) is stable and exponentially converges to the desired trajectory xd(t).

23 December 2022 Version 1.0
Confidentiality: Public Distribution

Page 27



D2.4 Multi-Robot Monitoring Online Trajectory Generation

Proof. As proven in Lemma 5, k2,i(t) ≥ a1,i for i ∈ {x, y, z}, is satisfied. Then, considering Lemma 4, the
finite time convergence of σi(t) is guaranteed, which can be adjusted by proper selection of r0,i. Consequently,
considering (24), the exponential convergence of x(t) towards xd(t) is obtained.

Considering (28b), a2,i is required to be known. Even though this can be numerically obtained in the imple-
mentation, in some cases a2,i is unknown. This is studied in Theorem 2.

Theorem 2. In the case of unknown a2,i, the adaptive law (27b) is reformulated as

ṙi(t) =

{
γi|δi(t)| |δi(t)| ≥ δ0,i,

0 otherwise,
(33)

for i ∈ {x, y, z}, where δ0,i is a design parameter satisfying ϵ2i
4 ≥ δ20,i +

1
γi

(
qia2,i
αi

)2
. Under Assumption 1,

use the control law (25) with the adaptive laws (27a) and (27c). Then the results of Theorem 1 are obtained.

Proof. Use the Lyapunov function (31) in the analysis of δi(t) and ei(t). One can obtain that δi(t)δ̇i(t) ≤
(ei(t) − r0,i)|δi(t)|. For ri(0) = 0, we can see ri(t) ≥ 0. Then, for any pair (δi(t), ei(t)), ei(t) ≤ qi

αi
a2,i is

satisfied, considering (28b). If |δi(t)| ≥ δ0,i, from (28), it is readily shown ėi(t) = −γi|δi(t)| and, accordingly,
V̇i(t) ≤ (ei(t)− r0,i)|δi(t)| − ei(t)ṙi(t)/γi = −r0,i|δi(t)|. On the other hand, for |δi(t)| ≤ δ0,i, if ei(t) ≤ 0,
then V̇i(t) ≤ −r0,i|δi(t)|. Let Ei = {(δi(t), ei(t)) : Vi(t) < r̄i} be the smallest ellipsoid centred at the
origin, with r̄i = δ20,i/2 + (qia2,i/αi)

2 /2γi, enclosing the rectangle Ri = {(δi(t), ei(t)) : |δi(t)| ≤ δ0,i, 0 ≤
ei(t) ≤ qia2,i/αi)}. It is readily shown that Ri ⊂ Ei. Since ṙi(t) ≥ 0, then, ei(t) ≤ qia2,i/αi for all
t ≥ 0. Therefore, the solution outside of Ei, V̇i(t) ≤ −r0,i|δi(t)|. Therefore, Ei is an invariant set. Let
ϵ2i /4 ≥ δ20,i + (qia2,i/αi)

2 /γi be satisfied. If the pair (δi(t), ei(t)) enters Ei in finite time then it never
leaves it and, in turn, |δi(t)| ≤ ϵi/2. Otherwise, if it does not enter Ei, from V̇i(t) ≤ −r0,i|δi(t)|, we obtain∫∞
0 r0,i|δi(t)|dt ≤ Vi(0). Since Vi(t) is bounded for t ≥ 0, then solution (δi(t), ei(t)) is bounded. This implies
(δ̇i(t), ėi(t)) is bounded, considering (33) and ėi(t) = −ṙi(t). Therefore, δi(t) and |δi(t)| are uniformly
continuous. Taking Barbalat’s Lemma [87], it is readily shown that limt→+∞ δi(t) = 0 and there exists a finite
time such that |δi(t)| ≤ ϵi/2. Accordingly, whether or not whether If the pair (δi(t), ei(t)) enters Ei, |δi(t)| ≤
ϵi/2 is guaranteed in finite time. Consequently, from (28a), it follows, k2,i(t) = 1

αi
|ŵi,eq(t)|+ ϵi/2 ≥ a1,i and

a second order sliding mode is maintained. The rest of the proof is straightforward and therefore omitted.

As stated in Theorem 1 and Remark 4, the gain k1,i, i ∈ {x, y, z}, is constant and only required to be suffi-
ciently large to maintain the sliding surface. However, as studied in [88], large k1,i might impose chattering.

On the other hand, in [89] it has been suggested selecting the super twisting gains as k1,i = 1.5
√
f̄1,i and

k2,i = 1.1f̄1,i, where |f1,i| ≤ f̄1,i to reduce the chattering. This convention has been commonly used in the
literature. Taking this into account, therefore, here we design the gain k1,i as

k1,i(t) = 1.5
√
k2,i(t), (34)

for i ∈ {x, y, z}. This makes the gain k1,i large when the upper limit of the time derivative of disturbance,
estimated by k2,i, is increasing. Otherwise, it is reduced and an unnecessary large value for k1,i which might
lead to chattering is avoided. It should be noted that, as proven in Lemma 5, the gain k2,i remains bounded.
Thus, the boundedness of gain k1,i, given by (34) is guaranteed.

Now, based on designed u(t) in (22) and considering u(t) = R(t)F (t) = [ux(t), uy(t), uz(t)]
T and (21), the

thrust f(t) and desired Euler angle Φd(t) = [θd(t), ϕd(t), ψd(t)]
T , for a given yaw angle ψd(t), are obtained

as
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f(t) =
√
u2x(t) + u2y(t) + u2z(t), (35a)

θd(t) = tan−1

(
Cψd

(t)ux(t) + Sψd
(t)uy(t)

uz(t)

)
, (35b)

ϕd(t) = sin−1

(
Sψd

(t)ux(t)− Cψd
(t)uy(t)

f(t)

)
, (35c)

respectively. Then, using (21b), the desired angular velocity ωd(t) is designed as

ωd(t) = −λωRq(Φ(t)) (Φ(t)− Φd(t)) , (36)

where λω ∈ R+ is a design parameter. The control design procedure is given in Algorithm 2.

Remark 5. The onboard controller computes desired angular rates using the error between desired and actual
Euler angles at the frequency of 250 Hz, using proportional controller. The onboard angular rate controller
is a PID controller that runs at 1000 Hz to compute scaled τ(t) in the form of the motor PWM signals1. The
tracking performance and robustness of the onboard angular rate controller have been already proven [90].
Additionally, desired angular rate is also computed offboard using (36) at the frequency of 50 Hz and it is
feed-forwarded to the onboard angular rate controller to improve tracking performance.

Algorithm 2 ASTC Design Algorithm

1: Inputs: x(t), v(t), xd(t)
2: for i ∈ {x, y, z} do
3: Select λi, τi, γi, r0,i, αi, ϵi and qi, as per Remark 4,
4: Compute sliding surface σi(t), as (24),
5: if a2,i is known then
6: Take integral of (27) and (25b), using (28),
7: else
8: Take integral of (27a), (27b), (33) and (25b), using (28),
9: end if

10: Compute k1,i(t) as (34),
11: Compute ui(t) as (25a),
12: end for
13: Compute f(t) and Φd(t), as (26), for given ψd(t),
14: Compute ωd(t) as (36),
15: Compute PWM using onboard angular rate control.

1https://bit.ly/3SshggW
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4 Perception-Aware Trajectory Planning and Tracking: Valida-
tion

In this section, the high-fidelity numerical simulations in Gazebo as well as experimental results are presented,
to evaluate the performance of the proposed algorithms. This is to validate the proposed approaches as a proof
of concept. To execute the proposed examples, both simulations and experiments, Algorithms 3-7 are given in
Appendix A.

4.1 Validation methodology and setup

To validate the proposed solutions, we conduct Gazebo simulations and in-lab experiments. The overall dia-
gram of the architecture of the validation scenario is shown in Fig 14.

Figure 14: The overall architecture of the validation scenario.

It is worth noting that in ASTC the computed f(t) is scaled to [0, 1], representing the UAV thrust range
since the low-level control takes the normalized thrust to compute the PWM. The scaling factor is ob-
tained from the Gazebo simulation by hovering UAV at a fixed point and monitoring the MAVROS topic
/mavros/setpoint_raw/target_local, as explained in Algorithm 5. The control parameters are
selected as λi = 2, τi = 0.02, γi = 2, r0,i = 0.0001, αi = 0.9, ϵx = 0.005, ϵy = 0.005,
ϵz = 0.01, qxa2,x = 0.04, qya2,y = 0.04 and qza2,z = 0.01 for i ∈ {x, y, z}. The considered de-
sired trajectories are the circle and lemniscate, defined as xd(t) = [Rcos(2πt/T ), Rsin(2πt/T ), 1]T and
xd(t) = [Rcos(2πt/T ), Rsin(πt/T )cos(2πt/T ), 1]T , respectively, with radius R and time period T of tra-
jectory. In the numerical simulations, the disturbance in (20b), is modelled as

f
d
(·) =


− Cpρvx,w(t)

2
√
vx,w(t)2+vy,w(t)2

− Cpρvy,w(t)

2
√
vx,w(t)2+vy,w(t)2

0

 ,
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where Cp = 0.1 is drag coefficient, and ρ = 1.225(kg/m3) is the air density. Also, vx,w(t) = sin(0.75πt/T )
and vy,w(t) = cos(0.75πt/T ) are the wind speed in x and y directions, respectively. f

d
(·) represents the

drag effects which depend on the wind speed [91]. To evaluate the performance of the proposed ASTC for
high-speed maneuvers of UAV, the time period T of the desired trajectory is time variable over 90 seconds of
simulation time, defined as

T =


8π, 0 < t < 15

8π − 5π(t−15)
30 , 15 < t < 45

3π + 5π(t−45)
30 , 45 < t < 75

8π. 75 < t < 90

Moreover, the radius R is selected as 4m. The shortest time period is selected to be 3π, which corre-
sponds to the maximum speed, reachable by the considered UAV. The desired yaw angle is defined as
ψd(t) = arctan(vy(t)/vx(t)). For the sake of brevity, and to compare the numerous results, the Root Mean
Square (RMS) error is considered, defined as eRMS(t) = ∥x(t)− xd(t)∥.

On the other hand, to evaluate the performance of the proposed trajectory planning algorithm, in the Gazebo
simulations, we have considered imaginary stationery and moving obstacle to be avoided by the drone. More-
over, the initial and final points are provided. In the experimental setup, we have considered the same scenario
for large and small drones. Finally, in MRS experimental setup, we used a small drone, to track a circular tra-
jectory using ASTC. Then, this drone is considered as an obstacle for the other drone to be avoided. Here we
have taken for granted that the position of the obstacle, the target drone, the initial and final points are given.
In fact, this information is provided by the Collaborative Perception and Sensor Fusion component. Therefore,
it is logical to assume this information is provided. In the experiments, this information is provided by the mo-
tion capture system. Finally, in the MRS trajectory planning optimization, we always keep the field of view
of the target drone towards the obstacle, to be able to capture the perceptive information as much as possible,
which was tackled in Task 2.3.

4.2 Gazebo simulation results and discussion

The results of ASTC are shown in Figures 15-24. To highlight the superiority of the designed ASTC with both
adaptive k1,i and k2,i, for i ∈ {x, y, z}, the results of STC and traditional ASTC are also studied. For STC,
the gains are selected as k1,i = 1.5

√
∆i and k2,i = 1.1∆i, [89], with ∆x = ∆y = 0.04 and ∆z = 0.002

. It should be noted that these design parameters are obtained via trial and error to achieve the best tracking
performance. Also for traditional ASTC the same k1,i is used while only k2,i is adaptive.

Considering Figures 15, 16, 20 and 21, the proposed controller is able to steer the UAV position towards the
desired trajectories with variable speed. The desired trajectory reaches to its maximum speed at 45 seconds.
More importantly, Figures 17 and 22 confirm that k2,i(t) ≥ a1,i, for i ∈ {x, y, z}, as proven in Lemma
5. This leads to disturbance rejection. It should be noted that there is an inherent unknown drag model
and uncertainties, e.g. measurement uncertainty, model mismatch and communication lag, imposed in the
Gazebo simulations. This causes larger value for k2,i(t), compared to the time derivative of applied disturbance
f
d
(·). This is more obvious considering the variation of k2,z(t) in Figures 17 and 22, while no exogenous

disturbance is applied in z direction. Compared to the STC and traditional ASTC, given in Figures 18 and 23,
the fast convergence of the proposed controller is seen in the presence of disturbance. This represents one main
characteristic of the proposed controller. Even though the similar tracking performance is achieved by using
the STC and traditional ASTC at high speed maneuvers, the chattering is significant for these two controllers
for low speed, considering the Euler angles, shown in Figures 19 and 24. The chattering issue is avoided using
the proposed controller for both low and high speed situations. This further highlights the advantage of the
proposed controller.

Now, the Gazebo simulations are shown for a single drone trajectory planning is shown in Figures 25 and 26 .
It is obvious that the optimized trajectory is always kept outside of the safety region around the obstacle. More
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Figure 15: UAV position for lemniscate trajectory using the proposed controller.

Figure 16: Lemniscate tracking performance using the proposed controller.

Figure 17: Adaptive gains using the proposed controller for lemniscate trajectory.

Figure 18: RMS comparison for lemniscate trajectory.
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Figure 19: Euler angles comparison for lemniscate trajectory.

Figure 20: UAV position for circle trajectory using the proposed controller.

Figure 21: Circle tracking performance using the proposed controller.

Figure 22: Adaptive gains using the proposed controller for circle trajectory.
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Figure 23: RMS comparison for circle trajectory.

Figure 24: Euler angles comparison for circle trajectory.

importantly, the effect of the repulsive force from the obstacle is illustrated in Figure 26. Also, the obstacle is
always kept in the field of view of the drone.

4.3 Experimental results and discussion

The experimental results of ASTC are shown in Figures 27-32. For the experimental setup, the desired tra-
jectories include circle and lemniscate paths with the same time period and radius as we used in the Gazebo
simulation. Moreover, different external wind disturbances are applied using a fan with three different speeds,
namely, no disturbance (S0), slow (S1), medium (S2) and high (S3) speeds. For the sake of brevity the mean,
standard deviation (std) and maximum (max) of RMS tracking error for different disturbance speeds and trajec-
tories are summarized in Tabel 2. Considering 27-32, the proposed control is able to track accurately different
trajectories with variable speed. Moreover, after the sliding surface is reached, the tracking error is kept within
the region around zero, for different disturbances. This is further confirmed considering Table 2, in which the
mean, std and maximum of RMS for different trajectories and different wind disturbances are summarized. It is
obvious that the metrics are kept the same in different situations, owning to the adaptive gains of the proposed
control.

Table 2: Experimental RMS results in centimeter for different disturbance and trajectories.

Circle
Trajectory

Lemniscate
Trajectory

RMS mean std max mean std max
S0 0.04 1.02 6.92 0.21 0.85 8.90
S1 0.30 1.06 5.80 0.23 0.90 8.57
S2 0.25 0.92 5.44 0.23 0.92 8.77
S3 0.23 0.84 5.04 0.24 0.91 8.58
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Figure 25: Gazebo simulation results for single drone. The red square is the final point to be reached by drone. The black dot denotes the position of
the obstacle. The black circle represents the safety region around the obstacle. The dashed blue lines show the field of view of the drone.
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Figure 26: Effect of repulsive force on trajectory optimization in Gazebo simulation for single drone. The black dot denotes the position of the obstacle.
The black circle represents the safety region around the obstacle. The dashed blue lines show the field of view of the drone.

Figure 27: Experimental tracking performance for circle trajectory with S3 disturbance.
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Figure 28: Experimental UAV position for circle trajectory with S3 disturbance.

Figure 29: Experimental RMS for circle trajectory with S3 disturbance.

Figure 30: Experimental tracking performance for lemniscate trajectory with S3 disturbance.

Figure 31: Experimental UAV position for lemniscate trajectory with S3 disturbance.

Figure 32: Experimental RMS for lemniscate trajectory with S3 disturbance.
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In Figure 33 the experimental result of a single drone trajectory planning is shown. The re-optimized trajecto-
ries are shown to illustrate how the trajectory is being updated during the maneuver. Even though the obstacle
is stationary the due to inherent uncertainty in the measurements of the drone and obstacle positions, at each
re-optimization step the obtained trajectory is slightly changed. This represents the significant feature of the
proposed algorithm that takes the updated measurements into account, which enables the overall solution to
deal with the uncertainty.

Figure 33: Experimental result of trajectory optimization for a large drone with stationary obstacle and no perception constraints. The black circle
represents the safety region around the obstacle. The black lines represent the optimized and real-time re-optimized trajectories. The purple points
shown the drone position tracking the trajectory.

In Figures 34-36 the trajectory planning experimental results are shown for MRS. We used a small drone, to
track a circular trajectory using ASTC. Then, this drone is considered as an obstacle for the other drone to
be avoided. Here we have taken for granted that the position of the obstacle, the target drone, the initial and
final points are given. In fact, this information is provided by the Collaborative Perception and Sensor Fusion
component. In the MRS trajectory planning optimization, we always keep the field of view of the target drone
towards the obstacle, to be able to capture the perceptive information as much as possible, which was tackled
in Task 2.3. It is obvious that the optimized trajectory is always kept outside of the safety region around
the obstacle. Also, the obstacle is always kept in the field of view of the drone. Due to limited space, we
interchange the initial and final points as soon as the drone reaches there. However, in practice, the waypoints
can be set all at once or be sent to the drone sequentially.
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Figure 34: Experimental result of MRS trajectory optimization with moving obstacle and no perception constraints. The black circle represents the
safety region around the obstacle. The black lines represent the optimized and real-time re-optimized trajectories.
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Figure 35: Experimental result of MRS trajectory optimization with moving obstacle and with perception constraints, from initial for final points.
The black circle represents the safety region around the obstacle. The black lines represent the optimized and real-time re-optimized trajectories. The
dashed blue lines show the field of view of the drone.
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Figure 36: Experimental result of MRS trajectory optimization with moving obstacle and with perception constraints from final to initial points. The
black circle represents the safety region around the obstacle. The black lines represent the optimized and real-time re-optimized trajectories. The
dashed blue lines show the field of view of the drone.

23 December 2022 Version 1.0
Confidentiality: Public Distribution

Page 41



D2.4 Multi-Robot Monitoring Online Trajectory Generation

5 Future Works

In the next steps of this research, aligning with the SESAME project objectives, we conduct the following steps
to accomplish the aims for autonomous safe navigation of MRS for targeting M30.

• Integration of ASTC with trajectory optimization to have both planning and tracking components be
executed at the same time.

• The novel approach to generate trajectories of a collaborative MRS performed in Task 2.4. The gen-
erated trajectories can provide extra off-board sensor feedback to rescue robots under various distress
types (e.g., cyber-attack, sensor malfunction).

• Computing the optimal sensitivity with respect to parameters (initial position and obstacle position) via
sIPOPT to have faster and computationally less expensive algorithms to run on onboard computers.

• Generic obstacle representation (ellipsoid, squares)
• Different problems and robot types to be considered

6 Potential applicability for use cases

In this section, the potential applicability of the proposed approaches for different use cases is briefly moti-
vated.

• Use Case 1: Dependable Multi-Robot Systems in the Battery Innovation Centre: For this use case, the
battery parts are to be picked and assembled, can be geometrically considered as the waypoints, through
which the manipulator end effector is to be navigated. Also, the other manipulator or human operator
can be considered as obstacles to be avoided. Therefore, the trajectory planner can be utilized here.
Moreover, the ASTC can be individually used for the control of the manipulators, even if the trajectory
is already preassigned.

• Use Case 2: Disinfecting Hospital Environments using Robotic Teams: The ground mobile robot can
take advantage of the proposed planners, given the implemented constraints in the algorithm. The
constraints might represent the area the robot is to visit or avoid. More importantly, the presented
results can be directly obtained for the ground robot, as we have fixed the altitude of the drone which
can represent a planar motion similar to the ground robot. Also, the fastest trajectory can lead to fast
disinfection to avoid intervention with other personnel in the hospital environment.

• Use Case 3: Power Station Inspection using Autonomous Multi-Robot Systems: Here, the obtained
results can be directly used for this use case, as we have evaluated the proposed algorithm on drones.
Furthermore, the proposed ASTC is a good fit, given the accuracy of the navigation and the inherent
wind disturbance or uncertainties in the site. Also, the initial and final inspection points can be fed into
the planning approach to find a safe trajectory to be followed for autonomous inspection.

• Use Case 4: Autonomous Pest Management in Viticulture: Here, the monitoring drone is to fly over
the farm to detect the plants which need to be sprayed or the locations of obstacles. Therefore, for this
task, the given path is to cover the whole farm, in which ASTC can be used individually. Consequently,
the locations of plants to be sprayed and obstacles are fed sequentially or all at once into the trajectory
planner of the spraying drone, for which a trajectory optimization problem is solved in real-time. Then,
the spraying drone is to follow this trajectory, for which ATSC can be used separately.

7 Conclusions

This document outlined the components for Perception-Aware Trajectory Planning and Tracking for MRS. For
the planning part, we developed an online trajectory optimization approach to compute the fastest trajectory,
given the initial and final positions. We used Ipopt for solving the problem. We proposed some improvements
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in the modelling of the optimization problem to speed up the solver. Moreover, we considered the obstacle
avoidance issue as a safety region around the obstacle. We kept the position and field of view to the given area,
satisfying the maximization of capturing the perceptive information. The tracking control design was tackled
in the presence of external disturbance for agile maneuver using adaptive super-twisting control. The proposed
controller provides the finite time convergence and attenuation of the disturbance. Moreover, the assumption on
the variation of disturbance is relaxed by designing an adaptive law. Furthermore, we provided the algorithms
and instructions to execute the codes. The efficiency of the proposed approaches was investigated by high-
fidelity simulations in Gazebo as well as experimental studies.
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A Algorithms and Instructions for Codes Execution

In this appendix, the instructions to execute the codes for the examples are given. It should be noted that these
algorithms are just to reproduce the results of the given simulations and experiments in Section 4, not the use
case integration, which is addressed in WP8. To be able to run the provided code packages the following
software are to be installed.

• Ubuntu 20.04.3 LTS http://http://lt.releases.ubuntu.com/20.04.3/
• MATLAB R2022a https://nl.mathworks.com/help/install/ug/get-new-
matlab-release.html

• Ipopt https://coin-or.github.io/Ipopt/INSTALL.html
• ROS Noetic http://wiki.ros.org/noetic/Installation/Ubuntu
• PX4 https://docs.px4.io/main/en/dev_setup/dev_env_linux_ubuntu.html
• CasADi https://web.casadi.org/get/

The executions of numerical simulations and experimental codes for both ASTC and trajectory optimization
are elaborated in Algorithms 3-7. The instructions given in these algorithms are to be followed exactly as
presented.
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Algorithm 3 Gazebo Simulation Execution of ASTC Codes
1: Open a new terminal
2: Run
cd Firmware ▷ Change the directory to the folder where PX4 is installed.

3: Run
roslaunch mavros px4.launch fcu_url:="udp://:14540@127.0.0.1:14540"

4: Open a new tab in the same terminal and run
make px4_sitl gazebo

5: Open a new tab in the same terminal and run
rostopic pub -r 100 /traj std_msgs/Float32MultiArray "layout:
dim:
- label: ’’
size: 0
stride: 0
data_offset: 0
data: [1, 6.28]"

6: Open a new tab in the same terminal and run
rostopic pub -r 100 /smc_gains std_msgs/Float32MultiArray "layout:
dim:
- label: ’’
size: 0
stride: 0
data_offset: 0
data: [1.0, 0.03, 1, 0.002, 0.1, 0.1, 14]"

7: Open a new tab in the same terminal and run
rostopic pub -r 100 /pos_des std_msgs/Float32MultiArray "layout:
dim:
- label: ’’
size: 0
stride: 0
data_offset: 0
data: [0.0, 0.0, 3.0, 0.0]" ▷ For fixed position control, different desired positions
can be set in the format of data: [xd, yd, zd, ψd]|.

8: Open MATLAB and change the address bar to the thrust_attitude_control_Ver_5
9: In MATLAB command window run
rosinit

10: Open the file main_th_att_control_astc_2gains2.m
11: Uncomment the lines between 178-186 (fixed point), 213-222 (circular trajectory) or 237-246

(lemniscate trajectory)
12: Run main_th_att_control_astc_2gains2.m file.
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Algorithm 4 Gazebo Simulation Execution of Trajectory Optimization Codes for Single Drone
1: Open a new terminal
2: Run
cd Firmware ▷ Change the directory to the folder where PX4 is installed.

3: Run
roslaunch mavros px4.launch fcu_url:="udp://:14540@127.0.0.1:14540"

4: Open a new tab in the same terminal and run
make px4_sitl gazebo

5: Open MATLAB and change the address bar to the to_blf_perception
6: Open the file main.m
7: In MATLAB command window run
rosinit

8: Run main.m file.
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Algorithm 5 Experimental ASTC Codes
1: Open a new terminal
2: Run

Ifconfig ▷ This is to check the IP address of the computer and the onboard computers.
3: Run

ssh pi@192.168.30.146 ▷ Replace 192.168.30.146 with the onboard computer IP.
4: Run

export ROS_MASTER_URI=http://192.168.30.146:11311 ▷ Replace 192.168.30.146 with
the onboard computer IP.

5: Run
export ROS_IP=192.168.30.146 ▷ Replace 192.168.30.146 with the onboard computer IP.

6: Run
screen

7: Run
roscore

8: Press
Ctrl+A+C

9: Run
roslaunch mavros px4.launch fcu_url:=/dev/ttyUSB0:921600 gcs_url:=udp://@192.168.30.125:14550

▷ Replace 192.168.30.125 with the computer IP.
10: Press

Ctrl+A+C
11: Run

roslaunch vrpn_client_ros sample.launch server:=192.168.30.105
▷ Replace 192.168.30.105 with IP of Optitrack or the other UAV providing the pose estimation of main
UAV.

12: Press
Ctrl+A+C

13: Run
rosrun topic_tools relay /vrpn_client_node/quail/pose /mavros/vision_pose/pose

▷ Replace quail with the body name given in the Optitrack.
14: Press

Ctrl+A+C
15: Run

rostopic echo /mavros/local_position/pose
▷ This is to check if the position of the UAV is displayed. If so, press Ctrl+C to terminate this.

16: Open a new terminal
17: Run

export ROS_MASTER_URI=http://192.168.30.146:11311
▷ Replace 192.168.30.146 with the onboard computer IP.

18: Run
export ROS_IP=192.168.30.125
▷ Replace 192.168.30.125 with the computer IP.

19: Open MATLAB and change the address bar to the astc_experiments
20: In MATLAB command window run

rosinit
21: Open the file main_th_att_control_astc.m
22: Uncomment the lines between 178-188 (fixed point) and comment out the other trajectories, i.e., the lines

between 191-200 and 203-212 must be commented.
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23: Open a new tab in the terminal and run
rostopic pub -r 100 /traj std_msgs/Float32MultiArray "layout:
dim:
- label: ’’
size: 0
stride: 0
data_offset: 0
data: [1, 6.28]"

24: Open a new tab in the terminal and run
rostopic pub -r 100 /smc_gains std_msgs/Float32MultiArray "layout:
dim:
- label: ’’
size: 0
stride: 0
data_offset: 0
data: [1.0, 0.03, 1, 0.002, 0.1, 0.1, 14]"
▷ The number 14 in the last line will be amended later on considering the model of UAV is used.

25: Open a new tab in the terminal and run
rostopic pub -r 100 /pos_des std_msgs/Float32MultiArray "layout:
dim:
- label: ’’
size: 0
stride: 0
data_offset: 0
data: [0.0, 0.0, 3.0, 0.0]" ▷ For fixed position control, different desired positions can be
set in the format of data: [xd, yd, zd, ψd]|.

26: Run main_th_att_control_astc.m file.
27: Open a new tab in the terminal and run

rostopic echo /mavros/target_actuator_control
28: In the results shown in the terminal, in the control line, check the 4th number. Divide 9.81 by that number.

Replace that result instead of the number 14 above (on line 24).
29: Uncomment the other trajectories, i.e., the lines between 191-200 or 203-21 and run

main_th_att_control_astc.m file.
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Algorithm 6 Experimental Trajectory Optimization Codes for Single UAV
1: Open a new terminal
2: Run
Ifconfig ▷ This is to check the IP address of the computer and the onboard computers.

3: Run
ssh pi@192.168.30.146 ▷ Replace 192.168.30.146 with the onboard computer IP.

4: Run
export ROS_MASTER_URI=http://192.168.30.146:11311 ▷ Replace
192.168.30.146 with the onboard computer IP.

5: Run
export ROS_IP=192.168.30.146 ▷ Replace 192.168.30.146 with the onboard
computer IP.

6: Run
screen

7: Run
roscore

8: Press
Ctrl+A+C

9: Run
roslaunch mavros px4.launch fcu_url:=/dev/ttyUSB0:921600 gcs_url:=udp://@192.168.30.125:14550

▷ Replace 192.168.30.125 with the computer IP.
10: Press

Ctrl+A+C
11: Run

roslaunch vrpn_client_ros sample.launch server:=192.168.30.105
▷ Replace 192.168.30.105 with IP of Optitrack or the other UAV providing the pose estimation
of main UAV.

12: Press
Ctrl+A+C

13: Run
rosrun topic_tools relay /vrpn_client_node/quail/pose /mavros/vision_pose/pose

▷ Replace quail with the body name given in the Optitrack.
14: Press

Ctrl+A+C
15: Run

rostopic echo /mavros/local_position/pose
▷ This is to check if the position of the UAV is displayed. If so, press Ctrl+C to terminate this.

16: Open a new terminal
17: Run

export ROS_MASTER_URI=http://192.168.30.146:11311
▷ Replace 192.168.30.146 with the onboard computer IP.

18: Run
export ROS_IP=192.168.30.125
▷ Replace 192.168.30.125 with the computer IP.

19: Open MATLAB and change the address bar to the to_blf_perception
20: In MATLAB command window run

rosinit
21: Open and run the file main.m

▷ In lines 63 and 64, you can change the positions of initial and final points. Also, in line 66 the
last number, you can change the safety radius around the obstacle.
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Algorithm 7 Experimental Trajectory Optimization Codes for MRS
1: Open a new terminal
2: Run

Ifconfig ▷ This is to check the IP address of the computer and the onboard computers.
3: Run

ssh pi@192.168.30.146 ▷ Replace 192.168.30.146 with the onboard computer IP.
4: Run

export ROS_MASTER_URI=http://192.168.30.146:11311 ▷ Replace 192.168.30.146 with
the onboard computer IP.

5: Run
export ROS_IP=192.168.30.146 ▷ Replace 192.168.30.146 with the onboard computer IP.

6: Run
screen

7: Run
roscore

8: Press
Ctrl+A+C

9: Run
roslaunch mavros px4.launch fcu_url:=/dev/ttyUSB0:921600 gcs_url:=udp://@192.168.30.125:14550

▷ Replace 192.168.30.125 with the computer IP.
10: Press

Ctrl+A+C
11: Run

roslaunch vrpn_client_ros sample.launch server:=192.168.30.105
▷ Replace 192.168.30.105 with IP of Optitrack or the other UAV providing the pose estimation of main
UAV.

12: Press
Ctrl+A+C

13: Run
rosrun topic_tools relay /vrpn_client_node/quail/pose /mavros/vision_pose/pose

▷ Replace quail with the body name given in the Optitrack.
14: Press

Ctrl+A+C
15: Run

rostopic echo /mavros/local_position/pose
▷ This is to check if the position of the UAV is displayed. If so, press Ctrl+C to terminate this.

16: Open a new terminal
17: Run

export ROS_MASTER_URI=http://192.168.30.146:11311
▷ Replace 192.168.30.146 with the onboard computer IP.

18: Run
export ROS_IP=192.168.30.125
▷ Replace 192.168.30.125 with the computer IP.

19: Open MATLAB and change the address bar to the to_blf_perception_MRS(with Tello)
20: In MATLAB command window run

rosinit
21: Open and run the file main.m

▷ In line 7, the position of other UAV or obstacle is obtained. In this code, the other UAV is a Tello, whose
position is measured and published by Optitrack system. So, the name Tello should be changed to the
body name defined in the Optitrack software. In lines 65 and 66, you can change the positions of initial
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and final points. Also, in line 68 the last number, you can change the safety radius around the obstacle.
Also, the desired height can be changed in line 93. The other UAV is either manually controlled or ASTC
can be used. Moreover, if it is an obstacle there is no need for controlling it and only its position is to be
measured and and subscribed in line 7.
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